В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Фосфолипиды и антифосфолипидный синдром

Фосфолипиды – это сложные липиды, которые являются строительным материалом для клеточных мембран. Фосфолипиды есть в каждой клетке нашего организма, включая клетки крови и оболочки сосудов.

Классы фосфолипидов

Для чего нужны фосфолипиды?

Они обеспечивают жизнеспособность организма, участвуют в транспорте жиров, жирных кислот и холестерина, являются источником фосфорной кислоты, препятствуют развитию атеросклероза и образованию желчных холестериновых камней. Но в первую очередь фосфолипиды – жизненно важный структурный компонент клеточных мембран. Повреждение фосфолипидов приводит к повреждению сосудистой стенки и дальнейшему развитию тромбов. А сосуды, как известно, есть в каждом органе.

Антифосфолипидный синдром – что это и почему развивается?

В норме в организме человека иммунная система постоянно синтезирует антитела, или иммуноглобулины – белки, направленные против чужеродных агентов (вирусов и бактерий, токсинов), которые распознают их и обезвреживают. При различных изменениях в организме, а иногда без видимых причин иммунная система начинает ложно распознавать собственные структуры, клетки и ткани организма за чужеродные, и атаковать их, вырабатывая против них антитела.

Процесс свертывания крови служит защитной реакцией организма на повреждение стенки сосуда. В норме, после того, как «заплатка» из тромба выполнит свою функцию, закроет дефект стенки сосуда, и стенка восстановит целостность, тромб растворяется. При АФС свертывание крови из-за избыточной склонности к тромбозам, может быть оказаться опасным. Тромбы могут образовываться не только в местах травматического повреждения сосудистой стенки, но и внутри просвета сосуда

АФС наиболее распространен среди женщин (более 82%), мужчины страдают им гораздо реже.

Классификация антифосфолипидного синдрома (АФС)

АФС может быть первичным (наследственным) и вторичным – возникающим на фоне других аутоиммунных заболеваний (системная красная волчанка). Также развитие АФС связывают с инфекциями (гепатит С, ВИЧ, сифилис, цитомегаловирус) и приёмом некоторых лекарственных препаратов. Отдельно выделяют редкую форму – АФС, возникающий молниеносно с развитием полиорганной недостаточности вследствие тромбоза во всех органах и системах.

Механизм развития АФС у беременных:

Беременность считается наиболее частой причиной развития антифосфолипидного синдрома, поскольку при беременности происходит перестройка иммунной системы, и появляется орган, который хорошо кровоснабжается – плацента. Вследствие атаки антителами собственных фосфолипидов происходит повреждающее действие на сосудистую стенку, и активируются факторы свертывания крови. В результате происходит образование микротромбов в мелких сосудах плаценты, нарушается маточно-плацентарный кровоток, вследствие чего развиваются осложнения беременности: преэклампсия, отслойка плаценты, гипоксия плода. Кроме того, АФС является причиной привычного невынашивания беременности.

Другие проявления АФС:

В норме сосуды обеспечивают постоянный кровоток к органам и тканям и в зависимости от того, сосуды какого органа поражаются, развиваются те или иные симптомы. При развитии тромбов в сосудах, снабжающих сердечную мышцу (миокард) – развивается инфаркт миокарда; при нарушении кровотока в одной или нескольких артериях головного мозга – ишемический инсульт; при недостаточном кровоснабжении почек – почечная недостаточность. Если поражается легочная артерия – возникает ТЭЛА (тромбоэмболия легочной артерии) – жизнеугрожающее состояние.

Как определить наличие АФС

Антифосфолипидный синдром – это клинико-лабораторный синдром. Для установления диагноза необходим один клинический и один лабораторный критерий, выявленные одновременно, если при этом исключены другие, более вероятные причины нарушений системы свертывания.

К клиническим критериям АФС относят:

Лабораторными критериями являются:

Для удобства пациентов все критериальные антитела объединены в комплекс Антифосфолипидный синдром

Если антитела, являющиеся критериями, не обнаружены при наличии клинических критериев, то врач назначает другие антитела:

Обратите внимание, что обнаружение антител к фосфолипидам при отсутствии признаков тромбоза, не позволяет поставить диагноз АФС. Необходимо сочетание клиники и наличие антител.

Обследуйтесь с лабораторией KDL и будьте здоровы!

Источник

Фосфолипиды

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательствомЖиры, или липиды (как их называют люди науки), это не только скоромная пища или сальная прослойка под кожей на животе или бедрах. В природе существует несколько видов этого вещества и некоторые из них совсем не напоминают традиционные жиры. К категории таких «необычных жиров» принадлежат фосфолипиды, или фосфатиды. Они отвечают за поддержание структуры клеток и регенерацию тканей печени, кожи.

Общая характеристика

Своим открытием фосфолипиды обязаны соевым бобам. Именно из этого продукта в 1939 году впервые была получена фракция фосфолипидов, насыщенная линоленовой и линолевой жирными кислотами.
Фосфолипиды – это субстанция, созданная из спиртов и кислот. Как следует из названия, фосфолипиды содержат фосфатную группу (фосфо-), связанную с двумя жирными кислотами многоатомных спиртов (липиды). Зависимо от того, какие спирты входят в состав, фосфолипиды могут принадлежать к группе фосфосфинголипидов, глицерофосфолипидов или к фосфоинозитидам.

Фосфатиды состоят из гидрофильной головки, которая притягивается к воде, и гидрофобных хвостов, которые отталкивают воду. И поскольку эти клетки содержат молекулы, которые одновременно притягивают и отталкивают воду, фосфолипиды считаются амфипатическими веществами (растворимые и нерастворимые в воде). Благодаря этой специфической способности они крайне важны для организма.

Меж тем, несмотря на то, что фосфолипиды принадлежат к группе липидов, они не очень напоминают обычные жиры, которые в организме играют роль источника энергии. Фосфатиды «обитают» в клетках, где им отведена структурная функция.

Классы фосфолипидов

Все фосфолипиды, которые существуют в природе, биологи разделили на три класса: «нейтральные», «отрицательные» и фосфатидилглицерины.

Для липидов первого класса характерно наличие фосфатной группы с отрицательным зарядом и аминогруппы с «плюсом». В сумме они дают нейтральное электрическое состояние. К первому классу веществ принадлежат: фосфатидилхолин (лецитин) и фосфатидилэтаноламин (кефалин).

Оба вещества чаще всего представлены в организмах животных и клетках растений. Отвечают за поддержание двухслойной структуры мембран. А фосфатидилхолин к тому же наиболее распространенный в человеческом организме фосфатид.

Название фосфолипидов «отрицательного» класса говорит о характеристике заряда фосфатной группы. Эти вещества есть в клетках животных, растений и микроорганизмов. В телах животных и людей концентрируются в тканях мозга, печени, легких. К «отрицательному» классу принадлежат:

К классу фосфатидилглициринов принадлежит кардиолипин полиглицеринфосфат. Они представлены в мембранах митохондрий (где занимают приблизительно пятую часть от всех фосфатидов) и в бактериях.

Роль в организме

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательствомФосфолипиды принадлежат к числу тех полезных веществ, от которых зависит здоровье всего организма. И это не художественное преувеличение, а как раз тот случай, когда говорят, что даже от самого маленького элемента зависит работа всей системы.

Этот вид липидов есть в каждой клетке человеческого тела – они отвечают за поддержание структурной формы ячеек. Образуя двойной липидный слой, создают прочный покров внутри клетки. Помогают перемещать другие виды липидов по организму и служат растворителем для некоторых видов веществ, в том числе и холестерина. С возрастом, когда концентрация холестерола в организме повышается, а фосфолипидов – снижается, есть риск «закостенения» клеточных мембран. В результате снижается пропускная способность клеточных перегородок, а вместе с этим тормозятся обменные процессы в организме.

Наивысшую концентрацию фосфолипидов в человеческом теле биологи нашли в сердце, мозге, печени, а также в клетках нервной системы.

Функции фосфолипидов

Фосфорсодержащие жиры принадлежат к незаменимым для человека соединениям. Организм не способен вырабатывать эти вещества самостоятельно, но, меж тем, функционировать без них также не сможет.

Фосфолипиды необходимы человеку, поскольку:

Польза для нервной системы

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Человеческий мозг почти на 30 процентов состоит из фосфолипидов. Это же вещество входит в состав миелиновой субстанции, покрывающей нервные отростки и отвечающей за передачу импульсов. А фосфатидилхолин в комбинации с витамином В5 образует один из важнейших нейромедиаторов, необходимых для передачи сигналов центральной нервной системы. Недостаток вещества ведет к ухудшению памяти, разрушению клеток головного мозга, болезни Альцгеймера, раздражительности, истеричности. Дефицит фосфолипидов в детском организме также губительно влияет на работу нервной системы и мозга, вызывает задержки в развитии.

В связи с этим фосфолипидные препараты применяют, когда надо улучшить мозговую активность или функционирование периферической нервной системы.

Польза для печени

Эссенциале – один из наиболее известных и эффективных медпрепаратов для лечения печени. Эссенциальные фосфолипиды, входящие в состав лекарства, обладают гепатопротекторными свойствами. На печеночную ткань воздействуют по принципу пазлов: молекулы фосфолипидов встраиваются в места «пробелов» с поврежденными участками мембраны. Восстановление структуры клеток активизирует работу печени, в первую очередь в плане дезинтоксикации.

Влияние на обменные процессы

Липиды в человеческом организме образовываются несколькими способами. Но их чрезмерное накопление, в частности в печени, может стать причиной жирового перерождения органа. И за то, чтобы этого не произошло, отвечает фосфатидилхолин. Этот вид фосфолипидов ответственный за переработку и разжижение жировых молекул (облегчает транспортировку и выведение лишнего из печени и других органов).

К слову сказать, нарушение липидного обмена может послужить причиной дерматологических заболеваний (экзема, псориаз, атопический дерматит). Фосфолипиды предотвращают эти неприятности.

Средство от «плохого» холестерина

Для начала давайте припомним, что такое холестерин. Это жировые соединения, которые перемещаются кровотоком по телу в форме липопротеинов. И вот если в этих самых липопротеинах содержится много фосфолипидов, говорят, о так называемом «хорошем» холестерине, мало – наоборот. Это позволяет сделать вывод: чем больше фосфоросодержащих жиров потребляет человек, тем меньше риск повышения холестерина и, как результат, защита от возникновения атеросклероза.

Суточная норма

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательствомФосфолипиды принадлежат к веществам, в которых человеческое тело нуждается регулярно. Ученые подсчитали, что для взрослого здорового организма в сутки около 5 г вещества. В качестве источника рекомендуют натуральные продукты, содержащие фосфолипиды. А для более активного всасывания вещества из пищи диетологи советуют употреблять их вместе с углеводной продукцией.

Путем эксперимента было доказано, что ежедневное потребление фосфатидилсерина в дозе примерно 300 мг улучшает память, а 800 мг вещества обладают антикатаболическими свойствами. Согласно результатам некоторых исследований, фосфолипиды способны замедлить рост раковых образований примерно в 2 раза.

Однако указанные суточные дозы были рассчитаны для здорового организма, в других случаях рекомендованная норма вещества определяется индивидуально врачом. Скорее всего, доктор посоветует употреблять как можно больше продуктов, богатых фосфолипидами, людям с плохой памятью, патологиями развития клеток, болезнями печени (в том числе разными типами гепатитов), лицам с болезнью Альцгеймера. Также стоит знать, что для людей в годах фосфолипиды – особенно важные вещества.

Причиной снизить привычную суточную дозу фосфатидов могут послужить разные дисфункции в организме. Среди наиболее распространенных оснований для этого – заболевания поджелудочной железы, атеросклероз, гипертония, гиперхолинемия.

Антифосфолипидный синдром

Человеческий организм не может правильно функционировать без фосфолипидов. Но порой отрегулированный механизм дает сбой и начинает вырабатывать антитела к этому виду липидов. Подобное состояние ученые называют атифосфолипидным синдромом, или АФС.

В обычной жизни антитела – наши союзники. Эти миниатюрные образования непрерывно стоят на страже человеческого здоровья и даже жизни. Они не позволяют чужеродным объектам, таким как бактерии, вирусы, свободные радикалы, атаковать организм, мешать его работе или разрушать клетки тканей. Но в случае с фосфолипидами, иногда антитела дают сбой. Они начинают «войну» против кардиолипинов и фосфатидилстеринов. «Жертвами» антител становятся фосфолипиды с нейтральным зарядом.

Чем чревата подобная «война» в пределах организма, нетрудно догадаться. Без фосфоросодержащих жиров клетки разных видов теряют свою прочность. Но больше всего «достается» кровеносным сосудам и мембранам тромбоцитов. Исследования позволили ученым сделать вывод о том, что синдром АФС есть у каждой 20 беременной из ста и у 4 пожилых людей из сотни исследованных.

В итоге у людей с подобной патологией нарушается работа сердца, в несколько раз повышается риск возникновения инсультов и тромбозов. Антифосфолипидный синдром у беременных вызывает замирание плода, выкидыш, роды раньше срока.

Как определить наличие АФС

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательствомСамостоятельно понять, что организм начал вырабатывать антитела к фосфолипидам, невозможно. Недомогание и проблемы со здоровьем люди связывают с «деятельностью» вирусов, дисфункцией некоторых органов или систем, но уж никак не со сбоем в работе антител. Поэтому единственный способ узнать о проблеме – сдать анализы в ближайшей лаборатории. При этом исследование мочи обязательно покажет повышенный уровень белка.

Внешне синдром может проявляться сосудистым рисунком на бедрах, голенях или других частях тела, гипертонией, почечной недостаточностью и снижением зрения (за счет образования тромбов в сетчатке глаза). У беременных женщин возможны выкидыши, замирание плода, преждевременные роды.

В результатах анализов может быть указана концентрация нескольких видов антител. Каждые из них имеют свой показатель нормы:

Эссенциальные фосфолипиды

Из общей группы веществ принято выделять особо важные для человека фосфолипиды – эссенциальные (или как их еще называют незаменимые). Они широко представлены на рынке фармацевтической продукции в виде медпрепаратов, обогащенных полиненасыщенными (эссенциальными) жирными кислотами.

Благодаря гепатопротекторным и метаболическим свойствам, эти вещества включают в терапию при заболеваниях печени и других болезнях. Прием препаратов, содержащих эти вещества, позволяет восстановить структуру печени при жировой дистрофии, гепатитах, циррозе. Они, проникая в клетки железы, восстанавливают метаболические процессы внутри ячейки, а также структуру поврежденных мембран.

Но на этом биопотенциал незаменимых фосфолипидов не ограничивается. Они важны не только для печени. Есть мнение, что фосфоросодержащие липиды:

Избыток или недостаток?

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательствомЕсли человеческий организм испытывает избыток или недостаток какого-либо микроэлемента, витамина или минерала, он обязательно об этом сообщит. Дефицит фосфолипидов чреват серьезными последствиями – недостаточное количество этих липидов скажется на функционировании практически всех клеток. В результате жиродефицит может стать причиной нарушения работы мозга (ухудшится память) и органов пищеварения, ослабления иммунной системы, нарушения целостности слизистых оболочек. Недостаток фосфолипидов повлияет и на качество костной ткани – приведет к артриту или артрозу. Кроме того, тусклые волосы, сухая кожа и ломкие ногти также являются сигналом о нехватке фосфолипидов.

Чрезмерное насыщение клеток фосфолипидами чаще всего вызывает сгущение крови, что затем ухудшает снабжение тканей кислородом. Избыток этих специфических липидов сказывается на работе нервной системы, вызывает дисфункцию тонкого кишечника.

Пищевые источники

Человеческий организм способен самостоятельно производить фосфолипиды. Тем не менее, потребление продуктов, богатых этим видом липидов, поможет увеличить и стабилизировать их количество в теле.

Обычно фосфолипиды представлены в продуктах, в составе которых есть лецитин-компонент. А это яичные желтки, зародыши пшеницы, соя, молоко и полусырое мясо. Также фосфолипиды стоит искать в жирных продуктах и некоторых растительных маслах.

Отличным дополнением диеты может послужить масло арктического криля, которое является превосходным источником полиненасыщенных жирных кислот и других полезных для человека компонентов. Масло криля и рыбий жир могут послужить альтернативными источниками фосфолипидов для людей, которые не могут получать это вещество с других продуктов.

Более доступный продукт, богатый фосфолипидами, – нерафинированное подсолнечное масло. Диетологи рекомендуют использовать его для приготовления салатов, но ни в коем случае не применять для жарки.

Продукты, богатые фосфатидами:

Как получить максимальную пользу

Неправильно приготовленные продукты не несут собой почти никакой пользы организму. Об этом вам скажет любой диетолог или повар. Обычно главным врагом большинства питательных веществ в продуктах питания является высокая температура. Достаточно немного дольше позволенного подержать продукт на раскаленной плите или превысить приемлемую температуру, чтоб готовое блюдо вместо вкусного и полезного осталось только вкусным. Фосфолипиды также не переносят длительного нагревания. Чем дольше подвергать продукт термической обработке, тем выше вероятность разрушения полезных веществ.

Но польза фосфолипидов для организма зависит и от других факторов. Например, от сочетания разных категорий продуктов в одном блюде или одном приеме пищи. Эти полезные вещества лучше всего комбинируются с углеводными блюдами. В таком сочетании организм способен усвоить максимальное количество из предложенных ему фосфолипидов. Это значит, что овощной салат, заправленный растительным маслом, или рыба с крупой являются идеальными блюдами для пополнения липидных запасов. Но увлекаться углеводами также не стоит. Переизбыток этих веществ препятствует расщеплению ненасыщенных жиров.

Соблюдая диету, богатую фосфолипидами, можно принести организму еще больше пользы, если включить в рацион продукты, богатые жирорастворимыми витаминами (это витамины А, D, E, K, F, В-группа). Вместе они дадут превосходный результат.

Правильное диетическое питание – это не только протеиновая пища и так называемые «хорошие» углеводы. Жиры в адекватных количествах и полученные из правильных продуктов чрезвычайно важны для здоровья человека. Под обобщенным бытовым названием «жиры» кроются разные виды вещества, выполняющие важнейшие функции. Одни из полезных липидных представителей – фосфолипиды. Учитывая, что фосфолипиды влияют на работу каждой клетки организма, то их по праву можно считать «скорой помощью» для всего организма. Ведь нарушение структуры любой клетки вызывает серьезные последствия. Если разобраться в их роли для организма, становится понятно, почему без них жизнь была бы невозможной.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Источник

Фосфолипиды

Фосфолипиды в крови – показатель обмена липидов. Цель определения: оценка состояния липидного обмена при сахарном диабете, нефротическом синдроме, хроническом панкреатите, механической желтухе, выявление гиполипопротеинемии.

Категория

Содержание

Фосфолипиды входят в структуру клеточных и субклеточных мембран, в значительном количестве находятся в тканях мозга, нервов, печени, сердца. Фосфолипиды являются основными компонентами клеточных мембран и внутриклеточных органелл всех живых организмов. Для человеческого организма наибольшее значение из всех фосфолипидов имеет фосфатидилхолин (лецитин). Входящие в состав фосфолипидов эссенциальные полиненасыщенные жирные кислоты обеспечивают подвижность клеточной мембраны, необходимы для осуществления нормальной жизнедеятельности клеток, синтеза липидов рогового слоя кожи, ответственных за ее барьерные функции.
Фосфолипиды активизируют жировой обмен, нормализуют состояние кожи при гиперкератозе, псориазе, экземах, нейродермите, старческой пергаментной коже, обладают радипротекторными свойствами. Важными функциями фосфолипидов являются: запасная; изолирующая и защитная; иммуномодулирующая; регенерирующая; формирование полноценных мембран; контроль водного и электролитного баланса; перенос ряда витаминов; регулирование активности некоторых ферментов. Фосфолипиды, циркулирующие в крови, в числе других функций выполняют и роль стабилизаторов холестерина в плазме крови. Они препятствуют кристаллизации холестерина и осаждению на стенках кровеносных сосудов.

Повышение ↑ уровня фосфолипидов:

Снижение ↓ уровня фосфолипидов:

Источник

Липидный фундамент жизни

Возникшая в 1970-е годы концепция жидкостно-мозаичной модели биологической мембраны, где липидам отводится пассивная роль «океана», в котором «айсберги» белковых комплексов разыгрывают предназначенные им биологические роли, немного устарела. Согласно современным представлениям, тщательно подобранный эволюцией липидный состав мембран играет роль не менее важную, а, возможно, даже более фундаментальную.

картинка в мраморе: Singer & Nicholson, 1972 [3]

Авторы
Редакторы

Жизнь в том виде, в каком мы ее знаем, невозможно представить без биомембраны, разделяющей «внутренний мир» клетки и всё остальное пространство. Мембрана обеспечивает взаимодействие клетки с внешней средой, избирательно пропуская многие вещества, а также является средой протекания множества биохимических процессов. И хотя большую часть полезной работы выполняют белки, которыми мембрана буквально «нашпигована», роль липидного матрикса не стоит недооценивать. Липиды — это не просто «океан», в котором плавают белки. Это «умный» океан, чьи физико-химические свойства были тщательно подобраны в ходе эволюции так, чтобы создать эффективную платформу для функционирования и взаимодействия мембранных белков.

Вопрос зарождения жизни на Земле вряд ли когда-нибудь получит окончательный ответ, но мало кто сомневается в том, что само ее появление стало возможным лишь в тот момент, когда в «первичном бульоне» (так в биологии принято называть растворенные в доисторическом мировом океане простые органические вещества) стали появляться маленькие изолированные области пространства, ставшие основной ареной для эволюции. В этих «первичных клетках» биохимические процессы могли протекать существенно быстрее, нежели на безбрежных просторах океана, и такое разделение является одной из предпосылок для первых, добиологических, шагов эволюции. Один из теоретиков абиотического происхождения жизни на Земле — академик А.И. Опарин — представлял себе эти «первичные клетки» в виде коацерватов (свободно плавающих липидных пузырьков, внутри которых протекала химическая эволюция). Согласно некоторым современным воззрениям, жизнь могла зародиться в гидротермальных источниках, где «первичная клетка» была образована минеральными отложениями [1]. Так или иначе, именно компартментализация (этим сложным словом обозначают обособленность содержимого клетки от внешней среды, а также подразделение самих клеток на внутренние «отсеки») является одним из непреложных признаков жизни.

Краткая история исследования липидов и биомембран

Структурообразующую функцию биологических мембран выполняют липиды — амфифильные молекулы, имеющие полярную головку и неполярный (гидрофобный) хвост. Они малорастворимы в воде и склонны к образованию моно- и бимолекулярных слоев благодаря своей амфифильной природе. Еще из школьного курса биологии известно, что мембрана состоит из двойного слоя (бислоя) липидов, «прячущих» от воды внутрь гидрофобные и выставляющих на поверхность полярные (гидрофильные) части [2].

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

где Mr — масcа 1 моля триолеина, NA — число Аводгадро, Sпятна — площадь пятна, Vложки — объем ложки, ρмасла — плотность масла. В результате мы получим значение площади Sмол ≈ 1 нм 2 (на молекулу). Несложно оценить и толщину мономолекулярного слоя, равную размеру одной молекулы триолеина, разделив Vложки на Sпятна — 2,5 нм.

Более ста лет спустя, Чарльз Овертон заметил, что через биомембраны сравнительно легко проникают вещества, хорошо растворимые в липидах, из чего он сделал заключение, что мембрана должна быть образована тонким липидным слоем. Так эксперименты Франклина оказались впереди современных биофизических изысканий. 1925-м годом датируется идея бислойности мембраны: Гортер и Грендель обнаружили, что монослой липидов, выделенных из мембран эритроцитов, ровно вдвое превосходит площадь поверхности самих клеток.

Однако тогда же было замечено, что мембрана содержит значительное количество белков, которые сильно влияют на ее свойства (в частности, поверхностное натяжение). Это открытие повлекло появление концепции мембраны-«сендвича» (Доусон и Доннелли, 1935), согласно которой липидный бислой, как слой масла в бутерброде, заключен между двумя слоями белка. Прошло не одно десятилетие, пока точные данные по соотношению белков и липидов в мембранах различных клеток и современные методы исследования (такие как рентгеноструктурный анализ и электронная микроскопия) не доказали ошибочности этого представления: на самом деле, белки не окружают бислой, — они в него «встроены», подобно элементам мозаики.

Эта метафора дала название последней «классической» теории строения мембраны: «жидкостно-мозаичная мембрана» [3]. Согласно этой теории, мембрана представляет собой липидный «океан», в котором, подобно айсбергам, плавают молекулы мембранных белков. Сравнение с океаном появилось из-за того, что агрегатное состояние липидов в мембране жидкое, а точнее — жидкокристаллическое. Мембрана сравнительно свободно «течет» в плоскости, в то время как вне нее — строго упорядочена геометрией двойного молекулярного слоя.

«Последней классической» эта теория здесь названа потому, что, с одной стороны, она явно устарела, а с другой — современные представления не достигли еще той лаконичной изящности, чтобы их начала запросто можно было изложить в школьном учебнике [4].

Почему мембрана клетки «жидкая»?

Текучесть липидной фазы мембраны обусловлена присутствием в углеводородных цепях большинства структурных фосфолипидов минимум одной ненасыщенной связи, понижающей температуру плавления липида. Проследить такое фазовое поведение достаточно просто на примере растительного масла и маргарина: первое при комнатной температуре жидкое (содержит жиры, включающие ненасыщенные жирные кислоты, — например, триолеин [Tплавления = 5 °C]), второй же, получаемый из растительного масла гидрированием, твердый (двойные связи ацильных цепей насыщены; для соответствующего насыщенного жира — стеарина — Tплавления = 55 °C (!)).

Полиненасыщенные жирные кислоты (в изобилии присутствующие в рыбьем жире) обладают еще более уникальными свойствами: они поддерживают липидный матрикс мембран в «рабочем» состоянии в широком диапазоне температур, что позволяет рыбам быстро погружаться в холодные слои и всплывать обратно. Кстати, эти уникальные качества полиненасыщенных жирных кислот полезны и для человека.

