В прямоугольном параллелепипеде abcda1b1c1d1 известно что aa1 10 ab 5 a1d1 10
В прямоугольном параллелепипеде abcda1b1c1d1 известно что aa1 10 ab 5 a1d1 10
В прямоугольном параллелепипеде известно, что Найдите длину ребра
По теореме Пифагора
Тогда длина ребра равна AB
В пространстве с L2-метрикой просто выражаете один из компонентов вектора через его длину, ну, типа,
Так мы так и делаем, только длину одной из компонент предварительно ищем по теореме Пифагора.
В прямоугольном параллелепипеде известно, что Найдите длину ребра
По теореме Пифагора
Тогда длина ребра BA равна
В прямоугольном параллелепипеде известно, что Найдите длину ребра
По теореме Пифагора
Тогда длина ребра CD равна
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений. По условию даны длины двух измерений и длина диагонали. Осталось подставить в формулу и сосчитать.
На картинке показана диагональ BD1, ее подразумевают в решении, но пишут другую-DB1
Эти диагонали равны.
В прямоугольном параллелепипеде известно, что Найдите длину ребра
По теореме Пифагора
Тогда длина ребра равна
Приведем другое решение.
В прямоугольном параллелепипеде известно, что Найдите длину ребра
Найдем диагональ BD прямоугольника ABCD по теореме Пифагора:
Рассмотрим прямоугольный треугольник По теореме Пифагора
Таким образом,
В прямоугольном параллелепипеде известно, что Найдите длину ребра
Это задание ещё не решено, приводим решение прототипа.
В прямоугольном параллелепипеде известно, что Найдите длину ребра
Найдем диагональ BD прямоугольника ABCD по теореме Пифагора:
Рассмотрим прямоугольный треугольник По теореме Пифагора
В прямоугольном параллелепипеде abcda1b1c1d1 известно что aa1 10 ab 5 a1d1 10
БАЗА ЗАДАНИЙ
Задание № 5. Стереометрия.
1. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы.
2. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.
3. Во сколько раз увеличится площадь поверхности куба, если его ребро увеличить в три раза?
4. Площадь поверхности куба равна 24. Найдите его объем.
5. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 30. Найдите ребро куба.
6. Площадь поверхности куба равна 8. Найдите его диагональ.
7. Объем куба равен 24√3. Найдите его диагональ.
8. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
9. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 4. Площадь ее поверхности равна 132. Найдите высоту призмы.
10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
11. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.
12. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.
13. В основании прямой призмы лежит ромб с диагоналями, равными 9 и 12. Площадь ее поверхности равна 468. Найдите боковое ребро этой призмы.
14. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности.
15. Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.
16. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.
17. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.
18. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.
19. Диагональ прямоугольного параллелепипеда равна √8 и образует углы 30°,30° и 45° с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.
20. В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известно, что BB 1 =32, AB=12, AD=9. Найдите площадь сечения проходящее через вершины A, A 1 , C.
22. Дана правильная четырёхугольная призма ABCDA 1 B 1 C 1 D 1 , площадь основания которой равна 6, а боковое ребро равно 7. Найдите объём многогранника, вершинами которого являются точки A, B, C, B 1 .
25. В правильной треугольной призме ABCA 1 B 1 C 1 все ребра равны 3. Найдите угол между прямыми AA1и BC1. Ответ дайте в градусах.
27. Объём куба равен 16. Найдите объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.
28. Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.
29. Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 4,5. Найдите объем треугольной пирамиды AD 1 CB 1 .
30. Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 1,5. Найдите объем треугольной пирамиды ABCB 1 .
31. Найдите объем параллелепипеда ABCDA 1 B 1 C 1 D 1 , если объем треугольной пирамиды ABDA 1 равен 3.
32. Гранью параллелепипеда является ромб со стороной 1 и острым углом 60°. Одно из ребер параллелепипеда составляет с этой гранью угол 60° и равно 2. Найдите объем параллелепипеда.
38. В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 5. Найдите её объём.
39. В правильной четырёхугольной пирамиде боковое ребро равно 7,5, а сторона основания равна 10. Найдите высоту пирамиды.
40. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.
41. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.
42. В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания равна 10,5. Найдите высоту пирамиды.
В прямоугольном параллелепипеде abcda1b1c1d1 известно что aa1 10 ab 5 a1d1 10
В прямоугольном параллелепипеде ABCDA1B1C1D1 проведена секущая плоскость, содержащая диагональ AC1 и пересекающая ребра BB1 и DD1 в точках F и E соответственно.
а) Докажите, что сечение AFC1E — параллелограмм.
б) Найдите площадь сечения, если известно, что AFC1E — ромб и AB = 3, BC = 2, AA1 = 5.
а) Параллельные плоскости пересекаются третьей по параллельным прямым. Следовательно, прямые AF и C1E параллельны, прямые AE и C1F параллельны, таким образом, AFC1E — параллелограмм.
Ответ: б)
Критерии оценивания выполнения задания | Баллы | ||||||
---|---|---|---|---|---|---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 | ||||||
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 | ||||||
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, В прямоугольном параллелепипеде abcda1b1c1d1 известно что aa1 10 ab 5 a1d1 10а) Докажите, что высоты треугольников ABD и A1BD, проведённые к стороне BD, имеют общее основание. б) Найдите угол между плоскостями ABC и A1DB. а) Проведем высоту AH в треугольнике ABD. Поскольку проекция прямой на плоскость ABCD это прямая AH, то по теореме о трех перпендикулярах. б) Из треугольника ABD находим Ответ: б)
|