В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Параллелограмм: свойство его биссектрисы

Биссектриса параллелограмма — это отрезок, соединяющий вершину параллелограмма с точкой на одной из двух противоположных сторон и делящий угол при вершине пополам.

\(\bullet\) Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Выпускники, которые рассчитывают успешно сдать ЕГЭ, в обязательном порядке должны повторить тему «Свойства биссектрисы параллелограмма». Как показывает статистика, при прохождении аттестационного испытания задачи по данному разделу планиметрии вызывают сложности у большого количества учащихся. При этом задания, в которых необходимо применить свойства биссектрисы угла параллелограмма, встречаются в ЕГЭ ежегодно. Таким образом, справляться с ними должны все учащиеся.

Образовательный портал «Школково» предлагает выстроить процесс подготовки к прохождению аттестационного испытания по-новому. Занимаясь вместе с нашим ресурсом, выпускники смогут определить наиболее сложные для себя темы и ликвидировать пробелы в знаниях.

Чтобы задания ЕГЭ не вызывали трудностей, рекомендуем вначале повторить основные понятия и свойства биссектрисы параллелограмма. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».

Для того чтобы окончательно понять принцип решения задач по данному разделу планиметрии, мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий различного уровня сложности представлена в разделе «Каталог». Для каждого упражнения на сайте приведен алгоритм решения и дан правильный ответ. Последовательно выполняя их, учащиеся смогут понять, как правильно применять свойства биссектрисы внутреннего угла параллелограмма.

Получать новые знания и оттачивать собственные навыки по данной теме или, например, в решении задач на тему «Прямоугольник» в ЕГЭ учащиеся могут в онлайн-режиме, находясь в Москве или любом другом российском городе. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Источник

Биссектриса параллелограмма — свойства, признаки и теоремы

Аксиома параллельности прямых, которая приведена Евклидом в книге «Начала», служит основой для доказательства многих свойств биссектрисы параллелограмма. О них знали пифагорейцы. Но понятие о самой фигуре ввел именно Евклид. Она представляет собой четырехугольник с параллельными противоположными сторонами.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Равнобедренный треугольник в параллелограмме

Биссектриса параллелограмма может быть проведена из вершины острого или тупого угла фигуры. Доказательство теоремы о равнобедренности образуемых прямой треугольников в этих случаях имеет аналогичный порядок. Чтобы доказать утверждение, нужно знать признак равнобедренности треугольника:

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

С помощью аналогичных рассуждений можно доказать, что биссектриса тупого угла параллелограмма делит противоположную сторону на отрезки и отсекает от него равнобедренный треугольник.

Точка пересечения прямых

Согласно свойству, проведенные из смежных углов параллелограмма биссектрисы пересекаются в точке на противоположной стороне, если она в 2 раза больше меньшей. Доказать это утверждение можно следующим способом:

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Доказательство свойства позволяет предположить, что биссектрисы смежных углов пересекаются внутри либо вне параллелограмма. При этом одна сторона больше или меньше половины другой. Если ее величина больше половины соседней, значит прямые пересекутся внутри фигуры.

Биссектрисы, проведенные через смежные углы, пересекаются с продолжением противоположных сторон параллелограмма в вершинах ромба. В зависимости от величины другой стороны, ромб совпадает с ним либо обладает большим или меньшим периметром. Если частить с построением этой фигуры, то длины сторон параллелограмма будут бесконечными.

Свойства односторонних углов

Параллелограмм АВСД имеет смежные углы при параллельных прямых АВ и СД, обозначенные а1 и а2. Для доказательства теоремы о перпендикулярности биссектрис нужно знать свойства смежных углов, сумма которых равна 180 градусам.

Поскольку биссектрисы можно провести внутри острого или тупого угла параллелограмма, то величину смежного с ним внешнего угла можно сложить, получив 180 градусов. Если обозначить их через АО и ДЕ, то углы ОАВ и ЕДС будут равны половинам а1 и а2 соответственно. Так как а1 + а2 = 180, то (а1 + а2) / 2 = 90, значит АО и ДЕ образуют прямой угол АКД.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Применять свойство биссектрис можно при нахождении периметра фигуры. Должны быть известны данные о соотношениях или длинах отрезков, образованных при пересечении противолежащей стороны биссектрисой. Например, она делит на отрезки ВК и КС сторону параллелограмма ABCD, величины которых известны.

Формула определения периметра будет иметь вид: P=2 (n+n+m). Где ВС=BК+КC=n+m, а АВ=ВК=n по свойству биссектрисы. С учетом признака равнобедренности треугольника можно построить эту прямую, дополнив рисунок фигуры без транспортира с помощью циркуля.

Противолежащие углы и биссектрисы

Согласно свойству параллельных прямых, биссектрисы a и b проходят параллельно друг другу. Они образуют внутри фигуры со сторонами mnkp другой параллелограмм, следовательно, он обладает параллельными противоположными сторонами. Прямые, на которых они лежат, соответствуют сторонам исходной фигуры, поэтому ее биссектрисы a и b являются равными.

Углы, которые образованы отрезками a и m, а также b и k, согласно свойствам биссектрис и параллелограммов, равны. Противолежащие равные по величине углы, образованные отрезками mp и nk, можно разделить пополам. Прямая b, пересекающая отрезки n и p, образует с ними накрест лежащие углы, признак которых состоит в их равенстве. Они равны разделенным пополам противоположным и являются соответственными при параллельных прямых n и p.

Вершины образуемого прямоугольника

Биссектрисы параллелограмма пересекаются в точках, представляющих собой вершины прямоугольника, что можно доказать следующим образом:

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Аналогичным способом можно доказать параллельность других сторон прямой СД. Следовательно, диагональ КР образованного биссектрисами параллелограмма прямоугольника КМРО содержит точки Х и Т. Доказательство предполагает следующее равенство: КР = КХ + ХТ + ТР = ХС + СД + ТД = ВС + СД, поэтому величина диагонали равна сумме двух смежных сторон параллелограмма.

Ромб и его диагонали

Параллелограмм, имеющий биссектрису, которая совпадает с его диагональю, представляет собой ромб. Чтобы доказать это, нужно провести диагональ AC, соединяющую противоположные вершины ABCD. Способ доказательства теоремы основан на равенстве противолежащих углов параллелограмма.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Согласно свойству биссектрисы, отрезок АС делит пополам углы BCD и BAD. Они имеют одинаковую величину, поскольку противоположные углы равны. Диагональ АС — основание треугольников ACB и ACD. Согласно признаку равнобедренности АВ и АС, а также AD и CD, равны между собой. По свойству равенства противоположных сторон параллелограмма AB = CD и AD = BC.

Фигура ABCD, представляющая собой по условию параллелограмм, имеет равные по величине AB, AD, BC и CD в соответствии с доказательством. Отсюда следует, что параллелограмм ABCD по определению ромб. В нем биссектриса АС — это его диагональ.

Примеры решения задач

Биссектрисы смежных углов параллелограмма пересеклись в точке на его противолежащей стороне. Зная его меньшую сторону, можно найти большую, а также наоборот. Допустим, что длина меньшей стороны фигуры составляет 5 сантиметров.

Обозначив вершины фигуры A, B, C, D, а точку на AD буквой Р, достаточно иметь в виду, что AD=AР+РD=AB+CD. Это доказывает признак равенства накрест лежащих углов СВР и АРВ, а также ВСР и СРD при параллельных прямых. Формула для нахождения большей стороны будет иметь вид: AD=2AB=10, поскольку AB = CD. При необходимости найти меньшую можно по формуле: AD=AB/2.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

По условию задачи биссектриса, исходящая из острого угла параллелограмма, разделяет его противоположную сторону на отрезки 73 мм и 54 мм, если считать от вершины тупого угла. Требуется вычислить периметр параллелограмма ABCD. Точка Е делит сторону ВС на отрезки заданной длины, поскольку АЕ — биссектриса угла ВАD. Эта прямая представляет собой секущую для параллельных AD и BC.

Отсекая равнобедренный треугольник АВЕ, биссектриса ВЕ является его основанием, поэтому сторона параллелограмма АВ равна отрезку ВЕ, длина которого по условию 73 мм. В сумме ВЕ и ЕС равны ВС, что составляет 127 мм. Отсюда периметр ABCD соответствует удвоенной сумме его сторон: Р = 2 (73+127) = 400 мм. Чтобы найти большую сторону параллелограмма ABCD при известном периметре 128 мм, можно использовать аналогичное доказательство равнобедренности треугольника.

По условию соотношение отрезков, образуемых точкой пересечения биссектрисы DЕ с противоположной стороной ВС, равно 4:3, если считать от острого угла при вершине А. Из равенства противоположных сторон ABCD и признака равнобедренного треугольника следует AD=BC=АЕ=4х, а ЕВ=3х, поэтому CD=АЕ+ЕВ=4х+3х=7х. Зная периметр ABCD, можно составить уравнение Р=2 (7х+4х)=128. Отсюда 22х=128, а х=32, поэтому большая сторона параллелограмма CD=32*7=224 мм.

Источник

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Равнобедренный треугольник в параллелограмме

Биссектриса параллелограмма может быть проведена из вершины острого или тупого угла фигуры. Доказательство теоремы о равнобедренности образуемых прямой треугольников в этих случаях имеет аналогичный порядок. Чтобы доказать утверждение, нужно знать признак равнобедренности треугольника:

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

С помощью аналогичных рассуждений можно доказать, что биссектриса тупого угла параллелограмма делит противоположную сторону на отрезки и отсекает от него равнобедренный треугольник.

Точка пересечения прямых

Согласно свойству, проведенные из смежных углов параллелограмма биссектрисы пересекаются в точке на противоположной стороне, если она в 2 раза больше меньшей. Доказать это утверждение можно следующим способом:

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Доказательство свойства позволяет предположить, что биссектрисы смежных углов пересекаются внутри либо вне параллелограмма. При этом одна сторона больше или меньше половины другой. Если ее величина больше половины соседней, значит прямые пересекутся внутри фигуры.

Биссектрисы, проведенные через смежные углы, пересекаются с продолжением противоположных сторон параллелограмма в вершинах ромба. В зависимости от величины другой стороны, ромб совпадает с ним либо обладает большим или меньшим периметром. Если частить с построением этой фигуры, то длины сторон параллелограмма будут бесконечными.

Свойства односторонних углов

Параллелограмм АВСД имеет смежные углы при параллельных прямых АВ и СД, обозначенные а1 и а2. Для доказательства теоремы о перпендикулярности биссектрис нужно знать свойства смежных углов, сумма которых равна 180 градусам.

Поскольку биссектрисы можно провести внутри острого или тупого угла параллелограмма, то величину смежного с ним внешнего угла можно сложить, получив 180 градусов. Если обозначить их через АО и ДЕ, то углы ОАВ и ЕДС будут равны половинам а1 и а2 соответственно. Так как а1 + а2 = 180, то (а1 + а2) / 2 = 90, значит АО и ДЕ образуют прямой угол АКД.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Применять свойство биссектрис можно при нахождении периметра фигуры. Должны быть известны данные о соотношениях или длинах отрезков, образованных при пересечении противолежащей стороны биссектрисой. Например, она делит на отрезки ВК и КС сторону параллелограмма ABCD, величины которых известны.

Формула определения периметра будет иметь вид: P=2 (n+n+m). Где ВС=BК+КC=n+m, а АВ=ВК=n по свойству биссектрисы. С учетом признака равнобедренности треугольника можно построить эту прямую, дополнив рисунок фигуры без транспортира с помощью циркуля.

Противолежащие углы и биссектрисы

Согласно свойству параллельных прямых, биссектрисы a и b проходят параллельно друг другу. Они образуют внутри фигуры со сторонами mnkp другой параллелограмм, следовательно, он обладает параллельными противоположными сторонами. Прямые, на которых они лежат, соответствуют сторонам исходной фигуры, поэтому ее биссектрисы a и b являются равными.

Углы, которые образованы отрезками a и m, а также b и k, согласно свойствам биссектрис и параллелограммов, равны. Противолежащие равные по величине углы, образованные отрезками mp и nk, можно разделить пополам. Прямая b, пересекающая отрезки n и p, образует с ними накрест лежащие углы, признак которых состоит в их равенстве. Они равны разделенным пополам противоположным и являются соответственными при параллельных прямых n и p.

Вершины образуемого прямоугольника

Биссектрисы параллелограмма пересекаются в точках, представляющих собой вершины прямоугольника, что можно доказать следующим образом:

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Аналогичным способом можно доказать параллельность других сторон прямой СД. Следовательно, диагональ КР образованного биссектрисами параллелограмма прямоугольника КМРО содержит точки Х и Т. Доказательство предполагает следующее равенство: КР = КХ + ХТ + ТР = ХС + СД + ТД = ВС + СД, поэтому величина диагонали равна сумме двух смежных сторон параллелограмма.

Ромб и его диагонали

Параллелограмм, имеющий биссектрису, которая совпадает с его диагональю, представляет собой ромб. Чтобы доказать это, нужно провести диагональ AC, соединяющую противоположные вершины ABCD. Способ доказательства теоремы основан на равенстве противолежащих углов параллелограмма.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

Согласно свойству биссектрисы, отрезок АС делит пополам углы BCD и BAD. Они имеют одинаковую величину, поскольку противоположные углы равны. Диагональ АС — основание треугольников ACB и ACD. Согласно признаку равнобедренности АВ и АС, а также AD и CD, равны между собой. По свойству равенства противоположных сторон параллелограмма AB = CD и AD = BC.

Фигура ABCD, представляющая собой по условию параллелограмм, имеет равные по величине AB, AD, BC и CD в соответствии с доказательством. Отсюда следует, что параллелограмм ABCD по определению ромб. В нем биссектриса АС — это его диагональ.

Примеры решения задач

Биссектрисы смежных углов параллелограмма пересеклись в точке на его противолежащей стороне. Зная его меньшую сторону, можно найти большую, а также наоборот. Допустим, что длина меньшей стороны фигуры составляет 5 сантиметров.

Обозначив вершины фигуры A, B, C, D, а точку на AD буквой Р, достаточно иметь в виду, что AD=AР+РD=AB+CD. Это доказывает признак равенства накрест лежащих углов СВР и АРВ, а также ВСР и СРD при параллельных прямых. Формула для нахождения большей стороны будет иметь вид: AD=2AB=10, поскольку AB = CD. При необходимости найти меньшую можно по формуле: AD=AB/2.

В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Смотреть картинку В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Картинка про В параллелограмме проведена биссектриса докажите что треугольник равнобедренный. Фото В параллелограмме проведена биссектриса докажите что треугольник равнобедренный

По условию задачи биссектриса, исходящая из острого угла параллелограмма, разделяет его противоположную сторону на отрезки 73 мм и 54 мм, если считать от вершины тупого угла. Требуется вычислить периметр параллелограмма ABCD. Точка Е делит сторону ВС на отрезки заданной длины, поскольку АЕ — биссектриса угла ВАD. Эта прямая представляет собой секущую для параллельных AD и BC.

Отсекая равнобедренный треугольник АВЕ, биссектриса ВЕ является его основанием, поэтому сторона параллелограмма АВ равна отрезку ВЕ, длина которого по условию 73 мм. В сумме ВЕ и ЕС равны ВС, что составляет 127 мм. Отсюда периметр ABCD соответствует удвоенной сумме его сторон: Р = 2 (73+127) = 400 мм. Чтобы найти большую сторону параллелограмма ABCD при известном периметре 128 мм, можно использовать аналогичное доказательство равнобедренности треугольника.

По условию соотношение отрезков, образуемых точкой пересечения биссектрисы DЕ с противоположной стороной ВС, равно 4:3, если считать от острого угла при вершине А. Из равенства противоположных сторон ABCD и признака равнобедренного треугольника следует AD=BC=АЕ=4х, а ЕВ=3х, поэтому CD=АЕ+ЕВ=4х+3х=7х. Зная периметр ABCD, можно составить уравнение Р=2 (7х+4х)=128. Отсюда 22х=128, а х=32, поэтому большая сторона параллелограмма CD=32*7=224 мм.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *