В результате чего бескислородная восстановительная атмосфера сменилась на богатую кислородом
Кислородная катастрофа
Кислородная катастрофа (кислородная революция) — глобальное изменение состава атмосферы Земли, произошедшее в самом начале протерозоя, около 2,4 млрд лет назад (период сидерий). Результатом Кислородной катастрофы стало появление в составе атмосферы свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления.
Содержание
Первичный состав атмосферы
Причины кислородной катастрофы
Единственным значимым источником молекулярного кислорода является биосфера, точнее, фотосинтезирующие организмы. Появившись в самом начале существования биосферы, фотосинтезирующие архебактерии вырабатывали кислород, который практически сразу расходовался на окисление горных пород, растворённых соединений и газов атмосферы. Высокая концентрация создавалась лишь локально, в пределах бактериальных матов (т. н. «кислородные карманы»). После того, как поверхностные породы и газы атмосферы оказались окисленными, кислород начал накапливаться в атмосфере в свободном виде.
Одним из вероятных факторов, повлиявших на смену микробных сообществ, было изменение химического состава океана, вызванное угасанием вулканической активности.
Последствия кислородной катастрофы
Биосфера
Поскольку подавляющая часть организмов того времени была анаэробной, неспособной существовать при значимых концентрациях кислорода, произошла глобальная смена сообществ: анаэробные сообщества сменились аэробными, ограниченными ранее лишь «кислородными карманами»; анаэробные же сообщества, наоборот, оказались оттеснены в «анаэробные карманы» (образно говоря, «биосфера вывернулась наизнанку»). В дальнейшем наличие молекулярного кислорода в атмосфере привело к формированию озонового экрана, существенно расширившего границы биосферы и привело к распространению более энергетически выгодного (по сравнению с анаэробным) кислородного дыхания.
Литосфера
В результате кислородной катастрофы практически все метаморфические и осадочные породы, составляющие большую часть земной коры, являются окисленными.
Атмосфера
В результате изменения химического состава атмосферы после кислородной катастрофы изменилась её химическая активность, сформировался озоновый слой, резко уменьшился парниковый эффект. Как следствие, планета вступила в эпоху Гуронского оледенения.
Кислородная катастрофа, или кислородная революция в истории Земли
Бескислородная атмосфера
С возникновение Земли первая комбинация газов была очень негостеприимной для большинства форм жизни. Хотя существует множество теорий, таких как “Теория первичного бульона”, “Теория гидротермальных источников” и “Гипотеза панспермии” о том, как началась жизнь на Земле, и они объясняют, что первым организмам, населявшим Землю, не нужен был кислород для существования, поскольку его еще не было в атмосфере. Большинство ученых согласны с тем, что строительные блоки жизни не смогли бы образоваться, если бы в то время в атмосфере присутствовал кислород.
Углекислый газ
Однако растения и другие автотрофные организмы смогли процветать в атмосфере, заполненной углекислым газом. Двуокись углерода является одним из основных реагентов, необходимых для проведения фотосинтеза. С углекислым газом и водой автотрофы могли производить углеводы для получения энергии и выделять кислорода в качестве побочного продукта. После того, как многие растения эволюционировали на Земле, в атмосфере появился свободный кислород.
Предполагается, что ни одно живое существо на Земле в то время не использовало кислород. Фактически, изобилие кислорода было токсичным для некоторых автотрофов, и они вымерли.
Ультрафиолет
Несмотря на то, что кислородный газ не мог использоваться непосредственно живыми существами, кислород не был вредным для организмов, живущих в то время.
Кислородный газ поднимался к вершине атмосферы, где он подвергался воздействию ультрафиолетовых (УФ) солнечных лучей. Это УФ-излучение разделило молекулы двухатомного кислорода и помогло создать озон, который состоит из трех атомов кислорода, ковалентно связанных друг с другом. Озоновый слой помог блокировать некоторые УФ-лучи от поверхности Земли. Это создало более безопасные условия для жизни организмов на суше. До образования озонового слоя жизнь находилась в океанах, где была защищена от суровой жары и радиации.
Первые потребители
С появлением защитного озонового слоя, многие гетеротрофы смогли развиваться. Первыми потребителями стали простые травоядные животные, которые могли питаться растениями, выжившими в атмосфере, насыщенной кислородом. Поскольку на этих ранних стадиях колонизации суши кислород был в больших количествах, многие из предков известных нам сегодня животных, выросли до огромных размеров. Имеются данные о том, что некоторые виды насекомых были больше, чем современные виды крупных птиц.
Поскольку появилось больше источников пищи, начали развиваться потребители других уровней пищевой цепи. Эти гетеротрофы выделяли углекислый газ в качестве побочного продукта их клеточного дыхания.
Развитие автотрофов и гетеротрофов позволили сохранить уровни кислорода и углекислого газа в атмосфере устойчивыми. Этот процесс продолжается и сегодня.
Изменения содержания кислорода в атмосфере и эволюция. Зарождение жизни произошло в бескислородной среде
Вообще всегда предпочтительнее искать объяснения событиям, происходящим на Земле, не прибегая к таким гипотезам, которые постулируют универсальное влияние каких-то космических факторов, никак не опосредованное конкретными земными условиями.
В этом отношении от других концепций выгодно отличается гипотеза, выдвинутая в 60-е гг. Л.Беркнером и Л.Маршаллом, объясняющая многие важнейшие события в ходе докембрийской и послекембрийской эволюции, а также на рубеже криптозоя и фанерозоя, опираясь на закономерные изменения условий в среде обитания древних организмов. Эта гипотеза связывает развитие жизни на Земле с изменениями содержания кислорода в земной атмосфере.
В современной атмосфере Земли содержится около 21% кислорода (это соответствует его парциальному давлению 159 мм ртутного столба). Свободный кислород атмосферы необходим подавляющему большинству современных организмов как окислитель в процессах дыхания. Водные организмы обычно дышат кислородом, растворенным в воде, но этот последний образует с атмосферным кислородом единую систему: избыток кислорода, выделяющегося в воде в результате фотосинтеза водных растений, Поступает в атмосферу, а кислород атмосферы растворяется в поверхностном слое воды, по тем или другим причинам обедненной растворенным кислородом.
Первичная атмосфера Земли, существовавшая во времена зарождения жизни, 3,5-4 млрд лет назад, имела восстановительный характер и состояла, вероятно, из водорода, азота, паров воды, углекислого газа, аммиака, метана, аргона и небольших количеств других газов, в том числе и кислорода. Количество свободного кислорода в первичной атмосфере не могло превышать 0,001 от современного его содержания. Это небольшое количество кислорода выделялось в результате фотодиссоциации воды ультрафиолетовыми лучами; кислород быстро входил в различные химические реакции и вновь оказывался в химически связанном состоянии.
Зарождение жизни произошло в бескислородной среде, и кислород из-за своей высокой окислительной способности первоначально был ядовит для протоорганизмов, у которых отсутствовали соответствующие защитные биохимические системы. Вероятно, протоорганизмы по способу питания являлись гетеротрофами, использовавшими в пищу различные органические соединения абиогенного происхождения, которыми, по мнению большинства ученых, были обогащены водоемы раннего археозоя (состояние «первичного бульона», по А.И.Опарину) и на базе которых и возникла сама жизнь.
Для освобождения энергии, необходимой в жизненных процессах, первоначально использовалась анаэробная диссимиляция (брожение):
С появлением фотосинтеза (первыми фотосинтезируюшими организмами были синезеленые водоросли) в атмосферу стал выделяться кислород.
Однако фотосинтез, осуществлявшийся в океане планеты синезелеными, а позднее и различными группами эукариотических водорослей, в течение 2 млрд лет медленно, но неуклонно повышал содержание свободного кислорода в атмосфере. Когда содержание кислорода достигло 0,01 от современного (так называемая точка Пастера, соответствующая парциальному давлению кислорода 1,59 мм ртутного столба), у организмов впервые появилась возможность использовать для удовлетворения своих энергетических потребностей аэробную диссимиляцию. Другими словами, после достижения точки Пастера стало возможно дыхание, которое почти в 14 раз энергетически эффективнее, чем брожение:
Но достижение пастеровской точки в развитии атмосферы Земли Знаменовалось не только появлением возможности аэробной Диссимиляции. При содержании кислорода в атмосфере в количестве 0,01 от современного формируется озоновый экран, который может защитить от жесткой ультрафиолетовой радиации уже и верхние слои воды в водоемах (требуется «помощь» лишь примерно 1 м воды). Это, во-первых, позволяет организмам освоить верхние слои водоемов, наиболее богатые солнечной энергией; в результате резко усиливается эффективность фотосинтеза, увеличивается биопродукция и выделение свободного кислорода. Во-вторых, чрезвычайно расширяется арена жизни: условия в водоемах значительно разнообразнее на малых глубинах, чем на больших. Освоение этого разнообразия условий в богатой энергией среде обитания неминуемо должно было привести к резкому повышению разнообразия форм жизни, к подлинному взрыву формообразования.
После достижения содержания кислорода в атмосфере, равного 0,1 от современного, озоновый экран уже в состоянии полностью защитить организмы от действия жесткой ультрафиолетовой радиации. С этого момента организмы могут начать освоение суши как среды обитания. По расчетам Беркнера и Маршалла, это должно было произойти в конце ордовика (около 420 млн лет назад). Действительно, примерно к этому времени относится появление первых наземных организмов (см. гл. 2). (По мнению ряда других ученых, содержание кислорода в атмосфере соответствующее 10% от современного, было достигнуто уже к началу кембрия, примерно 580 млн лет назад).
Современное содержание кислорода в атмосфере было достигнуто в конце пермского периода.
Гипотеза Беркнера и Маршалла привлекательна не только своей логичностью и последовательностью, но и перспективностью дальнейшего развития этих идей. Как мы уже упоминали, на рубеже нижнего кембрия у самых различных групп организмов развивается твердый скелет, облегчающий их фоссилизацию. Формирование скелета может быть также непосредственным следствием повышения содержания кислорода в атмосфере. Как показали Р. и Е. Раффы, при низком содержании кислорода в окружающей среде размеры тела многоклеточных животных не могли быть большими (вследствие низкого уровня метаболизма и энергетики организмов); газообмен с внешней средой, вероятно, осуществлялся диффузно, через поверхность тела; при этом толщина стенок тела не могла превышать нескольких миллиметров. Для таких организмов не возникало необходимости в опорном внутреннем скелете, а защитные наружные скелетные образования препятствовали бы газообмену.
К.Тоув пришел к выводу, что у докембрийских животных в условиях малого содержания кислорода в окружающей среде не могло быть также хорошо развитых соединительнотканных образований, формирующих основу для развития скелета. Прочность соединительнотканных структур основывается на содержании в них белка коллагена, в состав которого входит аминокислота оксипролин. Ее образование возможно только при достаточно высоком содержании кислорода в окружающей среде. Следовательно, при низком содержании кислорода синтез коллагена был биохимически затруднен, и организмы не могли иметь прочных соединительнотканных структур, а поэтому и скелета, и сильно развитой мышечной системы (работа которой эффективна лишь при наличии соответствующих опорных образований).
Д. Роудс и Дж. Морзе исследовали распространение различных животных в современных водоемах с пониженным содержанием кислорода в воде (в Калифорнийском заливе и в Черном море). Была обнаружена отчетливая корреляция между содержанием кислорода в воде и характером донной фауны (бентоса). При содержании кислорода менее 0,1 мл на 1 л воды многоклеточные животные в составе бентоса отсутствуют; при 0,3-1 мл/л встречаются небольшие мягкотелые (бесскелетные) животные, зарывающиеся в ил; наконец, в более поверхностных слоях с содержанием кислорода более 1 мл/л обитают самые разнообразные животные, обладающие известковым скелетом. Эти данные представляют своего рода живую иллюстрацию к концепции Беркнера и Маршалла.
Подведем некоторые итоги. Обособление большинства типов животных произошло, вероятно, в позднем протерозое, 550-800 млн лет назад. Примитивные представители всех групп многоклеточных были небольшими лишенными скелета животными. Продолжавшееся накопление кислорода в атмосфере и увеличение мощности озонового экрана к концу протерозоя позволили животным Увеличить размеры тела. Организмы получили возможность широко расселиться на малых глубинах различных водоемов, что способствовало значительному повышению разнообразия форм животных (вендская фауна).
Однако в позднем венде эта древняя фауна многоклеточных Животных подверглась значительному вымиранию, которое сопровождалось новым существенным уменьшением размеров тела организмов, переживших вымирание. Возможно, этому способствовало чрезвычайно мощное оледенение (по некоторым данным, среднегодовая температура Земли понижалась в это время примерно до 5°С). К концу венда ледники отступили, и условия вновь стали благоприятными для широкого расселения организмов.
Все о кислородной катастрофе в период Архея
Мало кто знает, что кислород в свободном виде появился в результате кислородной катастрофы в истории Земли, которая произошла около 2,45 миллиардов лет назад. До этого он также присутствовал в атмосфере, но его содержание было крайне мало. После катастрофы многие организмы вымерли, так как были она анаэробы, а для них кислород был просто губителен. Но некоторые остались, так как были устойчивы или обитали в «кислородных карманах» и начали развиваться в более сложные.
Кислородная катастрофа произошла на рубеже Архея и Протерозоя и в корне изменила жизнь организмов, сменила сообщества.
Что это такое?
Ученые говорят о том, что к моменту кислородной революции цианобактерии находились на Земле уже в районе пятисот миллионов лет, они пытались доказать, что все же фотосинтезирующие бактерии перенасытили атмосферу О2, но им это не удалось, так как ни одна их теория не смогла объяснить из-за чего произошло изменение в карбонатных минералах, а именно смена соотношения изотопов углерода. Данное явление они смогли объяснить только тектонической активностью, которая и привела к кислородной катастрофе и изменению в минералах, так как в результате нее начало образовываться большое количество вулканов, извергающих в атмосферу углекислый газ.
Приблизительно за двести миллионов лет в протерозое концентрация свободного О2 возросла в пятнадцать раз. То есть можно сказать, что кислородная катастрофа растянулась на два периода, но принято считать, что именно данное событие является окончанием архейского эона.
Долгое становление окислительной атмосферы
Во время катастрофы количество свободного газа резко увеличилось в атмосфере и достигло точки Пастера (это уровень кислорода, выше которого аэробные микроорганизмы и факультативные анаэробы адаптируются и переходят от брожения к аэробному дыханию). Так как населяли Землю в основном анаэробы, а кислород для них губителен, почти все организмы вымерли. Но тем не менее остались формы, которые не погибли от кислорода, так как были либо восприимчивы к окислению и воздействию кислорода, либо проводили свой жизненный цикл в среде, лишенной кислорода.
В результате накопления значительных объемов кислорода, в атмосфере и гидросфере появилась стабильная жизнедеятельность аэробных одноклеточных организмов, которые до этого могли существовать и развиваться только в «кислородных карманах».
В восстановительной среде, которая была до, цианобактерии выделяли дикислород, который сначала расходовался на окисление соединений и не собирался в свободном состоянии в атмосфере Земли. Во время резкого увеличения этого важного для нас газа, он начал накапливаться в свободном вида и характер атмосферы начал изменяться с восстановительного на окислительный, так как организмы начали использовать энергетический обмен.
Жизнь и кислород
Появление свободного кислорода послужило началом изменения животного мира. Некоторые ученые считают, что он начал накапливаться в воде и лишь потом перешел на сушу, но точных доказательств этому нет.
Содержание в атмосфере пополняется за счет фотосинтеза, причем в большей степени фитопланктонов мирового океана, а не лесов, как можно подумать. Не смотря на то, что на нашей планете он появился очень давно, до сих пор остались некоторые виды анаэробов, которые обитают в воде, лишенной кислорода; иле, где создается восстановительная среда. Это бактерии, из-за того, что бескислородных мест на Земле очень мало, развиваться далее они не могут.
Последствия и значение
Кислородная революция стала кардинальным изменением атмосферы и биосферы на Земле.
Важно отметить, что кислородная катастрофа не смогла бы произойти только из-за тектонической активности, фотосинтез (создание органических веществ из неорганическихе, в данном случае образование дикислорода, как побочного продукта) простейших также стал значимой частью произошедшего. Без него важнейший газ просто бы не мог появиться и накопиться в таком количестве в атмосфере. Поэтому, говоря о причинах, стоит обозначать обе.
Значение кислородной катастрофы в истории Земли очень значимое и заключается в последующих путях развития жизни на планете, то есть в развитии нынешним и появлении более сложных форм живых организмов. То есть, живые организмы начали использовать энергетический обмен, дыхание, а не гликолиз и брожение. Способность синтезировать при дыхании значительно большое количество молекул АТФ позволила организмам расти, быстрее размножаться и усложнять свои структуры и обмен веществ.
Почему на Земле произошла кислородная катастрофа и как на нее повлияла Луна
Большое количество кислорода в атмосфере нашей планеты возникло не сразу. До его появления, в океанах жили организмы, которым не нужен был кислород. Микробы умели синтезировать органические молекулы, задействуя для этого энергию солнца. Проще говоря, они были способны к фотосинтезу, но кислород при этом не выделялся. Ситуация изменилась 3,5 млрд лет назад, когда возникли цианобактерии, способные к кислородному фотосинтезу. Правда в достаточном количестве необходимый для нашей жизни газ появился на планете не сразу, а примерно через один миллиард лет. В результате бактерии, привыкшие к безкислородной среде, вымерли или отправились в глубины океанов, а их место заняли новые организмы. Но почему на появление кислорода потребовался миллиард лет? Ученые утверждают, что Земле понадобилось бы еще больше времени, если бы не одно событие, которое помогло цианобактериям изменить атмосферу и радикально повлиять на жизнь на планете.
На Земле 3,5 млрд лет назад, когда сутки длились 6 часов, в атмосфере отсутствовал кислород
Кислород в атмосфере земли — что ускорило его появление?
Уровень кислорода на Земле повышался не равномерно, а ступенчато, то есть в какие-то моменты скорость насыщения им атмосферы увеличивалась. Отсюда и возникло предположение, что этому процессу что-то поспособствовало.
Группа ученых, которую возглавил Джудит Клатт из Института морской микробиологии Макса Планка, выдвинула интересное объяснение произошедшему на планете несколько миллиардов лет назад. По мнению ученых микроорганизмы смогли выделять больше кислорода в атмосферу в результате увеличения продолжительности светового дня. В те далекие времена Земля вращалась значительно быстрее, чем сейчас. Поэтому продолжительность суток была короче — около 6 часов. Соответственно световой день длился всего несколько часов.
Отсюда возникает вопрос, какая разница выделяющим кислород бактериям — длинный день на Земле и длинная ночи или короткий день и короткая ночь? Ведь количество поступающего солнечного света на землю не изменилось. Но, как выяснилось, разница все же есть.
Насыщение атмосферы кислородом ускорилось благодаря замедлению скорости вращения земли
Как продолжительность суток повлияла на кислород в атмосфере
Джудит Клатт с группой исследователей из Мичиганского университета изучали воду в воронке на Мидл-Айленде (острове на озере Гурон). В нее со дна просачиваются грунтовые воды, при этом уровень содержания кислорода крайне низкий. Другими словами, условия напоминают те, которые были на нашей планете в течение миллиардов лет до появления в атмосфере кислорода.
В воде живут в основном два вида микробов — пурпурные цианобактерии, которые производят кислород, а также белые сероокисляющие бактерии. Первые генерируют энергию с помощью солнечного света, вторые — с помощью серы. Чтобы выжить, эти бактерии каждый день исполняют своего рода «танец».
Почти весь кислород в атмосфере появился благодаря цианобактериям
Еще больше материалов о том, как зарождалась жизнь на Земле вы найдете на нашем Яндекс.Дзен-канале.
От заката до рассвета бактерии, поедающие серу, находится на поверхности, то есть над цианобактериями, блокируя им доступ к солнечному свету. Когда утром выходит солнце, поедатели серы движутся вниз, а цианобактерии поднимаются на поверхность, чтобы начать фотосинтез и производить кислород. Однако с момента восхода солнца и до того, как начинается процесс фотосинтеза, проходит несколько часов. То есть оказалось, что цианобактерии любят “поздно вставать”. В таком случае продолжительность светового дня непосредственно влияет на количество вырабатываемого бактериями кислорода.
Почему замедлилась скорость вращения Земли
Земля 3,5 млрд лет назад вращалась с невероятно высокой скоростью, но ситуация изменилась с появлением Луны. На Землю стала действовать ее гравитация. Кроме того, возникли приливы и отливы, которые также внесли свой вклад в замедление скорости вращения планеты.
Появлению современной жизни на планете мы обязаны Луне
Первое сильное замедление Земли произошло 2,5 млрд лет назад, и оно как раз совпадает с тем периодом, когда сильно увеличилось содержание кислорода в атмосфере. В результате произошла так называемая “кислородная катастрофа”. Затем замедление вращения прекратилось примерно на один миллиард лет. Это совпало с периодом, когда ускорение роста уровня кислорода в атмосфере отсутствовало. Около 600 миллионов лет назад вновь произошло замедление скорости вращения планеты, и в этот период времени также отмечается скачок уровня кислорода. К слову, скорость вращения нашей планеты нестабильна и по сей день. К примеру, в 2020 году было отмечено ее ускорение.
Подписывайтесь на наш Telegram-канал, чтобы не пропустить научные объяснения самым захватывающим загадкам природы, а также быть в курсе последних открытий.
Сопоставив картину замедления вращения земли и насыщения атмосферы кислородом, ученые пришли к выводу, что между этими процессами есть взаимосвязь. Ключом к разгадке стали упомянутые выше исследования на Мидл-Айленде, которые описаны в журнале Nature Geoscience.
Из всего вышесказанного можно сделать вывод, что именно Луна стала толчком к зарождению жизни на Земле в том виде, в котором она существует сейчас. Правда, Луна повлияло лишь косвенно, непосредственное участие в синтезе кислорода принимало лишь Солнце и цианобактерии. Но парадокс в том, что Солнце может в будущем и лишить Землю кислорода, уничтожив растения и цианобактерии.