теория и методика обучения и воспитания математика
Теория и методика обучения и воспитания (математика)
О программе
Цель программы состоит в подготовке кадров высшей квалификации для осуществления педагогической и научно-исследовательской деятельности в области математического образования.
Выпускники программы смогут:
Основные дисциплины
Преимущества программы
1) Получение навыков научно-исследовательской деятельности в области математического образования
2) Программа научных исследований формируется индивидуально для каждого аспиранта в соответствии с темой его научного исследования
3) Реализация программы аспирантуры обеспечивается высококвалифицированными научно-педагогическими работниками, имеющими ученую степень и ученое звание, ведущими научные исследования по профилю преподаваемой дисциплины, имеющими публикации в ведущих отечественных и зарубежных изданиях
4) Возможность совмещать работу и учебу
5) Возможность получить опыт педагогической деятельности в высшей школе в ходе педагогической практики.
Количество мест и срок обучения
Очная форма – 3 года
Заочная форма – 4 года.
Мест с оплатой стоимости обучения – 1.
ВЕДУЩИЕ ПРЕПОДАВАТЕЛИ
Ермак Елена Анатольевна – профессор кафедры математики и методики обучения математике, доктор педагогических наук. Преподаваемые дисциплины: Методология научного исследования, Теория и методика обучения и воспитания (математика), Современные тенденции развития математического образования, Герменевтический подход в обучении математике и др. |
Соловьева Ирина Олеговна – заведующий кафедрой математики и методики обучения математике, кандидат педагогических наук. Преподаваемые дисциплины: Проектирование образовательных программ, Технология разработки методического обеспечения математических дисциплин и др. |
УЧЕБНЫЙ ПРОЦЕСС
Структура программы
История и философия науки, Современные проблемы высшего образования,
Методология научного исследования, Теория и методика обучения и воспитания (математика), Психология высшей школы, Педагогика высшей школы, Современные тенденции развития математического образования, Проектирование образовательных программ, Технология разработки методического обеспечения математических дисциплин, Герменевтический подход в обучении математике и др.
Методы обучения
В процессе обучения используются как традиционные, так и современные методы обучения, в том числе метод учебных проектов, элементы электронного обучения и др.
Исследования и проекты
Диссертационные исследования ведутся в области актуальных проблем математического образования на уровнях общего или профессионального образования. Все аспиранты публикуют результаты своих исследований, участвуют в научных конференциях различного уровня.
ТРАЕКТОРИЯ ПОСТУПЛЕНИЯ
ДОКУМЕНТЫ (ФГОС, ОПОП, ГИА, базовый учебный план, аннотации, рабочие программы практик, методические материалы, иные документы)
Методика преподавание и методы обучения математике в средней образовательной школе.
Ищем педагогов в команду «Инфоурок»
Учитель математики Шараб Насирович Жулиев
Методика преподавание и методы обучения математике в средней образовательной школе.
Математика как наука и как учебный предмет.
Предмет методики преподавания математики.
Методы обучения математики.
Математика как наука и как учебный предмет.
Математика — слово, пришедшее к нам из Древней Греции: mathema переводится как «познание, наука». Математика — это наука о количественных отношениях и пространственных формах действительного мира. Развитие науки и техники заставляет математику непрерывно расширять представления о пространственных формах и количественных отношениях.
Математика как учебный предмет в школе представляет собой элементы арифметики, алгебры, начал математического анализа, евклидовой геометрии плоскости и пространства, аналитической геометрии, тригонометрии.
Обучение учащихся математике направлено: на овладение ими системой математических знаний, умений и навыков, необходимых для дальнейшего изучения математики и смежных учебных предметов решения практических задач; на развитие логического мышления пространственного воображения, устной и письменной математической речи; на формирование навыков вычислений, алгебраических преобразований, решения уравнений и неравенств, а также инструментальных и графических навыков. От математики как науки математика как учебный предмет отличается не только объемом, системой и глубиной изложения, но и прикладной направленностью изучаемых вопросов.
Предмет методики преподавания математики.
В Постановление Президента республики Узбекистан от 05.09.2018 года
О мерах по внедрению новых принципов управления в систему народного образования – отмечается, одним из основных задач в сфере образования является, внедрение в учебно-воспитательный процесс инновационных форм образования, современных педагогических и информационных технологий, эффективных методов профессиональной ориентации, обучения и воспитания с учетом оптимизации учебных, психологических и физических нагрузок учащихся.
Преподавание – это деятельность учителя, направленная на:1) передачу информации ученикам; 2) развитие их познавательной деятельности; 3) воспитание средствами учебного предмета; 4) организацию учебного процесса.
— методика преподавания математики — раздел педагогики, исследующий закономерности обучения математике на определенном уровне ее развития в соответствии с целями обучения подрастающего поколения, поставленными обществом. Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними. Под основными компонентами понимают цели, содержание, методы, формы и средства обучения математике.
Предметом методики обучения математике являются цели и содержание математического образования, методы, средства и формы обучения математике.
Основными задачами методики преподавания математики являются:
— определение конкретных целей изучения математики по классам, темам, урокам;
— отбор содержания учебного предмета в соответствии с целями и познавательными возможностями учащихся;
— разработка наиболее рациональных методов и организационных форм обучения, направленных на достижение поставленных целей;
— выбор необходимых средств обучения и разработка методики их применения в практике работы учителя математики.
Методика преподавания математики призвана дать ответы на три вопроса: 1.Зачем надо учить математике?
3.Как надо обучать математике?
Зачем надо учить математике?
Цели и задачи курса математики в среднее образовательной школе.
Обучение решению задач. Функции решения задач. Элементы теории математических задач. Методы формирования умений и навыков в процессе решения задач. Смысл аналитико-синтетического метода.
Как надо обучать математике?
3. Развитие мышления и воображения учащимися начальной школы.
4. Методика организации учебного процесса.
При обучении математике следует установить те качества личности ученика, воспитание, формирование которых возможно лишь в процессе обучения именно математике. Установить, ради чего ученики должны изучать именно математику, а не какой-то другой учебный предмет.
Традиционная методика решения задач не обеспечивает формирование у учащихся общих умений и способность к решению задач. Решение задач выполняет следующие функции в обучении математике:
1) решение задач используется для формирования у учащихся нужной мотивации их учебной деятельности, интереса и склонности к этой деятельности;
2) решение задач используется для иллюстрации и конкретизации изучаемого учебного материала;
3) одной из задач обучения является выработка у учащихся определенных умений и навыков (счета, измерения, преобразования различных выражений и т.д.);
4) решение задач есть наиболее адекватное и удобное средство для контроля и оценки учебной работы учащихся;
5) решение задач есть способ приобретения учащимися новых знаний;
6) решение задач – это способ формирования у учащихся общего подхода, общего умения решать любые части.
Когда ученик решает задачу, то его цель – решить задачу, найти ответ. Промежуточные действия, которые он выполняет в процессе решения, могут им актуально не осознаваться, а поэтому умения и тем более навыки в выполнении этих действий не вырабатываются. Прочные умения и навыки в выполнении каких-либо действий вырабатываются только тогда, когда выполнение этих действий является непосредственной целью деятельности человека, а, следовательно, эти действия должны актуально осознаваться.
Очень полезным видом учебных заданий является самостоятельное составление учащимися математических задач. Составление задач способствует лучшему уяснению самих задач, их структуры и механизма решения. Например, в младших классах можно использовать такие задания:
1.Подбор вопроса (требования) к данным условиям. Сколько и какие
вопросы можно поставить, зная данные условия?
2.Подбор условий для данного вопроса, или иначе. Что нужно знать, чтобы ответить на данный вопрос?
3.Составление задачи по рассказу, по краткой ее записи в виде схемы, в виде таблицы, в виде графика.
4.Составление задач, подобных данной.
5. Составление задачи, решение которой состояло бы из двух (трех и т.д.) действий.
6.В текст задачи, в которой числовые данные пропущены, вставить на определенные места возможные числовые данные и т.д.
Очень полезным упражнением является составление обратных задач по отношению к решенной задаче. Обратной задачей называется задача, в которой одним из требований является какое-то известное условие прямой задачи, а это условие заменяется ответом прямой задачи.
Важнейшей задачей обучения математике является развитие мышления и воображения. Кстати, это цель и других дисциплин.
Когда ребенок приходит в школу, у него в некоторой степени развиты лишь два вида мышления: наглядно-действенное и наглядно-образное.
Наглядно-действенное мышление – это первый вид мышления, возникающий у ребенка в самом раннем возрасте.
В дошкольном возрасте у ребенка постепенно развивается второй вид мышления – наглядно-образное, когда ребенок начинает оперировать чувственными образами и представлениями, выявляя тем самым скрытые от наблюдения свойства и отношения объектов познания.
И только в школьном обучении у ребенка начинает развиваться рассуждение, словесно-логическое мышление.
Словесно-логическое мышление (рассуждение) осуществляется с помощью следующих мыслительных действий.
Анализ – мысленное расчленение объекта познания на части с целью установления его свойств и особенностей взаимосвязей этих частей объекта. Ребенок осуществляет анализ практически, расчленяя предмет на части, даже ломая его.
Синтез – мысленное воссоединение отдельных элементов или частей в единое целое.
Следует отметить, что понятия «анализ» и «синтез» часто используются еще для обозначения характера познания объекта. Ребенок сначала воспринимает объект познания как нечто целое (синтетически), не замечая в нем отдельных частей (свойств), а лишь затем, на пороге подросткового возраста переходит к аналитическому взгляду на объекты познания, расчленяя эти объекты на части, выделяя в них отдельные свойства.
В методике математики говорят еще об аналитическом и синтетическом методах решения задач, имея в виду ход рассуждений в процессе решения: от требования к условиям или наоборот, от условий к требованию задачи.
Методы обучения математике и их классификация
Метод (от греч. methodos — путь исследования) — способ достижения цели.
Метод обучения — упорядоченный комплекс дидактических приемов и средств, с помощью которых реализуются цели обучения и воспитания. Методы обучения включают взаимосвязанные, последовательно чередующиеся способы целенаправленной деятельности учителя и учащихся.
Любой метод обучения предполагает цель, систему действий, средства обучения и намеченный результат. Объектом и субъектом метода обучения является ученик.
Какой-либо один метод обучения используется в чистом виде лишь в специально спланированных учебных или исследовательских целях. Обычно преподаватель сочетает различные методы обучения.
Метод обучения — историческая категория. На протяжении всей истории педагогики проблема методов обучения разрешалась с различных точек зрения: через формы деятельности; через логические структуры и функции форм деятельности; через характер познавательной деятельности. Сегодня существуют разные подходы к современной теории методов обучения.
Классификация методов обучения проводится по различным основаниям:
По характеру познавательной деятельности:
объяснительно-иллюстративные (рассказ, лекция, беседа, демонстрация и т.д.);
репродуктивные (решение задач, повторение опытов и т.д.);
проблемные (проблемные задачи, познавательные задачи и т.д.);
По компонентам деятельности:
организационно-действенные — методы организации и осуществления учебно-познавательной деятельности;
стимулирующие — методы стимулирования и мотивации учебно-познавательной деятельности;
контрольно-оценочные — методы контроля и самоконтроля эффективности учебно-познавательной деятельности.
По дидактическим целям:
методы изучения новых знаний;
методы закрепления знаний;
По способам изложения учебного материала:
монологические — информационно-сообщающие (рассказ, лекция, объяснение);
диалогические (проблемное изложение, беседа, диспут).
По формам организации учебной деятельности:
По уровням самостоятельной активности учащихся:
самостоятельная работа учащихся
работа учащихся с помощью учителя
работа учащихся под руководством учителя
По источникам передачи знаний:
словесные (рассказ, лекция, беседа, инструктаж, дискуссия);
наглядные (демонстрация, иллюстрация, схема, показ материала, график);
практические (упражнение, лабораторная работа, практикум).
По учету структуры личности:
сознание (рассказ, беседа, инструктаж, иллюстрирование и др.);
поведение (упражнение, тренировка и т.д.);
чувства — стимулирование (одобрение, похвала, порицание, контроль и т.д.).
Все указанные классификации рассматриваются в дидактическом аспекте; предметное содержание математики учитывается здесь в недостаточной мере, поэтому невозможно отразить всю номенклатуру методов обучения математике.
Педагогическая классификация методов обучения разделяет методы преподавания и методы изучения (учения). Последние, в свою очередь, представлены научными (наблюдение, анализ, синтез и т.д.) и учебными (эвристический, обучение на моделях и др.) методами изучения математики.
Методы преподавания — средства и приемы, способы информации, управления и контроля познавательной деятельности учащихся.
Методы учения — средства и приемы, способы усвоения учебного материала, репродуктивные и продуктивные приемы учения и самоконтроля.
Основными методами математического исследования являются: наблюдение и опыт; сравнение; анализ и синтез; обобщение и специализация; абстрагирование и конкретизация.
Современные методы обучения математике: проблемный (перспективный), лабораторный, программированного обучения, эвристический, построения математических моделей, аксиоматический и др.
Рассмотрим классификацию методов обучения (схема 1).
Методика обучения математике в современной школе
Юлия Васильевна
Методика обучения математике в современной школе
Пономарева Юлия Васильевна
Учитель математики
МБОУ Каменно-Балковская СОШ
Методика обучения математике в современной школе
Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.
Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.
Методика преподавания математики занимается, прежде всего, изучением, разработкой, усовершенствованием различных методов и форм преподавания математики в школах, а также многообразными организационными вопросами, возникающими при применении этих методов и форм на практике. Эта дисциплина выясняет, как обеспечить прочные систематизированные знания и навыки в объеме, установленном программой, тратя на это минимум времени и сил, и как обеспечить достижение тех воспитательных целей, какие ставит себе изучение математики. Методика преподавания математики изучает и систематизирует опыт лучших учителей и даёт возможность начинающему учителю избежать многих ошибок, легко допускаемых на первых порах и приводящих к большим потерям для учащихся. Исходя из конкретных задач, стоящих перед учителем математики, имеющим класс с определенным составом учащихся, определенную программу, определенные учебники, твердое расписание, методика устанавливает способы наилучшего использования всех этих конкретных условий для достижения поставленной цели. Кроме того, она накопляет также опыт учителей, говорящий о желательности тех или иных изменений в учебных планах, программах, учебниках.
Методика математики – наука, выводы которой немедленно и самым широким образом применяются на практике и являются базой искусства преподавания.
Методика преподавания математики прежде всего должна ответить на несколько основных, тесно связанных между собой вопросов.
Первый из них – зачем обучать математике? Очевидно, ответ на этот вопрос можно получить, исходя из общих задач воспитания, которые, в свою очередь, определяются задачами, стоящими перед обществом на соответствующем этапе его развития.
Второй вопрос – кого обучать математике? С одной стороны,это вопрос о возрасте: когда целесообразно приступать к обучению детей математике и когда следует заканчивать изучение обязательной для всех программы? С другой стороны это приобретающий все большую актуальность вопрос о «послешкольном» продолжении математического образования.
Третий вопрос – каково содержание изучаемого курса математики? Ответ на этот вопрос теснейшим образом связан с ответом на вопрос о целях обучения математике. Следует подчеркнуть, что, пожалуй, именно в математике вопрос о том, что именно и в каком объеме следует отобрать из сегодняшней науки для школьной программы, является наиболее сложным, важным и спорным.
Наконец, четвертый вопрос – как обучать математике? Очевидно, что ответ на этот вопрос и составляет важнейшую часть курса методики преподавания математики, причем материал этот является наиболее подвижным, наиболее конкретным, наиболее близким учителю-практику, требует к себе поистине творческого отношения.
Дидактика математики относится к группе педагогических наук и находится в тесной связи с педагогикой. Влияние на нее оказывают и математические науки. Также методика математики основывается на понятиях и законах психологии. Физиология высшей нервной деятельности, в частности учение И. П. Павлова об условных рефлексах, находит применение в обучении математике. Плодотворное влияние на дидактику математики оказывает связь логикой, историей математики, с ее историей.
Методика преподавания математики рассматривает такие вопросы, как цели обучения, математические понятия и предложения, теоремы и их доказательство, задачи и их решение, методы и формы обучения, урок по математике и др.
Методика преподавания математики в школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я. А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И. Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф. И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П. С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.
Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними.Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.
Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике. На функционирование системы обучения математикеоказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т. д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.
Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства
Долгое время история математического образования не являлась специальным объектом научных исследований, и ее отдельные грани освещались либо в рамках истории развития различных учебных заведений, либо в контексте истории математики, либо на фоне материалов, посвященных персоналиям. Поэтому отрадно отметить, что на рубеже XX-XXI веков выходят фундаментальные работы по истории обучения математике в России Ю. М. Колягина и Т. С. Поляковой[3].
Несмотря на уникальность этих сочинений, все же следует отметить, что, вследствие поставленных авторами задач, они описывают историю отечественного математического образования в целом.Между тем не в меньшей степени представляется интересной история преподавания конкретных дисциплин: арифметики, алгебры, геометрии и т. д. Тем более важно исследовать эволюцию обучения высшей математике в школе, поскольку наличие этого раздела в школьном курсе на протяжении столетий вызывает у педагогов наибольшее количество споров.Даже сегодня представляется весьма затруднительным получить однозначные и исчерпывающие ответы на традиционные вопросы: «Нужна ли высшая математика в школе?», «Какие вопросы высшей математики должны найти отражение в школьной программе?», «Каким образом осуществить введение элементов высшей математики в школу?» и, наконец, «Как при этом эффективно организовать процесс обучения?». Но, несмотря на различие мнений, элементы высшей математики уже стали неотъемлемой частью школьного курса математики.
Детальный анализ историко-педагогической и методико-математической литературы позволяет утверждать, что приводимые в ней сведения не дают даже общей картины постановки преподавания элементов высшей математики в XVIII-XX вв. как в высшей, так и в средней школе; все эти сведения весьма разрозненны, не систематизированы, имеют расхождения в датах, описании фактов, оценке событий. Требуют уточнения, к примеру, многочисленные факты о жизни и научной деятельности таких педагогов-математиков, как, Семен Кирилович Котельников Михаил Георгиевич. Г. Попруженко и многих др. ; имеют место разночтения в сроках и причинах проникновения элементов высшей математики в школьный курс; встречается переоценка роли педагогов «в борьбе» за внедрение идей высшей математики в среднюю школу и т. п.
Сказанное во многом можно отнести и к другим разделам школьного курса математики. Таким образом, есть все основания констатировать,что в настоящее время обострились противоречия между:
— сохранением традиций отечественной системы математического образования и необходимостью ее обновления, вызванного требованиями времени (в т. ч. в контексте модернизации средней школы);
— фактическим проникновением элементов высшей математики в школьный курс и отсутствием единой теории, обосновывающей необходимость изучения высшей математики в средней школе;
— историко-культурной и педагогической потребностью в осмыслении исторического опыта обучения высшей математике в средней школе и недостатком знаний об этом важном разделе истории математического образования (в т. ч. недостаточной его освещенностью в научных исследованиях).
История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.
Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части.
Перед преподаванием математики в школе кроме общих целей обучения стоят ещё свои специфические цели, определяемые особенностями математической науки. Одна из них – это формирование и развитие математического мышления. Это способствует выявлению и более эффективному развитию математических способностей школьников, подготавливает их к творческой деятельности вообще и в математике с ее многочисленными приложениями в частности.
Вообще интеллектуальное развитие детей можно ускорить по трём направлениям: понятийный строй мышления, речевой интеллект и внутренний план действий.
Прочное усвоение знаний невозможно без целенаправленного развития мышления, которое является одной из основных задач современного школьного обучения.
Хочется обратить внимание на две главные проблемы дидактики математики: модернизация содержания школьного математического образования и совершенствование структуры курса.
Быстрый рост объема научной информации, ограниченность срока школьного обучения и невозможность сокращения объема изучаемых в школе основ науки с целью включения новой информации усложняют проведение реформ по модернизации школьного образования, а поэтому готовить их придется в течение более длительного времени, тщательно и строго на научной основе.
Имеют место успешные эксперименты по модернизации курса начальных классов и изучению в нем начал алгебры, что позволило дать значительную пропедевтику алгебры и геометрии в I-V классах, позволяющую изучить систематические курсы этих предметов в более быстром темпе и перенести ряд тем из старших классов в средние; включить в программу старших классов элементы высшей математики. Таким образом, улучшение системы курса возможно и в период между реформами, т. е. независимо от модернизации образования.
Ряд исследователей, таких как Юрий Михайлович. Колягин, Татьяна Сергеевна Полякова, Ольга Алексеевна Саввина, Ольга Викторовна Тарасова, Ростислав Семенович Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И. К. Андронова и Р. С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.
Современные подходы к организации системы школьного образования, в том числе и математического образования, определяются, прежде всего, отказом от единообразной, унитарной средней школы.
Направляющими векторами этого подхода являются гуманизация и гуманитаризация школьного образования.
Гуманитаризация школьного математического образования реализуется как гуманитарная ориентация обучения математике. Гуманитарная ориентация является одним из основополагающих принципов новой концепции и выражается, условно говоря, тезисом «не ученик для математики, а математика для ученика», означающим постановку акцента на личность, на человека.
Этим определяется переход от принципа «вся математика для всех» к внимательному учету индивидуальных параметров личности — для чего конкретному ученику нужна и будет нужна в дальнейшем математика, в каких пределах и на каком уровне он хочет и/или может ее освоить, к конструированию курса «математики для всех», или, более точно, «математики для каждого».
Одной из основных целей учебного предмета «Математика» как компоненты общего среднего образования, относящейся к каждому учащемуся, является развитие мышления, прежде всего, формирование абстрактного мышления, способности к абстрагированию и умению «работать» с абстрактными, «неосязаемыми» объектами. В процессе изучения математики в наиболее чистом виде может быть сформировано логическое и алгоритмическое мышление, многие качества мышления, такие, как сила и гибкость, конструктивность и критичность и т. д.
Эти качества мышления сами по себе не связаны с каким-либо математическим содержанием и вообще с математикой, но обучение математике вносит в их формирование важную и специфическую компоненту, которая в настоящее время не может быть эффективно реализована даже всей совокупностью отдельных школьных предметов.
В то же время конкретные математические знания, лежащие за пределами, условно говоря, арифметики натуральных чисел и первичных основ геометрии, не являются «предметом первой необходимости» для подавляющего большинства людей и не могут, поэтому составлять целевую основу обучения математике как предмету общего образования.
Именно поэтому в качестве основополагающего принципа образовательной технологии в аспекте «математики для каждого» на первый план выдвигается принцип приоритета развивающей функции в обучении математике. Иными словами, обучение математике ориентировано не столько на собственно математическое образование, в узком смысле слова, сколько на образование с помощью математики.
В соответствии с этим принципом главной задачей обучения математике становится не изучение основ математической науки как таковой, а общеинтеллектуальное развитие — формирование у учащихся в процессе изучения математики качеств мышления, необходимых для полноценного функционирования человека в современном обществе, для динамичной адаптации человека к этому обществу.
Формирование условий для индивидуальной деятельности человека, основывающейся на приобретенных конкретных математических знаниях, для познания и осознания им окружающего мира средствами математики остается, естественно, столь же существенной компонентой школьного математического образования.
С точки зрения приоритета развивающей функции конкретные математические знания в «математике для каждого» рассматриваются не столько как цель обучения, сколько как база, «полигон» для организации полноценной в интеллектуальном отношении деятельности учащихся. Для формирования личности учащегося, для достижения высокого уровня его развития именно эта деятельность, если говорить о массовой школе, как правило, оказывается более значимой, чем те конкретные математические знания, которые послужили ее базой.
Гуманитарная ориентация обучения математике как предмету общего образования и вытекающая из нее идея приоритета в «математике для каждого» развивающей функции обучения по отношению к его чисто образовательной функции требует переориентации методической системы обучения математике с увеличения объема информации, предназначенной для «стопроцентного» усвоения учащимися, на формирование умений анализировать, продуцировать и использовать информацию.
Среди общих целей математического образования центральное место занимает развитие абстрактного мышления, включающего в себя не только умение воспринимать специфические, свойственные математике абстрактные объекты и конструкции, но и умение оперировать с такими объектами и конструкциями по предписанным правилам. Необходимой компонентой абстрактного мышления является логическое мышление — как дедуктивное, в том числе и аксиоматическое, так и продуктивное — эвристическое и алгоритмическое мышление.
В качестве общих целей математического образования рассматриваются также умение видеть математические закономерности в повседневной практике и использовать их на основе математического моделирования, освоение математической терминологии как слов родного языка и математической символики как фрагмента общемирового искусственного языка, играющего существенную роль в процессе коммуникации и необходимого в настоящее время каждому образованному человеку.
Гуманитарная ориентация обучения математике как общеобразовательному предмету определяет конкретизацию общих целей в построении методической системы обучения математике, отражающей приоритет развивающей функции обучения. С учетом очевидной и безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели обучения математике образовательной технологии “Школа 2100”могут быть сформулированы следующим образом:
— овладение комплексом математических знаний, умений и навыков,необходимых: а) для повседневной жизни на высоком качественном уровне и профессиональной деятельности, содержание которой не требует использования математических знаний, выходящих за пределы потребностей повседневной жизни; б) для изучения на современном уровне школьных предметов естественнонаучного и гуманитарного циклов; в) для продолжения изучения математики в любой из форм непрерывного образования (в том числе, на соответствующем этапе обучения, при переходе к обучению в любом профиле на старшей ступени школы);
— формирование и развитие качеств мышления, необходимых образованному человеку для полноценного функционирования в современном обществе, в частности эвристического (творческого) и алгоритмического (исполнительского) мышления в их единстве и внутренне противоречивой взаимосвязи;
— формирование и развитие у учащихся абстрактного мышления и, прежде всего, логического мышления, его дедуктивной составляющей как специфической характеристики математики;
— повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;
— формирование умений деятельности и развитие у учащихся морально-этических качеств личности, адекватных полноценной математической деятельности;
— реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира;
— формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и его закономерностей, в частности как базы компьютерной грамотности и культуры;
— ознакомление с ролью математики в развитии человеческой цивилизации и культуры, в научно-техническом прогрессе общества, в современной науке и производстве;
— ознакомление с природой научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности.
Консультация для воспитателей «Методика обучения дошкольников театрализованной деятельности» Годованая О. Ю., музыкальный руководитель МБДОУ д/с «Академия детства», г. Нижний Тагил Свердловской области. Данная методическая разработка.
Краткая методика обучения детей дошкольного возраста пересказу Методика обучения детей дошкольного возраста пересказуВсе знают о важности развития связной речи в дошкольном периоде. Рассмотрим такую.
Методика обучения дошкольников ползанию и лазанью Содержание Введение 1. Лазанье. Ползание. Программные требования 2. Методика обучения лазанью и ползанию в разных возрастных группах Заключение.
Методика обучения ползанию в старшей группе 1. Возрастная группа: (5-6 лет) 2. Виды упражнений: ползанье на четвереньках по гимнастической скамейке 3. Графическое изображение: 4.
Методика обучения связным высказываниям типа рассуждений Муниципальное бюджетное дошкольное образовательное учреждение «Детский сад «Радуга» г. Козловка Чувашской Республики Консультация.
Методика обучения технике квиллинга на мастер-классе ]Декоративно-прикладная деятельность школьников в дополнительном образовании. К возможностям декоративно-прикладного искусства художники-педагоги.
Методика проведения и особенности приемов обучения на занятиях в раннем возрасте Методика проведения и особенности приемов обучения на занятиях в раннем возрасте Разработал: Старший воспитатель МБДОУ № 19 «Золотая рыбка».
Педагогическая консультация «Методика обучения упражнениям со скакалкой» Педагогическая консультация. «Методика обучения упражнениям со скакалкой». Комарова Л. А. г. Ялуторовск, 2019 Прыжки со скакалкой укрепляют.
Теория и методика физической культуры и спорта. Методика обучения двигательным действиям Теория и методика физической культуры и спорта Методика обучения двигательным действиям. 1. Двигательные умения и навыки как предмет.