В настоящее время стало понятно, что липидный компонент мембраны — это не просто пассивный носитель белков, которые и выполняют всю работу, но равноправный участник большинства биохимических процессов. На поверку оказывается, что липидный состав мембраны (а она состоит отнюдь не из одного типа молекул липидов!) тщательно оптимизирован эволюцией и позволяет создать необходимые условия для корректной и эффективной работы мембранных белков. Например, частичное взаимное несмешивание липидных компонентов мембраны эукариотической клетки приводит к появлению микроскопических (строго говоря, даже наноскопических) неоднородностей, называемых также мембранными рафтами (от англ. raft — «плот»). Такое сложное фазовое поведение липидного матрикса мембраны активно используется клеткой: упомянутые рафты, предположительно, образуют функциональные платформы, в которых комплексы мембранных белков выполняют все разнообразие своих функций, причем определенные белки предпочитают находиться в рафтовых областях, тогда как другие — в областях между ними.

В данной статье мы постарались осветить современные представления о биофизике липидных компонентов биологических мембран, и в первую очередь, подробнее остановиться на способности липидов к самоорганизации, которая широко используется клетками в своих нуждах.

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 1. Разнообразие липидов — компонентов клеточных мембран. «Комбинаторное» построение большинства липидов (то есть, сочетание разных гидрофобных, гидрофильных и «адапторных» фрагментов) приводит к тому, что в клетке обнаруживается до 1000 разновидностей липидных молекул. Подавляющее большинство из них играет регуляторную роль, либо их роль не изучена. На рисунке показаны только некоторые основные типы липидов, встречающихся в биологических мембранах.

Многообразие биомембран

Не удивительно, что мембраны клеток разных организмов отличаются между собой. Подробное сравнение липидной составляющей различных мембран наводит на мысль, что эти различия носят принципиальный характер, и что «липидный портрет» той или иной мембраны во многом определяет ее функции (помимо «населяющих» эту мембрану белков) [5]. Так, мембраны бактерий отличаются от мембран эукариот тем, что в состав первых входит большое количество отрицательно заряженных фосфолипидов (например, фосфатидилглицеролы), тогда как вторые в основном содержат липиды цвиттерионной природы (то есть, обладая как отрицательным, так и положительным зарядом, в целом они электронейтральны), — например, фосфатидилхолины. Это фундаментальное отличие используется системой врожденного иммунитета многих эукариот, — например, антимикробные пептиды селективно разрушают мембраны бактерий именно благодаря наличию отрицательного заряда на их поверхности [6], [7], а Toll-подобные рецепторы распознают бактериальные патогены благодаря компонентам их клеточной стенки (липиополисахаридам) [8], [9]. (Химическая структура упоминаемых липидов приведена на рис. 1.)

Другая важная особенность эукариот — холестерол (известный также как холестерин), отсутствующий в прокариотических мембранах. Вопреки своей дурной славе у обывателей [12], холестерол играет важнейшую и еще, видимо, не до конца осознанную роль в работе мембран наших клеток (не говоря уже о том, что он является предшественником половых гормонов). Вместе со сфинголипидами (такими как сфингомиелин) холестерол образует рафтовые структуры, придающую эукариотическим мембранам прочность и особую функциональную гетерогенность, о чем подробнее будет сказано ниже.

Интересно, что липидный состав разных органелл существенно отличается (рис. 2). Например, липидный состав митохондрий и пластид гораздо больше напоминает бактериальный, нежели эукариотический, подтверждая тем самым химерную гипотезу становления эукариот (эукариогенеза), согласно которой эти органеллы — бывшие бактерии, захваченные во «внутриклеточный плен» путем фагоцитоза какими-то ранними формами эукариот [13]. В эндоплазматическом ретикулуме, являющемся «стартовой точкой» метаболизма большинства липидов, состав обоих листков мембраны примерно одинаковый, однако в аппарате Гольджи, плазматической мембране и эндосомах различия уже весьма существенны, что говорит о наличии активных процессов, создающих эту асимметрию. В частности, фосфатидилсерины (ФС) и фосфатидилэтаноламины (ФЭ) в норме присутствуют только в цитоплазматическом листке плазматической мембраны. Наличие ФС на поверхности клетки может говорить о злокачественном перерождении и запускает программы фагоцитоза и сворачивания крови.

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 2. Липидный состав различных мембранных структур клеток млекопитающих. Диаграммы показывают липидный состав некоторых клеточных мембран; содержание холестерола (ХОЛ) дано в отношении к суммарному количеству фосфолипидов (ФЛ). Внутри клетки обозначены места синтеза основных фосфолипидов (голубые овалы) и сигнальных липидов (красные овалы) (последних по массе не более 1% от фосфолипидов, за исключением церамидов (Цер)). В эндоплазматическом ретикулуме (ЭПР) синтезируются в основном глицерофосфолипиды, жиры, холестерол и церамиды. Аппарат Гольджи является «поставщиком» сфингомиелина и сложных гликосфинголипидов. Около половины липидов митохондрий (в основном, фосфатидилэтаноламина (ФЭ), фосфатидной кислоты (ФК) и кардиолипина (КЛ)) синтезируется этими органеллами автономно, что, вместе с типично «бактериальным» липидным составом их мембран, говорит в пользу химерной теории эукариогенеза.
Условные обозначения: БМФ — бисмоноацилглицерофосфат; ГалЦер — галактозилцерамид; ГСЛ — гликосфинголипиды; ДАГ — диацилглицерол; КЛ — кардиолипин; СМ — сфингомиелин; ТГ — триацилглицеролы (жиры); ФГ — фосфатидилглицерол; ФИ — фосфатидилинозитол; ФК — фосфатидная кислота; ФС — фосфатидилсерин; ФХ — фосфатидилхолин; ФЭ — фосфатидилэтаноламин; Хол — холестерол; Цер — церамид; PI(?)P — фосфатидилинозитолфосфаты; S1P — сфингозин-1-фосфат; Ост. — остальные липиды.

Совершенно уникальной организацией мембран обладают архебактерии — третий «домен» жизни [10], [11], наряду с бактериями и эукариотами. Эволюционно они считаются более близкими родственниками эукариот, нежели бактерий, хотя по строению липидов мембраны этого не скажешь [14]. Видимо, как адаптация к экстремофильности (способности обитать при высокой температуре и/или солености и/или кислотности), мембраны архей содержат липиды с нетипичным химическим строением (см. рис. 1):

Из всего сказанного следует, что липидный состав мембран отнюдь не является чем-то выбранным раз и навсегда [15]: он претерпел существенные изменения в процессе эволюции. Даже в разные периоды жизни одного и того же организма состав мембран может существенно варьировать. По всей видимости, липидную организацию мембран эукариот можно считать эволюционно наиболее прогрессивной, поскольку она обеспечивает максимально гибкую адаптацию микроскопического окружения под нужды белковых молекул, создавая частично изолированные области в пределах одной, казалось бы, жидкой фазы. Далее мы остановимся на этих аспектах функционирования гетерогенной эукариотической мембраны подробнее.

Латеральная гетерогенность эукариотических мембран

Что же заставило исследователей обратить внимание на то, что мембрана — это нечто более сложно устроенное, нежели липидный «океан», в котором плавают «айсберги» белков, согласно модели Сингера-Николсона? Можно сформулировать три основных аргумента, почему клеточная мембрана должна быть устроена более сложно и организованно, чем это было принято считать в те годы:

В практическом смысле вышеперечисленное обозначает, что липидная компонента, будучи жидкой, тем не менее, способна образовывать частично изолированные области бислоя, обладающие особыми структурными свойствами. Эти участки представляют собой кластеры («островки») молекул липидов, сравнительно более упорядоченные и «твердые», чем окружающая их более «жидкая» фаза. В конце 1990-х такие кластеры получили уже упомянутое название рафтов [17], и то же самое название было дано новой теории организации биологических мембран.

Сосуществование двух жидких липидных фаз — относительно более и менее упорядоченной — оказывается возможным, если липидная смесь содержит как минимум три компоненты: «легкоплавкий» липид (низкая температура плавления, ненасыщенные хвосты), «тугоплавкий» липид (температура плавления выше физиологической, насыщенные хвосты и/или высокая склонность образовывать водородные связи с соседями), а также холестерол. «Тугоплавких» липидов в эукариотической мембране немного, потому что иначе она была бы гелеобразной массой вроде маргарина: основным является сфингомиелин (производное церамида, рис. 1).

Основной фосфолипид плазматических мембран эукариот — пальмитоилолеилфосфатидилхолин (ПОФХ) — содержит двойную связь в остатке олеиновой кислоты, и этого уже оказывается достаточно, чтобы температура плавления этого липида снизилась до −3 °C (по сравнению с его полностью насыщенным аналогом — дипальмитоилфосфатидилхолином (ДПФХ), — температура фазового перехода которого составляет 41,5 °C).

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 3. «Жидкое упорядоченное» состояние липидов в модельных мембранах. а — Фазовая диаграмма тройной смеси холестерола (Хол), сфингомиелина (СМ) и пальмитоилолеилфосфатидилхолина (ПОФХ) (при 23 °C). Цветные области соответствуют составам, при которых мембрана пребывает в жидком состоянии. Сосуществование жидкой упорядоченной (Lo) и жидкой неупорядоченной (Ld) фаз показано синим цветом: здесь при увеличении концентрации холестерола в диапазоне 10–35% размеры доменов «жидкой упорядоченной» фазы постепенно увеличиваются. б — Образование макроскопических мембранных доменов в гигантских везикулах, состоящих из насыщенного (ДПФХ) и ненасыщенного (ДОФХ) фосфолипидов, а также холестерола. Домены окрашиваются флуоресцентными красителями, «предпочитающими» упорядоченную (Lo) или неупорядоченную (Ld) фазы. При увеличении концентрации холестерола сверх 16% макроскопических доменов уже не заметно, но разделение Lo/Ld продолжает существовать, о чем говорит низкий сигнал резонансного переноса энергии между молекулами красителя разных типов, находящихся в разных доменах (примерное положение двух верхних микрофотографий везикул обозначено справа желтым кругом).

Такая тройная смесь «туго-» и «легкоплавкого» липидов с холестеролом демонстрирует сложное фазовое поведение (рис. 3). По всей видимости, молекулы холестерола играют роль «центров кристаллизации» для доменов из «тугоплавких» липидов, однако его присутствие в то же время не позволяет им образовать твердую (гелевую) фазу. Чтобы точнее понять возможные фазовые состояния в мембране и сложных липидных смесях, ее изображающих, введем следующие обозначения:

Равновесие между Lo/Ld фазами было давно показано на искусственных мембраноподобных системах (например, гигантских везикулах, изготовленных из липидов легочного сурфактанта) (рис. 3б), однако непосредственно в биологической мембране такого разделения (а, значит, и рафтов) пронаблюдать долгое время не удавалось. В чем же дело, если липидный состав искусственных мембран был подобран максимально похожим на мембраны настоящие?

Проблема заключается в том, что в биологических мембранах жидкая упорядоченная фаза сильно «раздроблена», и максимальный размер рафтов не превышает 100 нм, что недоступно для непосредственного наблюдения в оптический микроскоп. (Даже флуоресцентная конфокальная микроскопия, делающая «видимыми» отдельные светящиеся молекулы, в данном случае не сможет сказать, находятся ли определенные белки и пептиды в пределах одного кластера или нет.) Причины, в силу которых в живой клетке рафты не сливаются в крупные домены, видимые в оптический микроскоп (а именно это и происходит в искусственных мембранах), мы обсудим чуть дальше.

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 4. Рафтовые неоднородности в мембране различного масштаба. а — Нанокластеры холестерола, сфингомиелина, гликосфинголипидов и белков плазматической мембраны различаются по составу. Считается, что в эти кластеры входят ГФИ-заякоренные белки, трансмембранные (ТМ) белки, специфичные для рафтов, и цитоплазматические белки, связанные с актиновыми филаментами. «Обычные» ТМ-белки не входят в состав рафтов. б — В ответ на внешние сигналы нанокластеры могут сливаться с образованием рафтовой платформы, важной для ТМ передачи сигналов и мембранного транспорта. в — Рафтовая фаза, видимая в микроскоп (ø ≈1 мкм), наблюдается исключительно в равновесных мембранных системах, таких как гигантские синтетические или мембранные везикулы. В «нативных» мембранах постоянный обмен веществом и энергией «дробит» рафтовую фазу до субдифракционных размеров.

На маленьком липидном плоту

Гипотеза рафтов восходит к наблюдению, что гликосфинголипиды в комплексе Гольджи распределены не равномерно, а кластеризуются вместе перед тем, как направляться к полюсам поляризованных эпителиальных клеток. Лабораторное изучение этих кластеров показало, что, в отличие от «обычных» участков мембран, эти кластеры не растворяются в детергенте тритон X-100: они более прочные и устойчивые. Согласно химическому анализу, эти кластеры состоят преимущественно из холестерола и сфингомиелина (рис. 1), а основные белки, неизменно попадающие в эти кластеры — это гликозилфосфатидилинозитол (ГФИ)-заякоренные белки (GPI-anchored proteins). Было сделано предположение, что эти плотные кластеры образуют стабильные «плоты» (размером примерно 50 нм), в которые встроены определенные типы белков. Дополнительно в пользу этой концепции говорил тот факт, что синтетические мембраны, содержащие холестерол и гликосфинголипиды, демонстрируют примерно те же свойства: липиды разделяются на две несмешивающиеся фазы, которые даже можно разглядеть в микроскоп (рис. 3б).

Однако с течением времени стало понятно, что такое представление — противоположная крайность по сравнению с жидкостно-мозаичной моделью Сингера и Николсона: рафты далеко не столь стабильны, как это было постулировано первоначально. По всей видимости, это динамические структуры, постоянно обменивающиеся молекулами липидов и белков с остальной частью мембраны. При этом липиды в рафтах упакованы гораздо более плотно и структурированно, нежели в окружающей «жидкой» мембране. Сравнительно современное определение рафтов звучит так:

Мембранные рафты — это маленькие (10–200 нм), гетерогенные и очень динамичные липидные кластеры (или домены), обогащенные холестеролом и сфинголипидами, и принимающие участие в клеточной компартментализации. В некоторых случаях рафты могут стабилизироваться за счет белок-белковых и белок-липидных взаимодействий, формируя более крупные «рафтовые платформы» [19].

Модель рафтовой гетерогенности показана на рис. 4.

Однако, несмотря на то, что определение рафтам дано, само их существование представлялось до недавнего времени довольно-таки спорным, то есть — не подтвержденным в прямом эксперименте. Как же понимать этот парадокс?

Дело в том, что существование мембранной фракции, не растворимой в детергентах — это еще не повод считать эту фракцию рафтами (функциональными неоднородностями). Непосредственное же изучение этих доменов затруднено в связи с тем, что рафты очень сложно наблюдать «напрямую» из-за их малого размера: типичный их предполагаемый диаметр меньше дифракционного предела оптической микроскопии (≈200 нм). (Здесь речь идет именно об оптическом, а не рентгеновском или электронном излучении, потому что только оно позволяет наблюдать за клеткой неинвазивно, то есть — не разрушая ее.) Правда, в последние годы уже появились экспериментальные методики непосредственного наблюдения рафтовых кластеров (см. таблицу). В частности, одна из разновидностей оптической микроскопии сверхвысокого разрешения — наноскопия индуцировано-истощенного излучения (stimulated emission depletion, STED) — позволила установить, что ГФИ-заякоренные белки в течение достаточно длительного времени (10–20 мс) захватываются в сфинголипидно-холестерольные домены размером

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 5. Микроскопия подавления индуцированного излучения (STED) — инновационный способ неинвазивного наблюдения липидной динамики мембран в наномасштабе. STED-микроскопия — один из ультрасовременных оптических методов сверхвысокого разрешения, позволяющих «заглянуть за» дифракционный барьер (то есть, различать объекты, меньшие ≈200 нм). Образование «упорядоченной жидкой» фазы (Lo) связано с образованием доменов, обогащенных холестеролом и сфингомиелином, что можно установить при помощи метода флуоресцентно-резонансного переноса энергии (FRET). Однако размер зоны, в пределах которой «обычный» конфокальный микроскоп (слева) позволяет различать детали (≈250 нм), оказывается слишком велик, чтобы точно определить, движутся ли две молекулы совместно (то есть, образуют домен) или независимо. STED-микроскопия с размером «зоны наблюдения» всего 50 нм (справа) позволила установить существование холестерольно-сфингомиелиновых доменов на живых клетках, положив конец спору о существовании рафтов в живых клетках.

Внизу. Принцип STED-методики сходен с конфокальной флуоресцентной микроскопией, но здесь, кроме возбуждающего лазерного импульса (слева), запускающего свечение молекул-флуорофоров, используется также кольцевой формы гасящий импульс (в центре), уменьшающий эффективный радиус зоны возбуждения флуорофоров до ≈50 нм (справа; это в 4–5 раз меньше пресловутого «дифракционного барьера»).

Таблица. Некоторые методы, позволяющие наблюдать и характеризовать липидные домены в мембранах живых клеток

1 мкс

5–10 нм (расстояние между флуорофорами) / а ) нм / а ) нм /

МетодЧто наблюдаетПространственное / временное разрешениеПояснение
Спектроскопия скоррелированной флуоресценции (FCS)Подвижность флуорофора и латеральная гетерогенностьЧувствителен к кластеризации; использование нескольких цветов
Флуоресцентно-резонансный перенос энергии (FRET)Сближенность донора и акцептора
a — Точность в определении центра изображения

Кластеризация липидов in silico

Современные методы молекулярного моделирования позволяют изучить процесс самоорганизации липидных смесей с разной степенью детализации. Расчеты молекулярной динамики (МД; [7], [22]) модельных мембран, в которых все атомы липидов и окружающего растворителя представлены в явном виде, дают наиболее полную информацию. И хотя при таком подробном рассмотрении системы, доступные для моделирования даже на современных суперкомпьютерах, ограниченны в своих размерах (10 2 –10 3 молекул липида) и длительности наблюдения за их динамическим поведением ( −6 c), получаемые результаты дают атомарную картину возникновения мембранных неоднородностей в наномаштабе. Даже в случае однокомпонентной липидной мембраны ее поверхность не является однородно полярной, как это можно предположить из схематического представления липидов в виде «шариков с хвостиками» — часть этих «хвостиков» всплывает на границу вода—мембрана и формирует гидрофобные участки (рис. 6). В итоге мы имеем мозаично организованную поверхность, на которой в полярном «море» рассредоточены гидрофобные «островки» размером до нескольких нм 2 [23].

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 6. Мозаичная организация поверхности простейшей однокомпонентной мембраны. Слева представлена идеальная модель мембраны, справа — поверхность полноатомной мембраны (ДОФС), раскрашенной по гидрофобности.

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

При смешивании двух компонентов, например насыщенного (дипальмитоил-) и ненасыщенного (диолеил-) фосфатидилхолинов (ДПФХ и ДОФХ, соответственно), картина усложняется, и наблюдается обособление более «твердой» фазы (ДПФХ) в стабильные нанокластеры, распределенные диффузно в плоскости мембраны [24]. При моделировании трехкомпонентных мембран, в состав которых входят холестерол, сфингомелиеин и ДОФХ даже на небольших временах МД (2×10 −7 с) наблюдается настоящее фазовое разделение, при котором «тугоплавкий» сфингомелеин формирует островок, по границе которого располагается холестерол, обращенный своей «щетинистой» стороной во внешнюю фазу «легкоплавкого» ДОФХ [25].

Увеличить время наблюдения за поведением многокомпонентных мембран in silico, а также размер моделей, позволяет упрощенное («крупнозернистое») описание молекул. Атомы объединяют в обособленные группы — «зерна» (обычно 3–4 атома), — для которых производят расчет МД. Такая методика позволила впервые «увидеть» разделение Lo/Ld фаз в мембране из нескольких тысяч молекул, содержащей 40% насыщенного ДПФХ, 30% ненасыщенного дилинолеилфосфатидилхолина (ДЛФХ) и 30% холестерола, моделируемых в течение 20 мкс [26]. Более того, если к такой модельной мембране добавить трансмембранные спиральные пептиды (минимальные «строительные блоки» большинства мембранных белков), то можно наблюдать, как происходит их сортировка между фазами — моделируемые фрагменты белка предпочитают находиться в более жидкой Ld-фазе (ДЛФХ) и избегают упорядоченной Lo-фазы ДПФХ (рис. 7) [27].

Стоит отметить, что возникновение латеральной гетерогенной структуры в мембране наблюдается не только при смешивании «тугоплавких» и «легкоплавких» липидов, но также любых других отличающихся по своим физико-химическим свойствам — например, заряду полярной головки и склонности образовывать водородные связи с соседями. В частности, в модельной бактериальной мембране, содержащей 70% фосфатидилэтаноламина (ФЭ) и 30% отрицательно зараженного фосфатидилглицерола (ФГ) также наблюдается формирование нанодоменов, — за счет того, что молекулы ФЭ эффективно взаимодействуют друг с другом и вытесняют «невыгодного» партнера ФГ. На «крупнозернистых» моделях была показано, что такая латеральная организация мембран бактерий используется в процессе связывания антимикробными пептидами, которые при этом вызывают рост доменов ФГ и возникновение фазового разделения [28].

Что ограничивает размер рафтов в биомембранах

В реальных экспериментальных системах наблюдается достаточно парадоксальный контраст с искусственными мембранами, разделение фаз Lo/Ld в которых наблюдали неоднократно и при разных условиях. В живой клетке это удалось сделать непосредственно лишь недавно, да и то — используя самые современные технологии субдифракционного наблюдения [21]. В чем же причина такого разительного отличия?

Ведь на границе рафтовой фазы создается поверхностное (линейное) натяжение, а значит, присутствует избыточная свободная энергия, снизить которую можно путем слияния отдельных «плотиков» в одну большую макрофазу. Примерно то же самое наблюдается в супе, мелкие капли жира на поверхности которого постепенно объединяются в более крупные пятна. Фактически, это самое и происходит в искусственных мембранах (например, в мембранных везикулах) — самопроизвольный термодинамический процесс толкает к глобальному разделению Lo и Ld фазы. Но это обозначает, что отсутствие в живой клетке крупных Lo-кластеров — следствие активных процессов, протекающих с затратой энергии. (Возвращаясь к аналогии с супом, мы никогда не увидим одного большого пятна жира в кипящей кастрюле.) С одной стороны, это может происходить «само», поскольку мембрана, как и сама жизнь, — система, далекая от термодинамического равновесия. С другой стороны, эволюция физико-химических свойств мембраны могла направленно выработать такое приспособление, поскольку оно позволяет мембранам выполнять свои функции более эффективно.

Так или иначе, в мембранах протекает ряд процессов, постоянно «дробящих» рафты, — именно поэтому их так долго и не могли с достаточной степенью уверенности «нащупать». Это постоянный обмен веществом и энергией — ведь мембраны представляют собой открытые системы: помимо многочисленных разновидностей везикулярного транспорта, отдельные фрагменты мембраны постоянно «заглатываются» внутрь клетки и после какой-то переработки возвращаются обратно. Кроме этого, специальные белки делят мембрану, подобно «заборчикам», на отдельные участки. С одной стороны, это способствует компартментализации, с другой — также препятствует росту рафтов.

Анализ огромного массива биохимических и биофизических данных относительно липидных доменов в биомембранах, накопившихся за последние 15 лет, привел ученых к выводу, что состав липидного матрикса мембран эволюционно подобран, чтобы при физиологических условиях всегда находиться вблизи фазового перехода (рис. 8). Это способствует образованию в мембранах мезофазы (рафтов), которые, несмотря на свой малый размер и динамическую природу, играют важную (хотя не до конца еще изученную) роль. Какую? Читайте в заключительной части статьи.

В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Смотреть картинку В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Картинка про В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством. Фото В состав мембран клеток всех организмов входят фосфолипиды что служит доказательством

Рисунок 8. Динамическая модель рафтов. Домены «жидкой упорядоченной» фазы (Lo) в мембране гетерогенны как по размеру, так и по времени существования (0,1 мс — 1 с, показано цветом): это зависит от размера, липидного состава и «захваченных» белков, способных стабилизировать рафт. (Длина пунктирных стрелок, изображающих латеральную подвижность доменов, пропорциональна времени жизни.) Маленькие Lo-домены формируются спонтанно и диффундируют в плоскости мембраны (a). Захватив ГФИ-заякоренный или другой рафтовый белок (b), такой домен становится стабильнее и образует комплекс (c), способный или просто распасться (d), или, слившись с другим, увеличить размер (e). Такие столкновения могут привести к формированию более крупного и стабильного Lo-белкового комплекса (f), либо через какое-то время распадающегося самостоятельно, либо захватываемого в эндоцитозный пузырек (h) и «разбираемого» на исходные составляющие (i). Таким образом, рафтовые платформы в биомембранах, хотя и выполняют важные функции, являются динамическими структурами, постоянно возникающими и пропадающими вновь.

Биологическая роль наноразмерных неоднородностей в мембране

Роль такого сложного фазового поведения липидного матрикса мембран еще только предстоит понять в полной мере. Впрочем, сегодня ясно главное — такие свойства позволяют группировать (сортировать) разные белки в частично изолированные области, что позволяет им выполнять предназначенные функции. Также эти свойства определяют то, каким образом мембраны делятся и сливаются, — а это и деление самих клеток, и везикулярный транспорт, и жизненный цикл вирусов, и способность многих токсинов проникать внутрь клеток. Рассмотрим несколько примеров биологической роли рафтов немного более подробно [20]:

Перспективы биофизического изучения мембран

Кажущаяся простота липидного «океана» осталась в прошлом, и сейчас исследователи лишь приблизительно представляют все молекулярные тонкости образования кластеров в липидах. Точно так же далек от понимания и механизм «сортировки» одних белков в рафтовую фазу, а других — в более жидкую область мембраны. Между тем, это понимание дало бы возможность создать стратегию рафт-селективной доставки в клетку различных веществ, — в том числе, лекарств.

Все рассказанное в этой статье относится в первую очередь к мембранам эукариот, — но это еще не обозначает, что у бактерий нет ничего подобного (раз нет и холестерола). Изучение латеральной неоднородности бактериальных мембран может привести к созданию новых поколений антибиотиков, избирательно уничтожающих патогенные микроорганизмы, и свободных от проклятия резистентности, давно уже нависшего над «традиционными» антибактериальными средствами.

История с изучением липидного матрикса мембран в очередной раз показывает, что живая материя устроена значительно сложнее, чем представлялось ранее, и изобретение новых высокоточных методик наблюдения лишь усугубляет эту сложность.

Статья написана в соавторстве с Антоном Полянским и при поддержке РФФИ (конкурс на написание научно-популярных статей), № проекта: 11-04-11516-с. В сокращенном виде она опубликована в «Природе» [31].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *