Tpu switch что это

990x.top

Простой компьютерный блог для души)

EPU на материнской плате — что это? (Energy Processing Unit, Dual Intelligent Processors)

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что этоEPU на материнской плате — микропроцессор, обеспечивающий работу технологии уменьшения энергопотребления устройствами компьютера.

EPU на материнской плате — разбираемся

Компания Asus в 2010 году представила технологию Dual Intelligent Processor, которая состояла из двух физических чипов, размещенных на материнской плате:

Управление данными чипами производилось при помощи фирменного приложения. Н потом появились аппаратные кнопки управления на самой материнке, при наличии которых устанавливать фирменное ПО уже не нужно:

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что этоЭтим могли похвастаться среднего, часто премиум-класса материнки. Также данными модулями можно управлять по Bluetooth используя смартфон.

Аппаратный чип EPU (ШИМ-контроллер) мониторит состояние загрузки процессора и автоматически регулирует не только тактовую частоту, но и количество работающих фаз, силу тока, благодаря цифровому модулю Digi+VRM (Voltage regulator modules). Также чип EPU способен регулировать частоту системной шины FSB, множитель процессора, значения которых снижаются при низкой загрузке процессора. По некоторым данным чип EPU также способен немного повышать частоту процессора выше номинальной, однако это зависит от модели материнки.

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что этоИнформации о том, где именно расположен чип EPU — не нашел. Но скорее всего — один из вариантов, указанных выше на картинке, мое мнение — тот что слева.

Существует две версии реализации EPU, которые отличаются количеством устройств, где поддерживается управление энергопотреблением:

Старые версии EPU не работают без установленного ПО. Новые — работают. Однако установив фирменное ПО можно получить дополнительные возможности:

Эффективность самого энергосберегательного режима EPU-6 Engine:

Количество функций, а также их работа зависит от модели материнской платы, года выпуска, а также от версии EPU.

Надеюсь данный материал оказался полезным. Успехов.

Источник

ASUS DIP: авторазгон TPU и энергосбережение EPU

Информация подготовлена для конкурса статей от ASUS &quot.

Информация подготовлена для конкурса статей от ASUS «Здравствуй, мама, это я!»
Статья содержит теоретические, практические и экспериментальные материалы. Для повышения информативности и наглядности было набрано большое количество графических материалов (скриншотов, фотографий), но для удобства чтения часть изображений скрыта за ссылками в тексте. Нажимайте на них для открытия графических файлов. Приятного вам и познавательного чтения.

Технология DIP может быть использована без установоки программного обеспечения и может быть вызвана с помощью BIOS, или физического переключателя на материнской плате (есть не на всех моделях), или даже специального пульта (есть не на всех моделях), что делает её легко доступной для любого пользователя. Однако, чтобы получить максимальную отдачу от технологий, необходимо установить комплект приложений, позволяющих использовать максимум возможностей DIP.

Перейдём к подробному обзору технологий DIP и практической части.

Конфигурация оборудования:
Процессор AMD Phenom-2 955 3,2 ( ручной разгон достигал 3,9ггц)
Кулер cpu Thermaltake SpinQ VT
Материнская плата MB Asus M4A87-TD
Оперативна память 8gb DDR3 Hynix 1333
Видеокарта ASUS EAH5770 512mb
Блок питания 660w AcBel
Жёсткие диски WD 500gb RE4 + WD 1tb caviar green.

Фирменнные утилиты ASUS, драйверы, вспомогательное ПО и ОС Windows 7 обновлены до свежих версий.

Функции TurboV дают нам обширные возможности по тонкому/простому/безопасному/эффективному изменению параметров работы оборудования. В результате мы можем:
1. Получить прирост производительности, даже не обладая специальными заниями и практически ничем не рискуя.
2. Выжать из своего железа максимум, если мы обладаем техническими знаниями и понимаем, что делаем. При этом в случае своей ошибки мы практически ничем не рискуем.
3. Доверить работу автоматике TPU, и получить безопасный оптимальный разгон системы.
4. Доверить работу автоматике TPU, и получить максимально возможный стабильный разгон системы.

ПРЕДУПРЕЖДЕНИЕ: эксплуатация оборудования в режимах, превышающих стандартные заводские параметры, всегда связана с риском выхода оборудования из строя, а так же уменьшением срока службы оборудования. Компания ASUS и автор статьи не несут ответственность за действия пользователей, связанные с разгоном системы.

Итак, начнём детальное рассмотрение функций программы ASUS TurboV EVO.

Установив нужные нам параметры, мы можем нажать кнопку Save Profile, чтобы сохранить собсвенный профиль работы оборудования.

Так же в любое время можно нажать (внизу справа) кнопку OS Default Settings для сброса на заводские настройки, кнопку Apply для применения текущих заданных параметров (в том числе после сброса настроек) и кнопку Undo для отмены последних сделанных изменений в настройках.

ПРИМЕЧАНИЕ 1. Результаты работы в ручном режиме не записываются в настройках BIOS. После перезагрузки система вернётся в штатное состояние. Но, сохранив свой профиль работы оборудования, мы можем моментально активировать его в любой момент.

ПРИМЕЧАНИЕ 2. Мы можем не только повышать, но и понижать настройки. В этом случае мы можем замедлить работу оборудования, при этом снизив энергопотребление и нагрев. В определённых случаях это может оказаться полезным, хотя ASUS TurboV EVO и предназначена в первую очередь для ускорения работы ПК.

ВНИМАНИЕ! Результаты работы автоматического тюнинга записываются в BIOS.

Выбрав вариант тюнинга, нужно нажать кнопку Start, и ждать результатов.

Перед началом тюнинга вы увидите ПРЕДУПРЕЖДЕНИЕ о том, что в процессе тюнинга система может быть перезагружена несколько раз (при возникновении ошибок игнорируйте их и дождитесь окончательных результатов), автоматический тюнинг разгоняет систему и повышает рабочие частоты и напряжения процессора и памяти, записывает изменения в BIOS (эффект от изменений появится после перезагрузки) и проводит стресс-тест для проверки стабильности системы (экран при этом блокируется и нужно дождаться результатов).

В режиме Fast Tuning TPU подберёт оптимальные безопасные параметры, перезагрузит систему и выдаст результат. В данном случае прирост производительности составляет 8%.

В завершение обзора утилиты ASUS TurboV EVO рассмотрим оставшиеся две функции:

Дополнительно по просьбе в комментариях статьи был проведён тест с разгоном из-под Windows без перезагрузок и сохранений настроек в BIOS. Для разнообразия в этот раз для теста использовался 3DMark Vantage, включающий как тесты графики, так и тесты CPU. Результат на штатных параметрах был зафиксирован, после чего система была разогнана. Я уже прежде разгонял систему вручную (о чём упоминалось в начале статьи), и теперь задал те же параметры утилитой TurboV EVO. После прохождения всех тестов итоговые показатели улучшились (GPU + 433, CPU + 810 очков).

Так же для теста в «боевых» условиях задействован STALKER ClearSky Benchmark. Результаты до и после разгона получились немного странными. Наиболее значимый прирост FPS во втором и третьем проходе составил + 8 в пике. Визуально же я заметил до разгона притормаживание на первом и четвёртом проходе в конце теста, которые после разгона чудесно пропали.

Скоростной режим подразумевает полную готовность к выполнению ресурсоёмких задач.

Технологию DIP второго поколения поддерживают материнские платы: Maximus IV Extreme, P8P67, P8P67 DELUXE, P8P67 EVO, P8P67 PRO, P8P67 WS Revolution.

ПОДВЕДЕНИЕ ИТОГОВ И ВЫВОДЫ

Материнские платы ASUS отвечают всем современным требованиям и являются лучшим выбором как основа качественных и эффективных компьютеров для любых задач.

Источник

Asus DIP II, TPU и EPU – интеллектуальный «механизм» разгона и охлаждения компонентов ПК.

Эта статья написана в рамках конкурса «Здравствуй, мама, это я!»

Современный пользователь, которому не чужд разгон, уже давно привык к обилию настроек BIOS’а материнских плат, позволяющих повысить производительность. Опытные пользователи долгое время без труда пользуются настройками питания процессора, его множителем и частотой шины. Для снижения шума системы охлаждения процессора не первый год применяются технологии C&Q (для процессоров AMD) и SpeedStep (для процессоров Intel). Новичкам же приходится предварительно разбираться что к чему. С течением времени стали появляться различные программные утилиты, позволяющие разгонять процессор и память, а так же управлять скоростью вращения вентиляторов на кулерах прямо из Windows. Не все из них работали корректно, не все из них были интуитивно понятны начинающему оверклокеру.

Различными производителями компьютерных комплектующих неоднократно предпринимались попытки внедрить в свои продукты функции автоматического разгона и управления энергопотреблением. В плане оверклокинга чаще всего дело ограничивалось либо разгоном на уровне всего лишь 10%, либо использованием при разгоне готовых профилей настроек, что больше похоже на так сказать предустановленный разгон (по аналогии с видеокартами, изначально имеющими более высокие частоты, чем у референсных), чем оверклокинг как таковой. Что касается вопроса величины энергопотребления, напрямую связанного с уровнем шума систем охлаждения наиболее горячих компонентов ПК, то в дополнение к «стандартным» C&Q и SpeedStep большинство производителей материнских плат редко когда предлагали что-то более совершенное, чем обыкновенное уменьшение или увеличение скорости вращения чаще всего одного-единственного вентилятора в зависимости от показаний термодатчика процессора. Это всё, на что обычно мог рассчитывать пользователь при использовании материнских плат предыдущих поколений. Для более кардинального решения всех упомянутых проблем нужен комплексный подход, так сказать «всё в одном флаконе».

Апогеем развития технологий автоматического разгона, снижения энергопотребления и интеллектуального управления системами охлаждения на данный момент смело можно назвать решения, предлагаемые инженерами Asus: DIP II, TPU и EPU. Внедрение этих технологий в современных материнских платах Asus стало возможным благодаря нескольким нововведениям и поэтапному решению целого ряда различных сложностей. Обо всём этом и пойдёт речь в данной статье.

Технология Dual Intelligent Processor была представлена летом 2010 года. Её суть заключается в размещении на материнской плате c целью оптимизации производительности и энергосбережения двух вспомогательных программируемых микро-процессоров: TPU (TurboV Processing Unit) и EPU (Energy Processing Unit). Первый из них способен на аппаратном уровне управлять основными параметрами работы центрального процессора и ОЗУ компьютера, второй аналогичным способом автоматизирует работу по энергосбережению. Управление этими процессорами осуществлялось посредством специального программного обеспечения из-под операционной системы ПК.

Обновлённое поколение Dual Intelligent Processor с идексом II было представлено осенью 2010 года. Основными отличиями от предшественника стали возможность активизации данных технологий нажатием одной кнопки на материнской плате (то есть без обязательной установки программного обеспечения, надоедливо сидящего в трее), а так же возможность управления TPU, EPU и компьютером в целом (выключение, перезагрузка) дистанционно по BlueTooth с ноутбука и даже со смартфонов Apple с установленным на них ПО ROG iDirect благодаря технологии BT GO! Изменения частот и напряжений происходят «на лету» и не требуют перезагрузки ПК.

Включение TPU и EPU выполняется теперь одной кнопкой

Управлять ПК теперь можно дистанционно по BlueTooth

Из новшеств, которые позволили достичь стабильности работы технологий DIP II, TPU и EPU, нельзя так же не отметить новую систему питания центрального процессора, замену устаревшей базовой системы ввода-вывода BIOS (Basic System Input-Output) на современную EFI (Extensible Firmware Interface) и систему охлаждения Active Cooling, выполняющую перераспределение нагрузки в случае достижения тем или иным компонентом критической температуры.

Работа технологий TPU и EPU напрямую связана с новой системой питания центрального процессора. Основным её отличием является использование контроллера широтно-импульсной модуляции Digi+VRM (ASP1000C), который осуществляет цифровой контроль за напряжением.

По своей сути контроллер питания Digi+VRM является программируемым микро-процессором, который позволяет не только повысить надёжность и стабильность работы центрального процессора, но и обеспечить возможность более совершенного управления системой питания (вплоть до изменения фазности «на лету», изменения частоты преобразования с шагом в 10 кГц и повышенного КПД). В свою очередь благодаря этому можно добиться в режиме малой нагрузки на ПК не достижимого ранее уменьшения энергопотребления и, соответственно, уровня шума процессорного кулера за счёт снижения скорости вращения вентилятора. Работа Digi+VRM, при желании, может быть настроена пользователем через EFI (бывший BIOS) или специализированное ПО, поставляемое в комплекте с материнскими платами Asus.

EFI, в отличие от BIOS, позволяет изменять свои параметры при помощи мышки (поддерживается скроллинг). Кроме того, EFI поддерживает размер загрузочной области жёсткого диска вплоть до 2,2Тб и обеспечивает более высокую производительность.

Что касается Active Cooling, то производитель не уточняет детали. Однако, судя по всему, речь идёт не только об автоматическом управлении скоростью вращения вентилятора на кулере, но и об отключении или снижении нагрузки на те фазы системы питания, которые нагрелись сильнее других. Разница нагрева может быть обусловлена разными расстояниями от компонентов каждой фазы до вентилятора блока питания, процессорного кулера и стенки корпуса ПК. Кроме того, набравшие в последние годы кулеры-башни с боковым креплением вентилятора направляют поток воздуха только в одну сторону, в результате чего часть системы питания процессора, расположенная в верхней части материнской платы, может остаться без обдува.

Технология TPU – разгон одной кнопкой.

Поэтому на всех этапах развития автоматического разгона производители сознательно шли на упрощения в виде создания в настройках BIOS’a профилей, соответствующих небольшому разгону, на который способно 99% процессоров. Либо же на пошаговое увеличение частоты с коротким автоматическим стресс-тестом. Количество шагов при этом резко ограничилось. При этом чуть ли ни единственное, что ещё могли сделать производители, так это продумать вопрос а всегда ли нужно держать процессор в разогнанном состоянии? Разумеется нет.

Инженерами Asus такой автоматический разгон впервые был применён в материнских платах серии P5 и получил название AI NOS (Artificial Intelligence Non-delay Overclocking System). Активация этого разгона выполнялась либо из BIOS’а, либо посредством специализированного ПО. Суть такого разгона сводилась к небольшому автоматическому поднятию частоты процессора во время его наибольшей загрузки, с последующем «откатом» на стандартную частоту.

Для начинающих оверклокеров, не сведущих в нюансах разгонных дел, наверняка покажется интересной технология TPU (TurboV Processing Unit). Ничего «противоестественного» она не делает, и на разных платах Asus реализована не много по-разному, но основное принципы хорошо знакомы оверклокерам: увеличение частоты «шины» и множителя. Действия TPU можно подкорректировать внесением соответствующих изменений в EFI (BIOS) или же посредством специализированного ПО.

В комлпекте некоторых материнских плат Asus, включён внешний проводной пульт управления Asus TurboV Remote, который позволяет переключать TPU из автоматического режима в ручной, повышать и понижать частоту «шины», а так же загружать один из трёх доступных профилей настроек.

Так, например, материнская плата Asus Crosshair IV Formula при нажатии кнопки «Turbokey II» увеличивает базовую частоту на 16 МГц. Прирост скорости, разумеется, будет не большим, однако установить предел разгонного потенциала конкретного экземпляра процессора можно только по результатам серии экспериментов, что физически едва ли возможно полностью в автоматическом режиме.

Рекламный «буклет» Asus обещает нам до 37% прироста производительности при использовании системы TPU. Здесь следует чётко понимать, что не следует ожидать такой автоматический прирост производительности на каждом конкретном экземпляре компьютера, даже если опытным путём установлено, что такой потенциал у него есть. Технологии, даже в рамках принятых упрощений, не совершенны, об этом мы поговорим чуть ниже.

Технология EPU – C&Q и SpeedStep «отдыхают».

Долгое время стабильность работы систем снижения энергопотребления C&Q и SpeedStep во время простоя ПК или выполнения им не ресурсоёмких задач при разгоне не гарантировалась. Как правило, стоило только тронуть множитель процессора или частоту шины, как C&Q и SpeedStep теряли свою работоспособность. В результате пользователям приходилось применять дополнительные программные модули, уровень которых обычно далёк от желаемого. Сейчас ситуация в этом плане, с одной стороны, улучшилась, а с другой – начала терять свою актуальность в связи с появлением более совершенных систем энергосбережения, чем обыкновенное снижение напряжения питания процессора и вентилятора процессорного кулера. Речь идёт о EPU (Energy Processing Unit ) от Asus.

Аббревиатура EPU впервые появилась в сентябре 2007 года – EPU I with AI Gear 3. Принципиальным отличием здесь становится автоматическое аппаратное отслеживание загрузки процессора и соответствующее управление системой питания. В 2008 году была анонсирована технология EPU II – 6 Engine, улучшенная версия EPU I.

Микропроцессор EPU в режиме реального времени отслеживает загрузку центрального процессор и, в зависимости от неё, автоматически поддерживает работу в ПК в режиме оптимального энергопотребления.

Скорее всего, заявленные производителем результаты получены в лабораторных, несколько идеализированных условиях. При использовании DIP II на «среднестатистичном» ПК результаты, я думаю, будут несколько ниже. Тем не менее, не могу не отметить, что DIP II на данный момент по совокупности своих возможностей лучше других технологий претендует на звание «механизма искусственного интеллекта», призванного улучшить технико-экономические показатели работы ПК.

Перечень материнских плат, поддерживающих описанные технологии, приведён в таблице:

Комментарии, поправки, дополнения? Высказывайтесь здесь.

Источник

Почему TPU так хорошо подходят для глубинного обучения?

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это
Тензорный процессор третьего поколения

Тензорный процессор Google — интегральная схема специального назначения (ASIC), разработанная с нуля компанией Google для выполнения задач по машинному обучению. Он работает в нескольких основных продуктах Google, включая Translate, Photos, Search Assistant и Gmail. Облачный TPU обеспечивает преимущества, связанные с масштабируемостью и лёгкостью использования, всем разработчикам и специалистам по изучению данных, запускающим передовые модели машинного обучения в облаке Google. На конференции Google Next ‘18 мы объявили о том, что Cloud TPU v2 теперь доступен для всех пользователей, включая бесплатные пробные учётные записи, а Cloud TPU v3 доступен для альфа-тестирования.

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Но многие спрашивают – какая разница между CPU, GPU и TPU? Мы сделали демонстрационный сайт, где расположена презентация и анимация, отвечающая на этот вопрос. В этом посте я хотел бы подробнее остановиться на определённых особенностях содержимого этого сайта.

Как работают нейросети

Перед тем, как начать сравнивать CPU, GPU и TPU, посмотрим, какого рода вычисления требуются для машинного обучения – а конкретно, для нейросетей.

Представьте, к примеру, что мы используем однослойную нейросеть для распознавания рукописных цифр, как показано на следующей диаграмме:

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Если картинка будет сеткой размером 28х28 пикселей серой шкалы, её можно преобразовать в вектор из 784 значений (измерений). Нейрон, распознающий цифру 8, принимает эти значения и перемножает их со значениями параметра (красные линии на диаграмме).

Параметр работает как фильтр, извлекая особенности данных, говорящих о схожести изображения и формы 8:

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Это наиболее простое объяснение классификации данных нейросетями. Перемножение данных с соответствующими им параметрами (окраска точек) и их сложение (сумма точек справа). Наивысший результат обозначает наилучшее совпадение введённых данных и соответствующего параметра, которое, скорее всего, и будет правильным ответом.

Проще говоря, нейросетям требуется делать огромное количество перемножений и сложений данных и параметров. Часто мы организовываем их в виде матричного перемножения, c которым вы могли столкнуться в школе на алгебре. Поэтому проблема состоит в том, чтобы выполнить большое количество матричных перемножений как можно быстрее, потратив как можно меньше энергии.

Как работает CPU

Как подходит к такой задаче CPU? CPU – процессор общего назначения, основанный на архитектуре фон Неймана. Это значит, что CPU работает с ПО и памятью как-то так:

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Главное преимущество CPU – гибкость. Благодаря архитектуре фон Неймана, вы можете загружать совершенно разное ПО для миллионов различных целей. CPU можно использовать для обработки текстов, управления ракетными двигателями, выполнения банковских транзакций, классификации изображений при помощи нейросети.

Но поскольку CPU такой гибкий, оборудование не всегда знает заранее, какой будет следующая операция, пока не прочтёт следующую инструкцию от ПО. CPU нужно хранить результаты каждого вычисления в памяти, расположенной внутри CPU (так называемые регистры, или L1-кэш). Доступ к этой памяти становится минусом архитектуры CPU, известным как узкое место архитектуры фон Неймана. И хотя огромное количество вычислений для нейросетей делает предсказуемым будущие шаги, каждое арифметико-логическое устройство CPU (ALU, компонент, хранящий и управляющий множителями и сумматорами) выполняет операции последовательно, каждый раз обращаясь к памяти, что ограничивает общую пропускную способность и потребляет значительное количество энергии.

Как работает GPU

Для увеличения пропускной способности по сравнению с CPU, GPU использует простую стратегию: почему бы не встроить в процессор тысячи ALU? В современном GPU содержится порядка 2500 – 5000 ALU на процессоре, что делает возможным выполнение тысяч умножений и сложений одновременно.

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Такая архитектура хорошо работает с приложениями, требующими массивного распараллеливания, такими, например, как умножение матриц в нейросети. При типичной тренировочной нагрузке глубинного обучения (ГО) пропускная способность в этом случае увеличивается на порядок по сравнению с CPU. Поэтому на сегодняшний день GPU является наиболее популярной архитектурой процессоров для ГО.

Но GPU всё равно остаётся процессором общего назначения, который должен поддерживать миллион различных приложений и ПО. А это возвращает нас к фундаментальной проблеме узкого места архитектуры фон Неймана. Для каждого вычисления в тысячах ALU, GPU необходимо обратиться к регистрам или разделяемой памяти, чтобы прочесть и сохранить промежуточные результаты вычислений. Поскольку GPU выполняет больше параллельных вычислений на тысячах своих ALU, он также тратит пропорционально больше энергии на доступ к памяти и занимает большую площадь.

Как работает TPU

Когда мы в Google разрабатывали TPU, мы построили архитектуру, предназначенную для определённой задачи. Вместо разработки процессора общего назначения, мы разработали матричный процессор, специализированный для работы с нейросетями. TPU не сможет работать с текстовым процессором, управлять ракетными двигателями или выполнять банковские транзакции, но он может обрабатывать огромное количество умножений и сложений для нейросетей с невероятной скоростью, потребляя при этом гораздо меньше энергии и умещаясь в меньшем физическом объёме.

Главное, что позволяет ему это делать – радикальное устранение узкого места архитектуры фон Неймана. Поскольку основной задачей TPU является обработка матриц, разработчикам схемы были знакомы все необходимые шаги вычислений. Поэтому они смогли разместит тысячи множителей и сумматоров, и соединить их физически, сформировав большую физическую матрицу. Это называется архитектурой конвейерного массива. В случае с Cloud TPU v2 используются два конвейерных массива по 128 х 128, что в сумме даёт 32 768 ALU для 16-битных значений с плавающей точкой на одном процессоре.

Посмотрим, как конвейерный массив выполняет подсчёты для нейросети. Сначала TPU загружает параметры из памяти в матрицу множителей и сумматоров.

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Затем TPU загружает данные из памяти. По выполнению каждого умножения результат передаётся следующим множителям, при одновременном выполнении сложений. Поэтому на выходе будет сумма всех умножений данных и параметров. В течение всего процесса объёмных вычислений и передачи данных доступ к памяти совершенно не нужен.

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это

Поэтому TPU демонстрирует большую пропускную способность при подсчётах для нейросетей, потребляя гораздо меньше энергии и занимая меньше места.

Преимущество: уменьшение стоимости в 5 раз

Какие же преимущества даёт архитектура TPU? Стоимость. Вот стоимость работы Cloud TPU v2 на август 2018 года, на время написания статьи:

Tpu switch что это. Смотреть фото Tpu switch что это. Смотреть картинку Tpu switch что это. Картинка про Tpu switch что это. Фото Tpu switch что это
Обычная и TPU-шная стоимость работы для разных регионов Google Cloud

Стэнфордский университет раздаёт набор тестов DAWNBench, измеряющих быстродействие систем с глубинным обучением. Там можно посмотреть на различные комбинации задач, моделей и вычислительных платформ, а также на соответствующие результаты тестов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *