U3o8 что это такое
Оксиды урана
Окси́д ура́на — общее название оксидов урана:
См. также
Смотреть что такое «Оксиды урана» в других словарях:
ОКСИДЫ УРАНА — ОКСИДЫ УРАНА, ряд соединений, из которых наиболее распространены UO2, U4O9, U3O8 и UO3, а наиболее стабильный U3O8 Последний оксид имеет зеленый, коричневый или черный цвет и ромбическую кристаллическую структуру. УРАНИНИТ и УРАНОВАЯ СМОЛКА… … Научно-технический энциклопедический словарь
Урана оксиды — Оксид урана общее название оксидов урана: Монооксид урана (UO) Диоксид урана, или оксид урана(IV) (UO2) (UO2.25, ранее бета диоксид урана, β UO2) (UO2.6) Закись окись урана U3O8 (UO2.66, самый стабильный оксид урана) Триоксид урана, или оксид… … Википедия
Оксиды — Оксид (окисел, окись) бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй… … Википедия
УРАНА ОКСИДЫ — UO2, U3O8, U4O9 и UO3. Д и о к с ид UO2 (минерал ураниниг) черно коричневые кристаллы (табл.); при 30,44 К происходит фазовый переход парамагнетик >антиферромагнетик; начиная с 2000 К наблюдается аномальный рост теплоемкости; температурный… … Химическая энциклопедия
Оксид урана(IV) — U4+   … Википедия
Оксид урана(VI) — Общие … Википедия
Оксид урана(VI)-диурана(V) — Оксид урана(VI) диурана(V) … Википедия
УРАН (химический элемент) — УРАН (лат. Uranium), U (читается «уран»), радиоактивный химический элемент с атомным номером 92, атомная масса 238,0289. Актиноид. Природный уран состоит из смеси трех изотопов: 238U, 99,2739%, с периодом полураспада Т1/2 = 4,51·109 лет, 235U,… … Энциклопедический словарь
Урановое стекло — Блюдо из уранового стекла Флуоресценция … Википедия
Оксид урана(VI)-диурана(V)
Оксид урана(VI)-диурана(V) | |
__ U 4+/6+ __ O 2− | |
Общие | |
---|---|
Систематическое наименование | Оксид урана(VI)-диурана(V) |
Традиционные названия | триурана октаоксид, U3O8, закись-окись урана |
Химическая формула | (U2 V U VI )O8 |
Физические свойства | |
Состояние (ст. усл.) | твёрдое (чёрно-зелёные кристаллы) |
Молярная масса | 842,0819 ± 0,0025 г/моль |
Плотность | 8,38 г/см³ |
Термические свойства | |
Температура плавления | 1150 °C |
Температура разложения | разлагается до UO2 при 1300 °C |
Классификация | |
Рег. номер CAS | 1317-99-3 |
Рег. номер EINECS | 215-702-4 |
Оксид урана(VI)-диурана(V) (ОУД), триурана октаоксид, закись-окись урана (ЗОУ) — неорганическое бинарное соединение урана с кислородом, в котором металл имеет двойственную валентность: 5 (два атома) и 6 (один атом). Формула соединения: (U2 V U VI )O8, брутто-формула: U3O8. Из всех соединений урана, встречающихся в природе, распространён наиболее широко: главный компонент основного рудного минерала урана — настурана. В свободном состоянии представляет собой зелёно-чёрное кристаллическое вещество. Термически и химически устойчивое соединение, из всех оксидов урана наиболее стабилен. Как и все соединения урана, слабо радиоактивен. Основной компонент урановых концентратов в составе топлива для ядерных реакторов.
Полезное
Смотреть что такое «Оксид урана(VI)-диурана(V)» в других словарях:
Оксид урана(IV) — U4+   … Википедия
Оксид урана(VI) — Общие … Википедия
Оксид урана — общее название оксидов урана: Монооксид урана (UO) Диоксид урана, или оксид урана(IV) (UO2) U4O9 (UO2.25, ранее бета диоксид урана, β UO2) U5O13 (UO2.6) Закись окись урана U3O8 (UO2.66, самый стабильный оксид урана) Триоксид урана, или оксид… … Википедия
Оксид урана (IV) — Двуокись урана (UO2) температура плавления равна 2800 °C, плотность 10,2 т/м3. У двуокиси урана нет фазовых переходов, она менее подвержена газовому распуханию, чем сплавы урана. Это позволяет повысить глубину выгорания до нескольких процентов … Википедия
Урана оксиды — Оксид урана общее название оксидов урана: Монооксид урана (UO) Диоксид урана, или оксид урана(IV) (UO2) (UO2.25, ранее бета диоксид урана, β UO2) (UO2.6) Закись окись урана U3O8 (UO2.66, самый стабильный оксид урана) Триоксид урана, или оксид… … Википедия
Оксид-сульфат титана — Общие Систематическое наименование Оксид сульфат титана Традиционные названия Основной сернокислый титан; оксосульфат титана; сульфат титанила Химическая формула TiOSO4 Физические свойства … Википедия
урана(IV) оксид — urano(IV) oksidas statusas T sritis chemija formulė UO₂ atitikmenys: angl. uranium dioxide; uranium(IV) oxide rus. урана двуокись; урана диоксид; урана(IV) оксид ryšiai: sinonimas – urano dioksidas … Chemijos terminų aiškinamasis žodynas
урана двуокись — urano(IV) oksidas statusas T sritis chemija formulė UO₂ atitikmenys: angl. uranium dioxide; uranium(IV) oxide rus. урана двуокись; урана диоксид; урана(IV) оксид ryšiai: sinonimas – urano dioksidas … Chemijos terminų aiškinamasis žodynas
урана диоксид — urano(IV) oksidas statusas T sritis chemija formulė UO₂ atitikmenys: angl. uranium dioxide; uranium(IV) oxide rus. урана двуокись; урана диоксид; урана(IV) оксид ryšiai: sinonimas – urano dioksidas … Chemijos terminų aiškinamasis žodynas
Фторид урана(III) — У этого термина существуют и другие значения, см. Фторид урана. Фторид урана(III) Общие Систематическое наименование Фторид урана(III) Традиционные названия Фториcтый уран Химическая формула UF3 … Википедия
Сульфат урана(IV) — Общие Систематическое наименование Сульфат урана(IV) Традиционные названия Сернокислый уран Химическая формула U(SO4)2 Физические свойства … Википедия
Такой многоцветный уран.
Оставайтесь с нами и вас еще ждет много интересных постов о химии
Лига Химиков
1.2K постов 10.6K подписчиков
Правила сообщества
Старайтесь выбирать качественный контент и не ставьте теги моё на копипасты
Посты с просьбой решения домашнего задания переносятся в общую ленту
1. Оскорблять пользователей.
2. Постить материал далеко не по теме и непотребный контент (в остальном грамотно используйте теги)
3. Рекламировать сомнительные сайты и услуги коммерческого характера
Зачем вообще нужен комментарий о слабой активности какого-то соединения? Сам по себе уран имеет длительный период полураспада, а значит малоактивен. Следовательно, все соли урана также будут малоактивны (если, конечно, в анионе не будет какого-то еще радиоактивного изотопа).
И да, соединение U3O8 больше известно как закись-окись урана.
Ну и желтый кек почему-то не показан. А ведь это едва ли не второе по «популярности» соединение урана.
Можно было добавить сюда ещё цинкуранил ацетат. Используется в аналитической химии как реактив для обнаружения солей натрия. Zn(UO2)3(C2H3O2)8
Блин, глядя на хлорид урана IV, я чегой-то Снупп Дога вспомнил.
Как добывают уран в условиях тайги
Две недели назад посчастливилось посетить месторождение урана в Хиагде (Забайкальский край). Попасть туда совсем не просто. Ближайший крупный населённый пункт (Чита) находится в 350 км.
Работают на производстве исключительно вахтовым методом.
Завод там относительно новый. Добыча урана производится при помощи скважинного подземного выщелачивания. На выходе получается «жёлтый кек».
Как организовано производство вы сможете увидеть в следующем видео.
«Серный подсолнух»
Синтезированный в 2006 году из конденсированных тиофеновых колец октатио [8] циркулен получил от научной группы МГУ весьма креативное название – sulflower (от англ. «sulfur – сера» и «sunflower – подсолнух»). Молекула этого сероуглерода, пожалуй, говорит сама за себя:
«Подсернух» (или «серноцвет», если переводить на русский буквально) имеет вид тёмно-красного порошка, который несмотря на свою труднолетучесть обладает неприятным запахом, и является антиароматическим соединением, что делает его высокореакционноспособным олиготиофеном.
Урановая посуда
Кристаллогидрат хлорида платины(IV) в определенных условиях может быть крайне похож на Cheetos
Всё это и прочее на странице ВК:
Посты первого года:
Посты второго года:
Посты третьего и четвёртого года:
Александритовый эффект у соединений неодима
Эффект вызван тем, что раствор неодимовой соли поглощает и излучает свет с определенной длиной волны в зависимости от того, в какой части спектра источник (искусственное освещение и солнечный свет соотв.) больше отдаёт энергию.
Т.е. само соединение остаётся неизменным, но под разным светом выглядит по-разному.
Бериллий в гифках
Взаимодействие бериллия с жидким хлором
Бериллий активно реагирует с соляной кислотой
Не так активно бериллий реагирует со щелочью, образуя комплексное соединение тетрагидроксобериллат натрия
Температура плавления бериллия 1287 °C, однако при попытке расплавить небольшой образец газовой горелкой он практически весь переходит в оксид
Плавление бериллия в промышленных условиях
Демонстрация диамагнитных свойств бериллиевой бронзы (сплава бериллия и меди). Также сплавы содержащие бериллий примечательны тем, что не создают искр
В природе бериллий основной компонент минерала берилла, благодаря которому элемент и получил своё название. Наиболее ценной разновидностью берилла является изумруд
«Попкорн» из камня
Карбонат кальция, присутствующий в породе, растворяется уксусной кислотой с образованием углекислого газа и ацетата кальция (растворимой соли), оставляя маленькие трещины в камне. А поскольку там концентрация растворённой соли остается выше, то в результате постепенного испарения воды, кристаллы ацетата кальция начинают расти прямо из них.
Лабораторная посуда (самая малость)
Зерна пшеницы в бюксе для масштаба
Любопытная проекция
Представления о стереохимии алканов в разные времена. Кажется я догадываюсь, кем по национальности был господин Бишофф, но всё-таки жаль, что на деле молекулы оказались не такими кошерными
Сенсибилизаторы рецепторов боли, выглядят как зловещие жабы, которые собираются причинить тебе эту боль
Рябина в химии
Сентябрь приходит незаметно, а вместе с ним наступают осенние холода, опадают листья и конечно же краснеет рябина. Для многих она не является чем-то особо примечательным, однако именно благодаря плодам рябины в своё время были открыты совершенно новые и перспективные вещества, и сегодня лучший день чтобы поговорить об этом.
Первым таким соединением была сорбоза — моносахарид, который в 1852 году обнаружил французский химик Теофиль-Жюль Пелуз в сброженном бактериями рябиновом соке. В чистом виде это кристаллическое вещество сладковатое на вкус, образующее два стереоизомера (D- и L-формы) с температурой плавления 159 — 161 °C. Из неё оказалось возможным синтезировать аскорбиновую кислоту, таким образом сорбоза и сейчас является важным промежуточным продуктом в синтезе Рейхштейна (микробиологический процесс производства витамина С из D-глюкозы) и, кроме того, выделить другие новые соединения, наибольшую востребованность из которых получил шестиатомный спирт сорбит.
Сорбит содержится непосредственно в рябиновом соке (ок 7%), в чистом виде образует бесцветные кристаллы, которые плавятся при 112°C. Это достаточно распространенный заменитель сахара в диетических продуктах, являющийся низкокалорийным подсластителем, который медленно метаболизируется человеком, но в то же время обладает желчегонным эффектом и при избыточном потреблении способен вызвать нарушение всасывания фруктозы и другие проблемы с кишечником. В то же время, сорбит это достаточно распространенный загуститель и весьма гигроскопичное вещество, которое идёт на производство гелей. При восстановлении сорбита может быть получен гексан, а при дегидратации — сорбитан
Сорбитан по физическим свойствам сходен с сорбитом и используется в производстве ПАВ, в частности его этоксилированные эфиры (полисорбаты) являются важными биоразлагаемыми эмульгаторами, которые находят применение в фармацевтике и пищевой промышленности. При дальнейшей дегидратации из сорбитана можно синтезировать изосорбид
Изосорбид является бициклическим соединением (состоит из двух фурановых колец), имеет вид сильно гигроскопичных белых хлопьев, которые плавятся при 63 °C, в связи с этим используется как увлажнитель и находит применение в медицине в качестве осмотического мочегонного средства. Продукт нитрования изосорбида обладает сосудорасширяющим действием и применяется в лечении стенокардии, а простые изосорбидные эфиры всё чаще используются в качестве возобновляемого растворителя для косметических и фармацевтических препаратов. В целом, изосорбид — это универсальный продукт, получаемый из возобновляемых ресурсов в промышленных количествах, который также представляет большой научный и технический интерес как мономерный строительный блок для биополимеров.
Ещё одним веществом, которое впервые обнаружили в соке незрелой рябины (концентрация ок. 0.14%) является сорбиновая кислота. Позже её смогли синтезировать искусственно путем конденсации малоновой кислоты и кротонового альдегида в пиридине. Сорбиновая кислота, в отличие от производных сорбита, слабо растворяется в воде и легко сублимируется. Сейчас это зарегистрированный консервант, который добавляется в безалкогольные напитки, кондитерские изделия и сгущенное молоко для предотвращения плесневения. Аналогичными свойствами обладают и некоторые соли (сорбаты калия, натрия и кальция). Ежегодно в ходе реакции конденсации производится около 30000 тонн консерванта. В этом процессе важным условием является не допустить образование парасорбиновой кислоты.
Парасорбиновая кислота представляет из себя летучую жидкость, которая также может присутствовать в соке ягод, но уже является токсичным соединением, вызывающим тошноту и расстройство желудка, однако в результате термической обработки превращается в сорбиновую кислоту.
И это лишь малая часть от всех веществ, присутствующих в рябине. Плоды содержат также аскорбиновую кислоту, большое количество полифенольных соединений (в частности производные кемпферола, кверцитина и изорамтенина), а характерную красную окраску придают антоцианы и каротиноиды (главным образом α-каротин). Для многих животных в зимнее время года, рябина служит единственными источником вышеперечисленных веществ, так что на деле эти неприглядные ягодки являются неотъемлемым звеном экосистемы и играют важную роль в развитии науки.
Подобные и прочие посты также на странице ВК: vk.com/mircenall
Всё это и прочее на странице ВК:
Посты первого года:
Посты второго года:
Посты третьего года:
Вот и наступила третья годовщина рубрики «Экспрессивных фактов» и начинается цикл постов четвёртого года!
Технология добычи урана
Всем, кто хочет ознакомиться с технологией скважинного подземного выщелачивания, посвящается данный видео материал. Здесь подробно разобрана технологическая схема с наглядным примером аппаратурного оформления.
Представлена схема реального производства.
P.s.: таким аудитория Пикабу хочет видеть научпоп?
Уран в камере Вилсона
Камера Вильсона (она же туманная камера) — один из первых в истории приборов для регистрации следов (треков) заряженных частиц. Принцип действия камеры использует явление конденсации перенасыщенного пара: при появлении в среде перенасыщенного пара каких-либо центров конденсации на них образуются мелкие капли жидкости. Эти капли достигают значительных размеров и могут быть сфотографированы. Источник исследуемых частиц может располагаться либо внутри камеры, либо вне её (в этом случае частицы залетают через прозрачное для них окно).
Мифы о радиации. Как добывают уран?
По роду своей работы в университете приходится объяснять студентам что такое метод скважинного подземного выщелачивания, как он работает, какие есть нюансы и т.д. Ведь кто-то из них после выпуска действительно поедет на данное или схожее предприятие работать. К сожалению всех на практику на это производство не отправишь. Производственных практик всего три за время обучения, а предприятий множество. Поэтому данное видео будет такой «экскурсией» и мини «производственной практикой» для тех, кому интересна данная тема.
Забавно конечно получилось, что видео вышло накануне 35 годовщины аварии на Чернобыльской АЭС, но это даже к лучшему. Сейчас опять у людей начнётся радиофобная истерия, что все умрем, радиация зло и тд. И вообще закройте все АЭС! В данном видео вы сможете своими глазами увидеть как выглядит современное производство по добыче урана из-под земли.
Вообщем всем приятного просмотра!
P.S.: всегда тролю студентов вопросом «почему метод называется выщелачиванием, а используют кислоту?»)))
Разноцветный праздник
*Химические элементы, окрашивающие в различный цвет фейерверки
По следам горячих частиц. Камера Вильсона
Хомяки приветствуют вас друзья!
Для сборки камеры Вильсона нам необходимо достать два мощных источника питания на 5 и 12 вольт. В моем случае это серверные блоки питания от майнинговых ферм. На этикетке указан заявленный ток в 114 Ампер. Это явно в избытке, так как реальные параметры потребления тока установкой составили 23 Ампера по линии 12 вольт и 9 Ампер по линии 5 вольт. В идеале тут подойдет компьютерный блок питания на 500 Вт.
Следующие основные элементы: это охладитель на модулях Пельте, высоковольтный преобразователь напряжения на много Киловольт, и стеклянная смотровая камера через которую нам предстоит наблюдать треки ионизирующего излучения.
Охладитель можно назвать несущей частью этого карточного домика. В его основе лежат термоэлектрические элементы Пельте, в которых возникает разность температур на его сторонах при протекании электрического тока.
Для работы установки нам нужно 8 таких элементов. Четыре из них марки ТЕС1-12710 с заявленной максимальной потребляемой мощностью 154 Вт каждый и столько же элементов марки ТЕС1-12706 с потребляемой мощностью 60 Вт. Они будут работать в режиме бутерброда. Из практики такая сборка дает на минус 15 градусов ниже температуру, нежели один элемент отдельно.
Для достижения наибольших отрицательных температур систему необходимо снабдить качественным водяным охлаждением. Реализуется это с помощью алюминиевых радиаторов предназначенных специально для этих целей, несколькими метрами ПВХ шланга диаметром 12 мм, и бесщеточным погружным насосом, который способен перекачивать 240 литров воды в час. Питается он от постоянного напряжения 12 Вольт, потребляя при этом 3.6 Вт.
Сейчас наша задача соединить все элементы вместе. Для этого найдена металлическая основа на которой будут лежать радиаторы и собран металлический каркас, который стягивает всё в кучу. Для этих целей отлично подошли алюминиевые уголки и швеллера купленные в ближайшем строительном магазине.
Термопаста в данном случае применяется серая с надписью на банке HY-510. Наносить ее необходимо равномерным однородным слоем во избежание возможных микропузырей. Для этого можно воспользоваться пластиковой карточкой.
Термоэлектрические преобразователи размещаем в следующем порядке. Снизу более мощные марки TEC1-12710, а сверху элементы ТЕС1-12706. Они в 2 раза слабей по мощности и к тому же будут питаться от 5 Вольт вместо 12. Это нужно для того, чтобы нижний элемент успевал эффективно отводить тепло от верхнего.
Для увеличения площади поверхности на которую будет устанавливаться смотровая камера, вырезаем квадрат из стеклотекстолита толщиной 1 мм, он кладется прямо на выступающие из модулей провода. Никаких дополнительных опор не предусмотрено.
Верхнюю термопасту наносим как можно ровней, это важно так как сейчас на всю получившиеся поверхность будем клеить черную самоклеющиеся пленку типа «Oracal»,
несмотря на то что она достаточно плотная, все неровности на ней отчетливо будут видны.
Вот такой ландшафт у меня получился со второй попытки. В любом случае при охлаждении пленка натягивается и поверхность будет выглядеть ровней.
Если следовать данному гайду по сборке, то в результате на поверхности охладителя мы получим температуру в минус 45 градусов, этого будет более чем достаточно для хорошей работы камеры Вильсона. К примеру при минус 30 градусов она не работает вообще, а спирт плохо конденсируется при такой температуре. Неоднократно проверял.
Нанесем на поверхность каплю воды и посмотри что с ней произойдет. Самый интересный момент в этом наблюдении происходит в самом конце, когда кристаллизация капли достигает вершины. Она вытягивается в некий острый конус. При увеличении это хорошо видно. Довольно любопытный эффект.
В принципе сборка готова и на ее поверхности можно наблюдать треки заряженных частиц вызванные полураспадом различных радиоактивных элементов. Как два пальца скажите вы! Но вот тут то и открываются самые интересные моменты в этом всем повествовании.
Кратко пройдемся по местам, на которых можно поскользнутся и упасть.
Элементы Пельтье. Они не так просты как кажутся с первого взгляда. Это в основном относится к верхним модулям TEC1-12706 в данном бутерброде. Так они работают вне своего рабочего режима по напряжению (5 Вольт вместо 12 Вольт), их итоговая температура будет значительно отличатся друг от друга. Отмечу что все элементы с одной партии, с одного завода и с одного конвейера.
Вот простой показательный пример. Пирометр показывает на самом слабом элементе минус 9.5 градусов, а на самом сильном почти 23 градуса. Разница в 13 градусов. Были мысли что этот эффект связан с системой охлаждения, так как в начале вода проходит через первую сборку теплообменника, а потом попадает во вторую. Но нет, замена шлангов местами ни к чему хорошему не привели.
И как теперь быть?! Да никак. Одеваемся и выдвигаемся за новыми белыми квадратами. Повезло, что магазин под боком. В итоге пришлось отбирать четыре элемента из восьми для достижения почти одинаковых температур на поверхностях. Разница вышла в пару градусов.
Смотровая камера. Её назначение многозадачное: предотвратить теплообмен охладителя с окружающей средой, не допустить попадания внешних воздушных потоков, создать замкнутое пространство для циркуляции паров спирта и обеспечить беспрепятственный зрительный контакт с испытуемым образцом внутри камеры.
На одной из сторон куба можно наблюдать сантиметровый технологический вырез в верхней части, он заранее предусмотрен для установки подсветки. Реализована она на семи сверхъярких белых светодиодах диаметром 3 мм, которые вставлены в пластиковую основу. Смоделирована она в SolidWorks и распечатана на 3D принтере.
Козырек изначально не предусматривался, но он необходим для того, чтобы прямой свет не попадал в объектив видеокамеры. Пересвеченный кадр на фоне наблюдаемых распадов с большой вероятностью будет несмотрибельным.
Дальше алмазной коронкой нужно высверлить в стекле два отверстия по бокам в верхней части камеры. Делается это с помощью дрели, высоких оборотах и добавлением воды. Стекло может нагреться в месте трения и треснуть. Сейчас нам это меньше всего нужно.
С внутренней стороны на местах отверстий клеем пористую губку. Она представляет собой отрезок твердой абразивной стороны кухонной мочалки для мытья посуды. Фасон на любой вкус и цвет. В дальнейшем она будет пропитываться спиртом и служить источником тех самых паров, которые будут конденсироваться на дне камеры. Через отверстия удобно дозаправлять камеру спиртом во время работы.
Для качественного наблюдения за треками нужно выполнить один важный пункт. А именно подать высокое напряжения и зарядить положительным потенциалом внутренний объем камеры. Для этого делается квадратная рамка внутри и выводиться наружу контакт через заранее проделанные отверстия. Рамка сделана из тонкого медного провода взятого из жил витой пары.
Вот простой пример влияния высокого напряжения на работу камеры. Она вышла на режим и работает довольно продолжительное время, но внутри не видно никаких распадов. Подаем высокое напряжение, а внутри что то пыхает и через пару секунд довольно отчетливо виден природный радиационный фон. Куча мелких частиц попадает в конденсационное облако и оставляет свой след. Этот эффект похож на самолет который пролетел высоко в небе. Самолет мы невидим, а облако пара за ним может тянутся на много километров показывая траекторию полета.
В качестве источника высокого напряжения во время проведения экспериментов можно использовать промышленные блоки БВ9-1.5, но вряд ли вы его найдете в свободной продаже.
В паспорте к устройству имеется электрическая принципиальная схема, она построена на базе простого двухтактного генератора с обратной связью. Попробуем повторить что-то подобное в более современном исполнении.
На просторах всемирной паутины давно гуляют схемы распространенных ZVS генераторов, они проверены временем и не требую никакой особой настройки. Схему такого устройства и Gerber файлы платы можете скачать тут. Для сборки тут нужен всего десяток деталей которые легко помещаются в одной руке. Самыми дорогими среди них являются силовые транзисторы,
в данном случае это IRFP250 или IRFP260, тут все зависит от входного напряжения с которым вы собираетесь работать. Конденсаторы взял марки MKPH 0.33 микрофарада, их используют в индукционных плитах.
Пару часов работы в программе EasyEDA и на выходе получаем компактное устройство с размещением всех элементов. Так как не все умеют травить печатные платы их производство за символическую сумму можно заказать в Китае.
Для сборки, схема не нужна, так как на маске указано где и как размещаются все компоненты. Перед установкой транзисторов на радиатор их желательно смазать термопастой, но как покажет дальнейшая практика, нагрева при работе совсем не будет. В результате всех манипуляция у нас получился мощный, компактный, двухтактный ZVS генератор. Второе название Push-pull. С его помощью можно вытягивать длинные горячие дуги из строчных трансформаторов отечественных телевизоров.
Прежде чем перейти к следующей части, нужно намотать трансформатор. Маркировка ТВС-110. Снимает первичную катушку и вместо нее мотаем толстым проводом 2 обмотки по 5 витков с отводом от середины. При правильной сборке высоковольтного генератора его работа будет выгладить так. При зажигании дуги ток потребления будет порядка 2 Ампер при напряжении питания 12 вольт. По мере увеличения дуги ток потребления будет расти вплоть до 10 Ампер. Дуга при этом будет толстая и белая. Трогать ее пальцами не нужно! Подключив на выход строчника умножитель ун9/27, можно получать высокие напряжения вплоть до много десятков Киловольт. Выходное напряжение тут напрямую зависит от входного. Работа генератора начинается от напряжения 8 вольт и выше.
Теперь рассмотрим ситуацию что вы все собрали, но дуга при этом вышла тонкая, синяя и в общем никакая. Это признак неправильно намотанной первичной обмотки. Важно соблюдать направление намотки в одну сторону. Если намотать неправильно, то такой режим работы даже на холостом ходу приведет к чрезмерному потреблению тока. Дроссель по питанию, транзисторы и феррит будут нагреваться до немыслимых температур, больше сотни градусов. Из дорожек платы с большой вероятностью пойдет дым, а изоляция провода первичной обмотки превратится в сыр от перегрева. С этим разобрались.
После сборки схемы на выходе умножителя у нас имеется высокое напряжение. Его необходимо подать на рамку из медного провода в верхней части камеры Вильсона.
На что оно влияет?! Так как источник ионизирующего излучения в камере действует непрерывно, в скором времени внутри образуется много ионов в процессе радиоактивного распада источника, а перенасыщенный пар спирта конденсируется на них создавая туман, который мешает визуальному наблюдению за распадами. Положительный заряд высоковольтного генератора притягивает лишние ионы, улучшая картину наблюдаемого процесса.
У нас все готово к запуску. В процессе работы элементы Пельте будут сильно нагреваться и их нужно качественно охлаждать. С этим нам поможет холодная вода. Примерно 5 литров охлаждаем в холодильнике, а все остальное замораживается в бутылках в морозильнике.
Тут мне отлично пригодились бутылки с под пива, двойная польза так сказать.
Погружной насос размещаем с одной стороны этого ледяного бассейна, а с другой будет шланг через который выходит отобравшая тепло у системы вода. Она пройдя весь путь через ледяные бутылки вернется обратно к насосу и процесс повторится, пока в бутылках не растает весь лед.
Время заправить систему благородной жидкостью. В камере использован этиловый спирт из аптеки. Использовать изопропанол многие не рекомендуют, так как его пары вступают в реакцию с различными пластиками, что в результате может привести к разным непредвиденным ситуациям в процессе работы. Сам не проверял.
И так, настал тот самый момент, ради которого мы все здесь собрались. Включаем установку. Зажигается подсветка и насос начинает перекачивать воду по системе охлаждения. Камера выходит на режим в течении 40 секунд при условии что температура воды будет порядка пяти градусов.
Из-за большого потока ионизирующего излучения спирт не успевает конденсироваться на треках, что приводит к непонятному слою тумана в центральной части источника. Высоковольтное напряжение генератора избавится от этого эффекта не помогает. На верхах видим одинокие следы самых сильных частиц, которые смогли пролететь дальше всех. Если в камере альфа источник, то уменьшить его поток можно с помощью фольги и проделанного в ней отверстии. Так картина выглядит намного красивей.
Самое удивительное в этом всем процессе, это наблюдение за распадами обычного природного фона. Их оказывается так много, что и представить трудно. Десятки различных событий ежесекундно регистрируется в камере.
Только хотел это проверить, как произошло что-то странное. Один элемент Пельтье перестал работать. Нижний 12 Вольтовый модуль в бутерброде просто взял вышел из строя на ровном месте. Пришлось разбирать установку, разбираться в чем проблема и ехать в магазин за новым элементом.
Сейчас нам нужно достать радиоактивные источники. Желательно такие, чтобы вас потом в места не столь отдаленные не заперли. В этом нам поможет Алиэкспрес.
При достижении температуры ниже 35-40 градусов, спирт становится достаточно пересыщенным чтобы в нем можно было наблюдать треки заряженных частиц. В центральной части сейчас ничего не видно, пресыщенность пара в этом месте пропадает из-за большой интенсивностью источника ионизирующего излучения. Вся картина напоминает перо павлина, которое дает более 30.000 тысяч распадов на сантиметр квадратный в минуту. На сколько больше на знаю, так как Радиаскан 701 при таком измерении уходит в зашкал.
Физика возникновения треков связана с тем, что ионизирующая частица на своем пути оставляет след Ионов, связанных с столкновением альфа частицы или электронов с молекулами того газа что находится в камере. Образовавшиеся Ионы в итоге выполняют роль центров конденсации пересыщенного спирта. Весь процесс трекообразования наблюдается примерно на уровне 3 миллиметров над уровнем охлаждающей поверхности. Все просто.
Оксид тория как и в случае урановых пуговиц добавляют при производстве стекла. Китайцы на алиэкспресс торгуют так называемыми скалярными медальонами, которые якобы наделяю вас какой-то положительной энергией. Медальон тоже светится в ультрафиолете и максимум на что способен это ионизировать ваши клетки в организме, вызывая их преждевременную гибель. Распады радиоактивного тория на мой взгляд самые красивые для визуального наблюдения.
Десерт программы. Рентгеновская установка на советском кенотроне 2Ц2С. Год выпуска 1965. Если подать на него достаточно высокое напряжение, эта радиолампа может служить источником рентгеновского излучения. При этом внутри ее стеклянного баллона можно наблюдать красивое голубое свечение вызванное влиянием высокого напряжения. При сильных уровнях рентгена стеклянный баллон начинает светиться зеленым светом вызванным тормозным излучением. Явление красивое, но рекомендую наблюдать его только на экранах ваших мониторов.
Медленно поднимаем анодное напряжение на лампе и в какой то момент все дно камеры покрывается мелкими точками, вызванными низкоэнергетическим рентгеном. Чем выше энергия частицы, тем меньше ее ионизирующая способность. В какой то момент энергия излучения вырастает и взаимодействие пропадает. Видны только фоновые треки, при этом уровни на 40 сантиметрах от кенотрона достигают 5 Миллирентген.
Из практики. На грани пробоя высоким напряжением такая трубка дает больше одного Рентгена на расстоянии 30 сантиметров. Вот такие интересные опыты у нас получились. Всё это и многое другое вы можете видеть на нашей странице инстаграмме. Там всегда выходят свежие новости.
Для справки. Съемка данного выпуска заняла почти 3 месяца. Стоимость данной камеры Вильсона со всеми непредвиденными расходами обошлась примерно в 150 баксов. Сюда также включены блоки питания и токоизмерительные клещи, которыми мы измеряли ток. Зная все нюансы и тонкости в этом ремесле, вы без труда сможете собрать такую установку дома и с интересом наблюдать за явлениями которые обычно не видны невооруженному глазу. Теперь вы знаете как выглядит радиация и с чем ее едят.