сколько отделов мозга у позвоночных животных

Сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

В промежуточном мозге находятся подкорковые центры зрения и слуха.

Если до уровня среднего мозга головной мозг является единым стволом, то, начиная со среднего мозга, происходит его разделение на две симметричные половины.

Общая характеристика

Головной мозг – это главный орган нервной системы. Его исследованием медики занимаются до сих пор. Головной мозг взрослого человека содержит 90-95 миллиардов нейронов. Тела нейронов образуют серое вещество мозга, а нервные волокна (отростки нейронов) – белое вещество.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животныхРис. 1. Отделы головного мозга.

Данный орган имеет следующие виды оболочек:

Мозг мужчин и женщин отличается по своей массе. У представителей сильного пола его вес на 100-150 г больше. Однако умственное развитие никак не зависит от этого показателя.

Функции генератора и передачи импульсов выполняют нейроны. Внутри головного мозга есть желудочки (полости), в которых образуется спинномозговая жидкость. От головного мозга в разные отделы человеческого тела отходят черепно-мозговые парные нервы. Всего в организме насчитывается 12 таких пар.

Строение

Главный орган нервной системы состоит из трёх частей:

Так же он имеет пять отделов:

Белое вещество больших полушарий переднего мозга представлено в виде нервных волокон, которые могут быть трёх видов:

Серое вещество состоит из тел нейронов, в больших полушариях это вещество образует кору и подкорковые ядра.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животныхРис. 2. Доли коры больших полушарий.

Следующая таблица поможет подробнее разобраться со строением и функциями различных отделов головного мозга:

Таблица «Строение и функции головного мозга»

Отдел

Особенности строения

Функции

Конечный или передний

Состоит из двух полушарий, которые соединяются между собой мозолистым телом. Поверхность полушарий имеет множество борозд и извилин.

Правое полушарие отвечает за левую сторону тела, а левое – за правую сторону. Здесь расположены центры регуляции произвольных движений, центры условных рефлексов и психических функций. Височная доля коры головного мозга регулирует слух, вкус и обоняние, затылочная – зрение, теменная – осязание; лобная – произношение речи.

Состоит из гипоталамуса и таламуса.

Таламус является посредником в передаче раздражителей к полушариям и помогает адекватно приспособиться к изменениям в окружающей среде.

Гипоталамус регулирует работу обменных процессов и эндокринных желёз. Руководит работой сердечнососудистой и пищеварительной системы. Регулирует сон и бодрствование, управляет пищевыми и питьевыми потребностями.

Состоит из мозжечка и моста, который представлен в виде белого толстого валика, расположенного над продолговатым отделом.

Мозжечок расположен позади моста, имеет два полушария, нижнюю и верхнюю поверхности и червя.

Данный отдел обеспечивает функцию посредника при передаче импульсов в расположенные выше отделы мозга. Мозжечок отвечает за координацию и точность движений.

Расположен от переднего края моста до зрительных трактов.

Отвечает за скрытое зрение, а также осуществление ориентировочных рефлексов, (поворот тела в направлении звука).

Является продолжением спинного мозга.

Управляет равновесием, содержит центры дыхания, глотания, чихания и кашля, рвоты, сердечно-сосудистый и пищеварительные.

Что мы узнали?

Головной мозг – это сложная система, которая руководит работой всех внутренних систем организма. Состоит он из пяти отделов, каждый из которых выполняет определённые функции. Без работы данного отдела центральной нервной системы сложно представить жизнедеятельность всего организма.

Источник

Нервная система

Этапы развития нервной системы

В эволюции нервная система претерпела несколько этапов развития, которые стали поворотными пунктами в качественной организации её деятельности. Эти этапы отличаются по количеству и видам нейрональных образований, синапсов, признакам их функциональной специализации, по образованию группировок нейронов, связанных между собой общностью функций. Выделяют три основных этапа структурной организации нервной системы: диффузный, узловой, трубчатый.

Диффузная нервная система наиболее древняя, имеется у кишечнополостных (гидра) животных. Такая нервная система характеризуется множественностью связей соседних элементов, что позволяет возбуждению свободно распространяться по нервной сети во все стороны.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Этот тип нервной системы обеспечивает широкую взаимозаменяемость и тем самым большую надёжность функционирования, однако эти реакции имеют неточный, расплывчатый характер.

Узловой тип нервной системы типичен для червей, моллюсков, ракообразных.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Он характерен тем, что связи нервных клеток организованы определённым образом, возбуждение проходит по жёстко определённым путям. Такая организация нервной системы оказывается более ранимой. Повреждение одного узла вызывает нарушение функций всего организма в целом, но она по своим качествам быстрее и точнее.

Трубчатая нервная система характерна для хордовых, она включает в себя черты диффузного и узлового типов. Нервная система высших животных взяла всё лучшее: высокую надёжность диффузного типа, точность, локальность быстроту организации реакций узлового типа.

Ведущая роль нервной системы

На первом этапе развития мира живых существ взаимодействие между простейшими организмами осуществлялось через водную среду первобытного океана, в которую поступали химические вещества, выделяемые ими. Первой древнейшей формой взаимодействия между клетками многоклеточных организм является химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами обмена веществ, или метаболитами, являются продукты распада белков, углекислота и др. это — гуморальная передача влияний, гуморальный механизм корреляции, или связи между органами.

Гуморальная связь характеризуется следующими особенностями:

Гуморальные связи являются общими и для мира животных, и для мира растений. На определённой ступени развития мира животных в связи с появлением нервной системы образуется новая, нервная форма связей и регуляций, которая качественно отличает мир животных от мира растений. Чем выше по своему развитию организм животного, тем большую роль играет взаимодействие органов через нервную систему, которое обозначается как рефлекторное. У высших живых организмов нервная система регулирует гуморальные связи. В отличие от гуморальной связи нервная связь имеет точную направленность к определённому органу и даже группе клеток; связь осуществляется в сотни раз с большей скоростью, чем скорость распространения химических веществ. Переход от гуморальной связи к нервной сопровождался не уничтожением гуморальной связи между клетками тела, а подчинением нервным связям и возникновению нервно-гуморальным связям.

На следующем этапе развития живых существ появляются специальные органы — железы, в которых вырабатываются гормоны, образующиеся из поступающих в организм пищевых веществ. Основная функция нервной системы заключается как в регуляции деятельности отдельных органов между собой, так и во взаимодействии организма как единого целого с окружающей его внешней средой. Любое воздействие внешней среды на организм оказывается, прежде всего, на рецепторы (органы чувств) и осуществляется через посредство изменений, вызываемых внешней средой и нервной системой. По мере развития нервной системы высший её отдел — большие полушария головного мозга — становится «распорядителем и распределителем всей деятельности организма».

Строение нервной системы

Нервная система образована нервной тканью, которая состоит из огромного количества нейронов — нервная клетка с отростками.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Нервная система условно подразделяется на центральную и периферическую.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Центральная нервная система включает головной и спинной мозг, а периферическая нервная система — нервы, отходящие от них.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Головной и спинной мозг представляют собой совокупность нейронов. На поперечном разрезе мозга различают белое и серое вещество. Серое вещество состоит из нервных клеток, а белое — из нервных волокон, являющихся отростками нервных клеток. В различных отделах центральной нервной системы расположение белого и серого вещества неодинаково. В спинном мозге серое вещество находится внутри, а белое — снаружи, в головном же (большие полушария, мозжечок), наоборот — серое вещество — снаружи, белое — внутри. В различных отделах головного мозга имеются отдельные скопления нервных клеток (серого вещества), расположенные внутри белого вещества, — ядра. Скопления нервных клеток находятся и за пределами центральной нервной системы. Они называются узлами и относятся к периферической нервной системе.

Рефлекторная деятельность нервной системы

Основной формой деятельности нервной системы является рефлекс. Рефлекс — реакция организма на изменение внутренней или внешней среды, осуществляемая при участии центральной нервной системы в ответ на раздражение рецепторов.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

При всяком раздражении возбуждение с рецепторов передаётся по центростремительным нервным волокнам в центральную нервную систему, откуда через вставочный нейрон по центробежным волокнам оно идёт на периферию к тому или иному органу, деятельность которого изменяется. Весь этот путь через центральную нервную систему к рабочему органу, называется рефлекторной дугой образован обычно тремя нейронами: чувствительным, вставочным и двигательным. Рефлекс — сложный акт, в осуществлении которого принимает участие значительно большее количество нейронов. Возбуждение, попадая в центральную нервную систему, распространяется на многие отделы спинного мозга и доходит до головного. В результате взаимодействия многих нейронов осуществляется ответная реакция организма на раздражение.

Спинной мозг

Спинной мозг — тяж длиной около 45 см, диаметром 1 см, находится в канале позвоночника, покрыт тремя мозговыми оболочками: твёрдой, паутинной и мягкой (сосудистой).

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Спинной мозг находится в позвоночном канале и представляет собой тяж, который вверху переходит в продолговатый мозг, а внизу заканчивается на уровне второго поясничного позвонка. Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого, состоящего из нервных волокон. Серое вещество расположено внутри спинного мозга и окружено со всех сторон белым веществом.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

На поперечном разрезе серое вещество напоминает букву Н. В нём различают передние и задние рога, а также соединяющую перекладину, в центре которой находится узкий канал спинного мозга, содержащий спинномозговую жидкость. В грудном отделе выделяют боковые рога. В них заложены тела нейронов, иннервирующих внутренние органы. Белое вещество спинного мозга образовано нервными отростками. Короткие отростки соединяют участки спинного мозга, а длинные составляют проводниковый аппарат двусторонних связей с головным мозгом.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Спинной мозг имеет два утолщения — шейное и поясничное, от которых отходят нервы к верхним и нижним конечностям. От спинного мозга отходит 31 пара спинномозговых нервов. Каждый нерв начинается от спинного мозга двумя корешками — передним и задним. Задние корешки — чувствительные состоят из отростков центростремительных нейронов. Их тела расположены в спинномозговых узлах. Передние корешки — двигательные — являются отростками центробежных нейронов расположенных в сером веществе спинного мозга. В результате слияния переднего и заднего корешка образуется смешанный спинномозговой нерв. В спинном мозге сосредоточены центры, регулирующие наиболее простые рефлекторные акты. Основные функции спинного мозга — рефлекторная деятельность и проведение возбуждения.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

В спинном мозге человека заложены рефлекторные центры мышц верхних и нижних конечностей, потоотделения и мочеиспускания. Функции проведения возбуждения заключается в том, что через спинной мозг проходят импульсы от головного мозга ко всем областям тела и обратно. По восходящим проводящим путям в головной мозг передаются центростемительные импульсы от органов (кожа, мышцы). По нисходящим путям центробежные импульсы передаются от головного мозга в спинной, затем на периферию, к органам. При повреждении проводящих путей наблюдается потеря чувствительности в различных участках тела, нарушение произвольных сокращений мышц и способности к движению.

Эволюция головного мозга позвоночных

Для низших позвоночных — рыб и земноводных — характерно преобладание среднего мозга над остальными отделами. У земноводных несколько увеличивается передний мозг и в крыше полушарий образуется тонкий слой нервных клеток — первичный мозговой свод, древняя кора. У рептилий значительно увеличивается передний мозг за счет скоплений нервных клеток. Большую часть крыши полушарий занимает древняя кора. Впервые у рептилий появляется зачаток новой коры. Полушария переднего мозга наползают на другие отделы, вследствие чего образуется изгиб в области промежуточного мозга. Начиная с древних рептилий, полушария головного мозга становятся самым большим отделом головного мозга.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

В строении головного мозгаптиц и пресмыкающихся много общего. На крыше головного мозга — первичная кора, хорошо развит средний мозг. Однако у птиц по сравнению с рептилиями возрастают общая масса мозга и относительные размеры переднего мозга. Мозжечок крупный и имеет складчатое строение. У млекопитающих передний мозг достигает наибольшей величины и сложности. Большую часть мозгового вещества составляет новая кора, которая служит центром высшей нервной деятельности. Промежуточный и средний отделы мозга у млекопитающих невелики. Разрастающиеся полушария переднего мозга накрывают их и подминают под себя. У некоторых млекопитающих мозг гладкий, без борозд и извилин, но у большинства млекопитающих в коре мозга имеются борозды и извилины. Появление борозд и извилин происходит вследствие роста мозга при ограниченных размерах черепа. Дальнейший рост коры приводит к появлению складчатости в виде борозд и извилин.

Головной мозг

Если спинной мозг у всех позвоночных животных развит более или менее одинаково, то головной мозг существенно отличатся размерами и сложностью строения у разных животных. Особенно резкие изменения в ходе эволюции претерпевает передний мозг. У низших позвоночных передний мозг развит слабо. У рыб он представлен обонятельными долями и ядрами серого вещества в толще мозга. Интенсивное развитие переднего мозга связано с выходом животных на сушу. Он дифференцируется на промежуточный мозг и на два симметричных полушария, которые называются конечным мозгом. Серое вещество на поверхности переднего мозга (кора) впервые появляется у пресмыкающихся, развиваясь далее у птиц и особенно у млекопитающих. Действительно большими полушариями переднего мозга становятся только у птиц и млекопитающих. У последних они покрывают почти все другие отделы головного мозга.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Ствол мозга состоит из продолговатого мозга, варолиева моста, среднего и промежуточного мозга.

Продолговатый мозг является непосредственным продолжением спинного мозга и расширяясь, переходит в задний мозг. Он в основном сохраняет форму и строение спинного мозга. В толще продолговатого мозга расположены скопления серого вещества — ядра черепно-мозговых нервов. В состав заднего моста входят мозжечок и варолиев мост. Мозжечок расположен над продолговатым мозгом и имеет сложное строение. На поверхности полушарий мозжечка серое вещество образует кору, а внутри мозжечка — его ядра. Как и спинной продолговатый мозг выполняет две функции: рефлекторную и проводниковую. Однако рефлексы продолговатого мозга более сложные. Это выражается в важном значении в регуляции сердечной деятельности, состоянии сосудов, дыхания, потоотделения. В продолговатом мозге расположены центры всех этих функций. Здесь же находятся центры жевания, сосания, глотания, отделения слюны и желудочного сока. Несмотря на малую величину (2,5–3 см), продолговатый мозг представляет собой жизненно важный отдел ЦНС. Повреждение его может стать причиной смерти вследствие прекращения дыхания и деятельности сердца. Проводниковая функция продолговатого мозга и варолиева моста заключается в передаче импульсов из спинного мозга в головной и обратно.

В среднем мозге расположены первичные (подкорковые) центры зрения и слуха, которые осуществляют рефлекторные ориентировочные реакции на световые и звуковые раздражения. Эти реакции выражаются в различных движениях туловища, головы и глаз в сторону раздражителей. Средний мозг состоит из ножек мозга и четверохолмия. Средний мозг регулирует и распределяет тонус (напряжение) скелетных мышц.

Промежуточный мозг состоит из двух отделов — таламус и гипоталамус, каждый из которых состоит из большого числа ядер зрительных бугров и подбугровой области. Через зрительные бугры центростремительные импульсы передаются к коре больших полушарий от всех рецепторов тела. Ни один центростремительный импульс, откуда бы он ни шёл, не может пройти к коре, минуя зрительные бугры. Таким образом, через промежуточный мозг осуществляется связь всех рецепторов с корой больших полушарий. В подбугровой области расположены центры, оказывающие влияние на обмен веществ, терморегуляцию и железы внутренней секреции.

Мозжечок находится позади продолговатого мозга. Он состоит из серого и белого вещества. Однако в отличие от спинного мозга и ствола серое вещество — кора — находится на поверхности мозжечка, а белое вещество расположено внутри, под корой. Мозжечок координирует движения, делает их чёткими и плавными, играет важную роль в сохранении равновесия тела в пространстве, а также оказывает влияние на тонус мышц. При поражении мозжечка у человека наблюдается падение тонуса мышц, расстройство движений и изменение походки, замедляется речь и т.д. Однако через некоторое время движения и мышечный тонус восстанавливаются благодаря тому, что неповреждённые участки центральной нервной системы берут на себя функции мозжечка.

Большие полушария — наиболее крупный и развитый отдел головного мозга. У человека они образуют основную массу головного мозга и по всей своей поверхности покрыты корой. Серое вещество покрывает полушария снаружи и образует кору головного мозга. Кора полушарий человека имеет толщину от 2 до 4 мм и слагается из 6–8 слоёв, образованных 14–16 млрд. клеток, различных по форме, величине и выполняемым функциям. Под корой находится белое вещество. Оно состоит из нервных волокон, связывающих кору с расположенными ниже отделами центральной нервной системы и отдельные доли полушарий между собой.

Кора головного мозга имеет извилины, разделённые бороздами, которые значительно увеличивают её поверхность. Три самые глубокие борозды делят полушария на доли. В каждом полушарии различают четыре доли: лобную, теменную, височную, затылочную. Возбуждение разных рецепторов поступают в соответствующие воспринимающие участки коры, называемые зонами, и отсюда передаются к определённому органу, побуждая его к действию. В коре выделяют следующие зоны. Слуховая зона расположена в височной доле, воспринимает импульсы от слуховых рецепторов.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Зрительная зона лежит в затылочной области. Сюда поступают импульсы от рецепторов глаза.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Обонятельная зона находится на внутренней поверхности височной доли и связана с рецепторами носовой полости.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Чувствительно-двигательная зона расположена в лобной и теменной долях. В этой зоне находятся главные центры движения ног, туловища, рук, шеи, языка и губ. Здесь же лежит и центр речи.

сколько отделов мозга у позвоночных животных. Смотреть фото сколько отделов мозга у позвоночных животных. Смотреть картинку сколько отделов мозга у позвоночных животных. Картинка про сколько отделов мозга у позвоночных животных. Фото сколько отделов мозга у позвоночных животных

Полушария головного мозга — это высший отдел центральной нервной системы, контролирующий работу всех органов у млекопитающих. Значение больших полушарий у человека заключается ещё и в том, что они представляют собой материальную основу психической деятельности. И.П.Павлов показал, что в основе психической деятельности лежат физиологические процессы, происходящие в коре головного мозга. Мышление связано с деятельностью всей коры головного мозга, а не только с функцией отдельных её областей.

Регуляция деятельности дыхательной, сердечно-сосудистой, пищеварительной систем:

Кора больших полушарий

Источник

Головной мозг

Головной мозг (лат. Encephalon (заимствовано из греческого языка), др.-греч ἐγκέφαλος) — главный отдел центральной нервной системы (невраксису) всех позвоночных животных, в которых он содержится в «коробке» — черепе. Также мозг встречается во многих беспозвоночных животных с различным типом нервной системы. Процесс эволюционного формирования головного мозга называется «цефализация».

Мозг состоит из различных типов нейронов, которые формируют серое вещество мозга (кора и ядра). Их отростки (аксоны и дендриты) образуют белое вещество. Белая и серая вещества, а также нейроглия, формируют нервную ткань, из которой, в том числе, образованный и головной мозг. Нейроны мозга общаются между собой и с нейронами других отделов нервной системы благодаря универсальным нервным связям — синапсам.

Структуры мозга отвечают за выполнение самых разнообразных задач: от контроля витальных функций к высшей психической деятельности.

Эмбриогенез

Развитие мозга у беспозвоночных

Развитие ЦНС и ганглиев у беспозвоночных имеет некоторые сходные черты в позвоночных. Прежде всего нервная система у них есть производным эктодермы. Во-вторых, ЦНС образуется в результате миграции нейронов. Разница заключается в том, что у позвоночных эктодерма, из которой возникнет ЦНС, размещенная дорсально. Опыты на дрозофилах и Caenorhabditis elegans показали, что «нервная» эктодерма или размещена вентрально (дрозофила), или мигрирует с латеральной стороны к передней (C. elegans), а после погружается в толщу эмбриона. Следующая стадия — это формирование «мозга», то есть конгломерация нейронов в передней ганглий.

Развитие мозга у позвоночных

Формирование анатомических структур

Нервная система позвоночных является производной нервной пластинки, а она также является производной эктодермы. Впоследствии нервная пластинка превращается в нервную трубку. В середине трубки образуется такой же формы полость — невроцель. Именно в краниальном участке нервной трубки и развивается мозг. Однако, следует заметить, что мозговое утолщение присутствует еще в нервной пластинке. Нервная трубка состоит из слоев: вентральной, дорсальной и боковой. Латеральная пластинка по своей длине разделена межувальною бороздой (бороздой Гиса) на вентральнолатеральну (базальную) и дорсолатеральной (алярну (Крылову)) пластинки. Эти пластинки при дальнейшем развитии спостеригаюся в спинном мозге, продолговатом и среднем. С базальной пластинки образовываться моторные компоненты, из алярнои — чувствительные.

Первым этапом развития головного мозга появление передней складки мозга (лат. Plica ventralis encephali). Она делит имеющееся утолщение на два «регионы»: archencephalon, который размещен перед нотохордою и deuteroencephalon, который размещен позади нее. Следующая стадия развития — это стадия трех первичных пузырей: переднего мозга (лат. Prosencephalon), среднего мозга (лат. Mesencephalon) и ромбовидного мозга (лат. Rhombencephalon). Первый пузырь является производным archencephalon, другие два — deuteroencephalon. Стадия трех пузырей переходит в стадию пяти третичных: передний мозг делится на конечный мозг (лат. Telencephalon) и промежуточный мозг (лат. Diencephalon) ромбовидный мозг делится на задний (лат. metencephalon) и продолговатый (лат. myelencephalon seu medulla oblongata). Средний мозг не делится. В дальнейшем задний мозг дает начало мозжечке и моста (последний развивается только у млекопитающих). При развитии одни отделы мозга разрастаются быстрее других, что приводит к возникновению (у рептилий, птиц и млекопитающих) мозговых изгибов: мозгового, мостового (только у млекопитающих и шейного). Невроцель ромбовидного мозга превращается в четвертый желудочек, среднего — в водопровод (лат. Aqueductus), промежуточного — в третьей желудочек и конечного — в первый и второй желудочки.

Гистогенез и миграция нейронов

Головной мозг состоит из нейронов и глии и имеет схожие черты гистогенеза со спинным мозгом. Все клетки головного мозга происходят из нейробластов, вся цитоархитектоника должен сначала одинаковую для всей ЦНС трехслойное строение — краевой, мантийный и матричный слои.

Также в головном мозге происходят процессы миграции нейронов, которая бывает двух типов — радиального, когда нейроны направляются перпендикулярно желудочковой поверхности, и тангенциального, когда это движение является параллельным. Ярким примером этого является формирование неокортекса. Оно заключается в многоэтапной миграции нейронов. Сначала строение коры аналогична других отделов нервной системы и состоит из трех слоев. В дальнейшем в краевом слое возникает популяция специфических нейронов — клеток Кахаля-Ретциуса. Эти нейроны выделяют несколько контролирующих факторов, влияющих на миграцию нейронов. Важнейший из них релин. Под его действием будущие нейроны коры мигрируют с желудочковой участка до маргинального слоя, где формируют кортикальной пластинку. Эта пластинка в будущем станет VI слоем неокортекса. В дальнейшем слои формируют в порядке от V до II, то есть чем быстрее сформировался слой, тем глубже он расположен. Подобным образом формируются все отделы мозга, где есть послойная строение.

Ядра в головном мозге формируются в противоположную образом: сначала образуются более поверхностные слои, после — глубже.

Невромерна теория и генетические аспекты

В начале XX века сформировалась невромерна теория. Суть ее заключается в том, что первичные пузырьки в свою очередь состоят из меньших структур — невромеры. Образование каждого невромеры — это индивидуальная взаимодействие нескольких генов. Невромерна теория действительна для всех позвоночных. Топографически различают ромбомерах, то есть невромеры ромбовидного мозга, мезомеры (среднего) и прозомеры (переднего). Гены, которые участвуют в образовании различных отделов и невромеры называются гомеобокс-генами. Гомеобокс — это ген, регулирующего эмбриональное развитие. Существует много типов и классов гомеобокс, среди которых HOX-гены, POX-гены, engrailed-гены, Wnt-гены, Nkx-гены.

Гены и кодированные ими белки влияют не только на стадии мозговых пузырьков. Так, образование нервной пластинки невозможно без синтеза прехордальный мезодермой хордину. Он ингибирует остеоморфни протеины (BMP), которые не дают сформироваться пластинке. Роль остеоморфних белков не является только ингибирующим. Они синтезируются дорсальной пластинкой нервной трубки и способствуют формированию Крыловой пластинки. Вентральная пластинка синтезирует Shh, который отвечает за формирование базальной пластинки и глаз.

Следует отметить, что гомеобокс последовательность встречается не только у позвоночных, а и у беспозвоночных (например, у дрозофилы).

Клеточная организация головного мозга

Клеточный состав

У беспозвоночных в состав переднего ганглия входят только нейроны. Головной мозг позвоночных состоит с двух основных типов клеток: нервных (нейроны, или нейроциты) и клеток нейроглии.

Нейроны в различных отделах мозга имеют разную форму, поэтому нейронный состав головного мозга очень богат: пирамидные и непирамидни (зернистые, клетки-канделябры, корзины, веретенообразные) клетки коры головного мозга в мозжечке содержатся клетки Пуркинье, Лугар; клетки Гольджи I и II типов, которые можно найти в ядрах. Их функция — это восприятие, обработка и передача сигналов от и до различных частей тела.

Нейроглия делится на макроглии, епендимну глию и микроглию. Первые две глии есть общего с нейронами происхождения. Происхождение микроглии моноцитарная. Епендимна глия состоит из епендимиоцитив. Эти клетки выстилают желудочки головного мозга и участвуют в образовании гемато-энцефальный барьера (ГЭБ) и выработке спинно-мозговой жидкости. Макроглия состоит из астроцитов и олигодендроцитов. Эти клетки обеспечивают физическую опору для нейронов, участвующих в регуляции метаболизма, обеспечивают восстановительные процессы после повреждений. Астроциты входят в состав Гебу. Клетки микроглии выполняют фагоцитарную функцию.

Клетки мозга и их отростки формируют серую и белую вещества. Они названы так из-за характерный цвет, присущий им во время вскрытия. Серое вещество состоит из тел нейронов и представлена ​​корой и ядрами. Белое вещество образуется из миелинизированных отростков клеток. Именно миелин придает им белого цвета.

Цито- и миелоархитектоника

Во цитоархитектонику понимают топографию и взаимное расположение клеток, образующих слои и строение этих слоев. Область миелоархитектоника — отростки нервных клеток, которые формируют полоски. В головном мозге участками с послойной строением выступают кора (особенно неокортекс), пластинка крыши среднего мозга и мозжечок. Кроме них послойное строение имеют и ядра, расположенные в толще белого вещества головного мозга. Например послойного строения приведена цитоархитектоника неокортекса, которая является следующей:

Функциональной единицей коры мозга является мозговая колонка. Она представляет собой сегмент, в котором проходит кортико-кортикальные волокно.

Также с цитоархитектонику у человека и других исследованных животных связанные поля — функциональные зоны коры, связанные с выполнением определенной функции и имеют определенную клетку структурное строение.

Анатомия

Основные структуры

Продолговатый мозг

Продолговатый мозг является той частью мозга, которая в большой степени своему строению похожа на спинного мозга. Так, серое вещество продолговатого мозга оформлена в виде ядер, расположенных между пучками белого вещества. Белое вещество продолговатого мозга — это разнообразные восходящие и нисходящие пути, которые формируют такие образования как масла, пирамиды, луковицы-таламический путь, спинномозговую петлю. Ядра делятся на ядра черепных нервов и центры жизненно важных функций. Вдоль всего продолговатого мозга, и до промежуточного, размещена ретикулярная формация. Внутри продолговатого мозга расположен четвертый желудочек.

Мост (лат. Pons) имеющийся только у млекопитающих (хотя связи, похожие на мостовые, имеющиеся и у птиц). Состоит из покрышки и основания. В покрышке проходят волокна от коры до мозжечка и спинного мозга, размещенные мостовые ядра.В нем также содержатся ядра черепных нервов, собственные ядра и пневмотаксичний центр (часть дыхательного центра). Именно к мостовым ядер направляются волокна от коры и отходят волокна к контралатеральной половины мозжечка. Направляясь к мозжечка они пересекают срединную линию и объединяют две противоположные половины один образование, выполняя роль своеобразного «моста».

Мозжечок и мозочкоподибни структуры

Особого строения мозжечка у костистых рыб, в которых имеются особые для них образования (мозочкоподибна структура, которая называется продольным валиком, мозжечкового клапан, латеральное ядро ​​клапана).

В некоторых позвоночных кроме канонического мозжечке можно найти и так называемые мозочкоподибни структуры, имеющие подобную мозжечка структуру и выполняют сходные функции. К ним относятся продольный валик, мозжечкового гребень и доля латеральной линии. Подобную мозжечковой структуру имеют задние преддверии ядра, связанные с VIII парой черепных нервов.

Средний мозг

Сетчатое образование

Сетчатое образование (лат. Formatio reticularis) простирается вдоль всего ствола мозга (а также вдоль спинного мозга). У позвоночных оно выполняет важные функции: регуляция сна и внимания, мышечного тонуса, согласования движений головы и туловища, содружество выполнения действий, регуляция импульсов (их блокирования или наоборот), следующих в и из коры. У большинства позвоночных его пути тесно связаны с конечными анализаторами и являются главными путями контроля за телом; только у млекопитающих ретикулярные тракты уступают по важности кортикальным. Развитие различных структур ретикулярной формации изменчивый в пределах даже семьи, однако есть несколько общих для всех позвоночных рис. Так, в сетчатом образовании можно различить три клеточные столбы: латеральный парвоцелюлярний (малоклитинний), промежуточный магноцелюлярний (крупноклеточный) и медиальный столб шва. Первый столб — афферентный, другие два — эфферентные. Во-вторых, в состав ретикулярной формации входят различные группы нейронов — ядра. В бесчелюстных их различают четыре: нижнее, среднее и верхнее сетчатые ядра и середньомозкове сетчатое ядро. В остальных позвоночных это разделение сложнее (с каждым годом описываются новые участки, которые могут принадлежать к образованию):

Кроме этих ядер, на млекопитающих изучена участок, назвали промижномозковим сетчатым ядром, которое представляет собой тоненькую полоску нейронов в промежуточном мозге. До этого считалось, что в промежуточном можку сетчатой ​​формации нет. Пути сетчатой ​​формации делятся на два типа: восходящие афферентные и нисходящие эфферентные.

Промежуточный мозг

Несколько отличной является номенклатура промежуточного мозга у человека. Так, согласно последней анатомической номенклатурой различают пять частей: гипоталамус, субталамус, метаталамус, эпиталамус и собственно таламус.

Базальные ядра

Базальные ядра (для людей также используют название «основная часть конечного мозга» (лат. Pars basalis telencephali)) содержатся в толще белого вещества конечного мозга. Филогенетически и функционально различают две системы — стриарного и палидарну (вместе образуют стриопаллидарной систему). Они составляют основную часть базальный ядер. Различают вентральную и дорсальную стриопаллидарной комплексы. К переднему комплекса входят прилегающее ядро ​​и обонятельный бугорок (передний стриатум) и передней палидум. К заднему комплекса входят хвостатое ядро ​​с ограждением (задний стриатум) и бледный шар (задний палидум). К базальных ядер также часто относят миндалевидное ядро ​​(касается млекопитающих), черное вещество, иногда подталамическая ядро.

Кора головного мозга (плащ)

Кора головного мозга (лат. Cortex) является высшим центром нервной системы, который подчиняет остальные отделов ЦНС. Так как она покрывает полушария конечного мозга ее называют плащом (лат. Pallium). Топографически и генетически различают три отдела (или их гомологи), которые имеются у всех позвоночных (но с разной степенью развития, особенно это касается неокортекса): латеральный, медиальный и дорсальный плаще. Латеральный плащ — это обонятельная кора, медиальный — кора морского конька, дорсальная — это кора полушарий. Генетические опыты на животных показали существование четвертого отдела — переднего. На данный момент Инсуа и филогенетическая классификация коры (как подвергается сомнению), согласно которой существует древняя кора, или плащ, старая кора и новая кора (они несут ответственность медиальном, латеральном и дорсальном плащ). Новый плащ имеет шестишарову нейронную структуру (изокортекс), в то время как старый и древний — трехслойную нейронную структуру (алокортекс). Стоит отметить, что дорсальный плащ у всех позвоночных, но он не у всех животных покрытий неокортексом. У большинства млекопитающих, особенно у приматов, и, конечно, у человека, новый плащ настолько розризся, что для того, чтобы его вместить, мозг получил извилин. Они увеличивают площадь коры, при этом объем мозга вмещается в черепе. На поверхности полушарий можно различить основные извилины и являющиеся меняющимися или индивидуальными. Мозг с извилинами называется гиренцефальним, без извилин — лизенцефальним. Также неокортекс имеет функциональную топике: различают моторную кору, сенсорную, префронтальную и другие. У людей и и приматов, как уже было сказано, были исследованы определенные фукционального цитоархитектонични поля.

Лимбическая система

Медиальный плащ (в данном контексте понимается гипокапм, который она покрывает) имеющийся у всех позвоночных и повьязнаний прежде всего с обонянием. В низших позвоночных к нему также поступают волокна из дорсального таламуса. Однако, если говорить о млекопитающих, то гиппокамп, вместе с некоторыми другими структурами связанным не только с рецепцией, но еще и с рядом важных функций: памятью, мотивацией, запоминанием, эмоциями, сексуальным поведением. Система, которая отвечает за эти функции называется лимбической (от лат. Limbus — край). В нее входят следующие структуры: гиппокамп, миндалевидное ядро, соскоподобные тела, парагипокампальна, поясная и зубчатая извилины, прилегающее ядро, передняя группа таламических ядер.

Обонятельный мозг и обонятельная луковица

Обонятельный мозг (лат. Rhinencephalon) считается филогенетически старой частью конечного мозга. Кроме непосредственно восприятия и анализа информации связанной с обонянием, он также связан с некоторыми важными функциями, особенно с эмоциональным и сексуальным поведением (большинство животных ориентируются на обоняние, когда ищут партнера для продолжения рода). К обонятельного мозга входят следующие структуры: обонятельный нерв и обонятельная луковица, которые являются по сути периферическим продолжением мозга, обонятельные извилины, обонятельный треугольник, передняя пронизана вещество. С обонятельным мозгом связан латеральный плащ (палеокортекс).

Другие структуры мозга

В данном разделе перечислены структуры головного мозга, которые связаны с головным мозгом, необходимые для его нормального фукционування, однако, или имеют отличное с мозгом эмбриональное происхождение, или отличный клеточный состав:

Сравнительная анатомия

Животные без головного мозга

Образование головного мозга напрямую зависело от сложного развития нервной системы как регулятора поведения и гомеостаза. Самая нервная система — диффузная. Она представляет собой совокупность нейронов, которые равномерно расположены по телу и контактируют только с соседними нейронами. Главное ее назначение — воспринимать раздражитель (чувствительный нейрон) и передавать сигнал на мышечные клетки (мотонейрон). Головной мозг отсутствует, его роль локально выполняют ганглии. Такая нервная система характерна для кишечнополостных (Coelenterata).

Мозг беспозвоночных

В плоских червей (Platyhelminthes) уже имеется нервное утолщение в главной части — ганглий, выполняющий роль примитивного мозга, и от которого отходят нервные стволы (ортогоны). Развитие этого «мозга» колеблется в пределах самого типа, а то и отдельных классов. Так, в различных ресничных червей (Turbellaria) можно наблюдать низкий уровень развития нервной системы. У некоторых представителей этого класса парные церебральные ганглии маленькие, а нервная система подобна являющейся в кишечнополостных. В других плоских червей — ганглии развитые, стволы мощные. В ацеломорфив, которые являются отдельным, но очень близким по строению типу с плоскими червями, нейроны не образуют ганглий. В общем можно выделить три закономерности, которые ведут к усложнению нервной системы и последующей цефализации:

Во всех классах Плоских червей нервная система построена по лестничной типу. Однако, ее развитие лучший в свободноживущих видов. В паразитов (например, в поросят) нервная система в большой степени редуцирована.

В немертин (Nemertina) нервная система построена подобно, но с некоторыми осложнениями: две пары церебральных ганглиев (мозг состоит по сути из четырех частей) и нервные стволы, которые отходят от них. Одна из пар ганглиев размещена выше другой. В пределах типа случаются виды с примитивным развитием нервной системы (в них она размещена довольно поверхностно). В более развитых видов нервная система отвечает перечисленным выше трем пунктам.

В скребликив (Acanthocephala) имеющийся только один церебральный ганглий и тоненькие нервные стволы. Причина такого развития нервной системы — это то, что все черви этого типа являются паразитами. Подобное строение мозга и у коловраток (Rotifera), гнастомулид (Gnathostomulida), внутришньопорошицевих (Entoprocta) и черевовийчастих червей (Gastrotricha).

В круглых (Nemathelminthes) червей тоже имеются две пары церебральных ганглиев — надглоткови и пидглоткови. Они связаны между собой мощными комиссурами (нервные стволы, сочетает симметричные ганглии). Нервная система, однако, не имеет сильного отличия от аналогичного образования в предыдущее типов, и устроена по типу ортогона. Не происходит изменений в строении мозга у кольчатых червей (Annelida). Но кроме парных церебральных ганглиев, которые объединены комиссурами, и нервных стволов, в каждом сегменте имеется свой нервный узел.

У членистоногих (Arthropoda) мозг достигает высокого развития, но развитие тоже колеблется в пределах типа. В ракообразных (Crustacea) и насекомых (Insecta), особенно общественных, он достигает очень высокого развития. В типичную мозга членистоногих можно различить три части: протоцеребрум, который соединен с глазами, дейтероцеребрум, который является обонятельным центром и тритоцеребрум, который иннервирует ротовые конечности, отдает стоматогастрични нервы и сочетается с подглоточный ганглием. Такой мозг обеспечивает сложное поведение насекомых. У паукообразных (Arachnida) отсутствует дейтероцеребрум. В протоцеребруми содержатся «грибовидные тела», которое является высшим ассоциативным центром.

В первиннотрахейних (Onychophora) мозг также разделен на три отдела.

В моллюсков (Mollusca) происходит скопление нервных узлов. Особенно мощные эти скопления в головоногих (Cephalopoda), где они образуют окологлоточной нервную массу. Мозг этого класса является самым большим по размеру среди всех беспозвоночных. В нем можно различить белую и серую вещества. Головоногие также способны к достаточно сложного поведения, а именно образования условных рефлексов.

Хордовые: бесчерепные и оболочники

Хордовые объединяют бесчерепные или ланцетников (Cephalochordata), оболочников (Urochordata) и позвоночных (Vertebrata). Нервная система ланцетника представляет собой нервную трубку с каналом внутри. Спереди является расширение — мозговой пузырь; в этой области канал является широким и круглым, подобным желудочков мозга позвоночных. Узел состоит из двух частей: переднего пузырька и промежуточной участка (англ. Intercalated region) В середине пузыря имеется утолщение. Передний пузырек связан с ямкой Кьолликера (орган обоняния), от него отходят два нервы, которые обеспечивают чувствительной иннервацией ростральную участок тела ланцетника. С промежуточной участком связан орган Гессе — светочувствительный орган. В оболочников мозг отсутствует. Остается только его рудимент — ганглий.

Хордовые: позвоночные (Vertebrata)

Головной мозг позвоночных животных содержит в миллиарды больше нейронов, чем аналогичный образование беспозвоночных. Развитие мозга тесно связан с совершенствованием сенсорных систем и органов, которые лучше развиты именно у позвоночных животных. Также развитие мозга связан со все более сложной поведением живых существ. Вообще для всех позвоночных животных характерна именно такая «трехкомпонентную строение».

Типы головного мозга позвоночных

Различают четыре основные ветви позвоночных (в контексте эволюции): бесчелюстные, хрящевые рыбы, лучеперые рыбы и лопатопери (тетраподы относятся к этой ветви). В каждой из этих ветвей могут случаться два типа головного мозга. Первый тип головного мозга характеризуется слабой миграцией нейронов во время эмбрионального развития, поэтому большинство нейронов пластинкой размещены у желудочков. Такой тип мозга называется «ламинарным», или мозг типа I (так нейроны будто пластинкой размещены у желудочков). Второй тип характеризуется тем, что нейроны активно мигрируют. В результате мозг этого типа является большим в размерах. Мозг такого типа называется «сложным», или мозг типа II. Наличие или отсутствие миграции следует на размер головного мозга, топографию анатомических образований, но в целом модуль строения мозга, анатомические образования и функция мозга одинакова для всех позвоночных.

Отдел головного мозгаФункции
Продолговатый мозгПроводниковаяСвязь спинного и вышележащих отделов головного мозга.
Рефлекторная
ВеткаТип IТип II
Безщелепи (Agnatha)МиногиМиксины
Хрящевые рыбы (Chondrichthyes)Катранообразные, Акулеангелоподибни, химерообразныеРизнозуби акулы, Воббегонгоподибни, Ламноподибни, кархаринообразные, Скаты
Лучеперые (Actinopterygii)Багатопери, Хрящевые ганоиды, ПанцирникоподибниКостистые рыбы
Лопатопери (Sarcopterygii)Целаканты, двоякодышащая, АмфибииПресмыкающиеся, птицы, млекопитающие

Еще есть разделение на два типа по морфологическим признакам. У большинства позвоночных животных конечный мозг так называемого «вогнутого» типа; такой тип головного мозга характеризуется разрастанием полушарий над желудочками, то есть нервная ткань окружает полость желудочков. В лучеперые рыб размещения нервной ткани и полости нечто иное. Крыша желудочков у них образован сосудистой оболочкой. Такой тип конечного мозга называется «вывернутым». С ним связана еще одна особенность: гомолог медиального плаща у этих животных будет располагаться латерально.

Бесчелюстные (Agnatha)

Для бесчелюстных характерна типичная строение головного мозга, с тремя основными отделами. В продолговатом мозге содержатся важные жизненные центры. Имеющаяся ретикулярная формация и ее ядра, которых у круглоротых есть три. Желудочковая система развита у миног, но очень слабо развита в миксин. Мозжечок всех круглоротых имеется только у миног, но оказывается только гистологически и имеет вид валика серого вещества. Средний мозг слаборазвитый, в нем отсутствуют синее пятно, середньомозкове ядро ​​тройничного нерва, красное ядро, черное вещество (но присутствует задний бугорок). Во всех бесчелюстных, кроме миксин, имеющиеся полулунные валики. Присутствовавшими также зрительные доли. В промежуточном мозге стоит отметить наличие светочувствительного парапинеального органа в Эпиталамус. В миксин отсутствует эпифиз. В миног присутствует дорсальный таламус, но его ядра еще не идентифицированы; в миксин не описаны волокна талмуса, которая направляются среднего мозга. Самым отделом промежуточного мозга у миног есть гипофиз, который состоит из преоптической участка (характерная для всех позвоночных), переднего и заднего гипоталамуса. В миксин в преоптической участке содержатся четыре ядра. В миног имеющийся строй-палидарний комплекс, в миксин он еще не описан. Дорсальный плащ связан с восприятием обонятельной информации. В миксин к нему не идут волокна из промежуточного мозга (последние два утверждения подвергнуты сомнениям рядом исследователей, которые идентифицировали волокна, следующих из промежуточного мозга до конечного, а также участки в конечном мозга, которые связаны с другими типами информации).

Рыбы (Pisces)

Продолговатый мозг у рыб не претерпит значительных изменений в строении. Относительно мозжечка, то у хрящевых рыб он состоит из ушек и тела. Особенностью их мозга является зернистый слой, который скорее напоминает валик, именно поэтому его называют зернистым повышением (лат. Eminentia granularis). Таких валиков по два сверху и снизу и они обращены в полость четвертого желудочка. В лучеперые рыб гистологическое строение самого мозжечка варьирует между двумя вариантами: классическим трехслойным и несколько видоизмененным у некоторых видов, когда клетки Пуркинье размещены в клапане мозжечка в молекулярном слое, а зернистый слой образует повышение. Анатомически в таких рыб есть уникальные для них структуры, связанные с мозжечком: клапан мозжечка (лат. Valvula cerebelli), который состоит из внешнего и внутреннего листков, мозочокоподибна структура — продольный валик, дополнительное ядро — боковое ядро клапана, хвостатая доля, расположена вентрально по мозжечка. В среднем мозге из особенностей стоит отметить наличие полулунного валика, связанного с боковой линией. Появляется красное ядро. В лучеперые рыб отсутствует черное вещество. В хрящевых рыб она есть. Наличие синего пятна варьирует у разных видов. Также у всех рыб есть еще одна катехоловмисна участок — задний бугорок, который тесно связан с черным веществом, но относится к промежуточному мозгу. В Эпиталамус кроме эпифиза имеющийся париетальный орган. В лучеперые рыб гипоталамус разделен на передний и задний гипоталамус и содержит специфические ядра, характерные для них. Специфические образования в гипоталамусе содержатся и в хрящевых рыб (например, ядро ​​боковой доли, среднее ядро). Конечный мозг содержит три отдела плаща, но их топография зависит от того, к какому типу мозга принадлежит рыба — пластинчатого или «вывороченного». К дорсального плаща (не является покрытый неокортексом) подходят волокна из промежуточного (дорсального таламуса) мозга. От мозга отходят 10 пар черепных нервов. От мозга отходят десять пар «классических» черепных нервов, светочувствительный нерв в эпифизе, терминальный нерв и нервы боковой линии.

Амфибии (Amphibia)

Продолговатый мозг без изменений. Мозжечок, небольшого размера, состоит из тела и ушек. Для него характерна классическая трехслойная гистологическое строение. В среднем мозге, кроме стандартного набора ядер (синее пятно, красное ядро, середньомозкове ядро ​​тройничного нерва) имеющийся задний бугорок и полулунный валик. Отсутствует черное вещество. Эпиталамус состоит из эпифиза и светочувствительного фронтального органа. В дорсальном таламусе имеются три ядра — переднее, среднее и заднее. Гипоталамус связан с гипофизом и преоптической участком. Плащ конечного мозга состоит из медиального, латерального и дорсального отделов. К дорсального плаща подходят волокна из таламуса. Также экспериментально доказано на лягушках существования переднего плаща. Имеющиеся компоненты строй-палидарнои системы.

Рептилии (Reptilia)

Продолговатый мозг своей структуре не отличаются от такой же структуры у амфибий. Развитие мозжечка у рептилий является лучшим, кроме того отличная форма тела: в черепах тело плоское, в аллигаторов изогнутое, а у ящериц изогнутое и с противоположным расположением слоев, когда зернистый слой является внешним слоем. В среднем мозге содержится синее пятно, красное ядро, середньомозкове ядро ​​тройничного нерва, появляется черное вещество, однако исчезает ее гомолог — задний бугорок. Как и у всех позвоночных имеется полулунный валик, однако теперь он связан только со слуховыми раздражениями. В промежуточном мозге у ящериц и гатер встречается теменной (париетальные) глаз. В дорсальном таламусе содержится большое количество ядер (практически у рептилий, птиц и млекопитающих можно найти те же группы, или их гомологи; единственное, что их ризнитиме — разная номенклатура относительно этих классов животных), к которым приходят восходящие пути. Наиболее выдающейся участком, получает сигнал от среднего мозга является круглое ядро. Конечный мозг состоит из стриато-палидарного комплекса (переднего и заднего строй-палидарних комплексов) и верхней (бокового, медиального и заднего), который в каждом отделе есть трехслойной по строению. Особенностью дорсального плаща у рептилий (и у птиц) является наличие специфического региона с большим количеством ядер и ламинарным строением — заднего желудочкового валика (англ. Dorsal ventricular ridge). Он делится у рептилий на передней, к которому направляются волокна из таламуса, и заднего, к которому подходят волокна с передней части валика и, связанного с органом Якобсона, сферического ядра. Поэтому, задний плащ у рептилий является двухкомпонентным: состоит из этого валика и коры заднего плаща.

Птицы (Aves)

Очень хорошего развития достигает мозжечок, тело которого содержит десять складок. Кроме того, многие исследователи считают, что в мозжечка птиц допустимо употреблять термин «новый мозжечок» (то есть часть мозжечка, связанная с координацией сложных движений). Ретикулярная формация содержит такие же ядра, как и всех остальных позвоночных (кроме бесчелюстных). Для среднего мозга также характерно наличие всех типичных для амниоты структур: черного вещества, красного ядра, синего пятна, полулунного валика. В таламусе содержится большое количество ядер, характерных для амниоты. Конечный мозг является сложным по строению, подобным конечного мозга пресмыкающихся. Строй-палидарний комплекс делится на передний и задний. В свою очередь задний стриатум делится на боковой и при средней. Плащ состоит из латерального, медиального и двух компонентов, формирующих дорсальный плащ, плащей. Эти два компонента — это имеющийся также у рептилий задний желудочковый валик и гиперпалиум. Валик у птиц делится на нидопалиум, мезопалиум и аркопалиум. Гиперпалиум (другое название Wulst) связан с восприятием чувствительной информации, а также от него начинаются нисходящие пути к нижележащих отделов ЦНС.

Млекопитающие (Mammalia)

Мощного развития получает мозжечок, у которого кроме ушек (клочка) и тела возникают полушария мозжечка. И тело, и полушария покрыты складками. В среднем мозге оптические частицы и полулунные валики называются соответственно верхней и нижней бугорками. Они тесно связаны с боковыми (касается верхних бугорков) и медиального (касается нижних бугорков) коленчатыми телами; сами коленчатые тела является составной промежуточного мозга — метаталамус (считается разными исследователями, или отдельной составляющей промежуточного мозга, или частью переднего). В дорсальном таламусе также содержится большое количество ядер коленчатый, передняя, ​​задняя, ​​боковая и медиальных (вместе составляют передне группу), ретикулярная и другие. В переднем таламусе (именно в субталамуса) также содержатся ядерные группы: неопределенная зона, подталамическая ядро, поле Фореля. Базальные ядра включают в себя строй-палидарний комплекс, мигдалепобине ядро ​​и ядро ​​Мейнерт. Плащ состоит из медиального и бокового плащей (трехслойная цитоархитектоника) и нового плаща, покрытого неокортексом (шестишарова цитоархитектоника). Одной из важных черт мозга млекопитающих является возникновение извилин. Некоторые извилины являются специфическими для определенных животных, но большинство являются общими для всех гиренцефальних млекопитающих (например, постцентральной извилины, прецентральной извилина, верхняя височная). Также в мозге млекопитающих можно различить частицы — лобную, теменную, височную, затылочную, островок, а также лимбическую долю. У зверей имеется мозолистое тело, которое является содержит волокна одной половины мозга к другой.

Функции

Соматосенсорная система

Основные понятия и кооперация отделов

Из-за чувства каждое живое существо получает информацию об окружающем и внутренний миры. Мозг является тем центром, который анализирует эту информацию и превращает ее в действие.

Первоначально информация о раздражитель поступает с периферии — с рецепторов, далее по нервам, ганглиях и тогда в ЦНС. В ЦНС восходящими путями информация поступает по очереди к все выше расположенных отделов. Главными такими «центрами» является промежуточный и конечный мозг. Именно к таламуса, как к «реле», направляются большинство (кроме обоняния) видов чувствительности; из ядер таламуса волокна путей направляются в дорсального плаща и в определенной степени к базальных ядер. Кора дорсального (и в меньшей степени других плащей) плаща является высшим центром анализа чувствительной информации. Кроме конечного и промежуточного мозга важную роль для сенсорной системы играет средний мозг, через который следуют важные зрительные (к примеру, ретино- тектонически таламофугальний путь в лучеперые проходит через средний мозг и является по своей сути главным зрительным нервным путем), слуховые волокна и волокна от боковой линии.

Таким образом вся сенсорная система, при посредничестве путей, связаны между собой. К примеру, в продолговатом мозге (и спинном) имеются чувствительные ядра, которые первыми в ЦНС воспринимают информацию; дальше она идет к таламуса; параллельно таламуса поступают пути среднего мозга спустя волокна направляются к конечному мозгу.

Таламус и конечный мозг могут быть разделены на две части, это зависит от того, откуда они получают информацию: лемноталамус и лемнопалиум, связанные с восходящими волокнами из спинного мозга и ядер тройничного нерва (от лат. Lemniscus — петля, поскольку такие пути образованы различными видами петель — при среднем, тройничного, боковой и спинномозговой) и колоталамус с колопалиумом, связанные с волокнами, идущими от среднего мозга (от лат. colliculus — бугорок (бугорки среднего мозга)). Такой тип построения характерен для всех, за исключением небольшой модификации в лучеперые рыб, позвоночных животных.

Соматосенсорная система в различных позвоночных

Лучше исследована сенсорная система у млекопитающих. В конечном мозга у них имеется соматосенсорная кора (S1), которая является высшим центром анализа тактильной и болевой чувствительности. Относительно границ и формы этого участка то у разных млекопитающих она расположена и устроена различно: у людей она ограничена зацентральною извилиной, у утконоса занимает огромный участок коры. Также для этого участка характерна соматотопической специализация, то есть определенная ее участок анализирует информацию от определенной части тела. По птиц и рептилий, то кора их дорсального плаща является в определенной степени гомологом такой же коры у млекопитающих, однако четких чувствительных участков в них найти еще не удалось (разве что некоторые данные о регионах, отвечающих за анализ чувствительности лица у птиц). Тоже самое касается амфибий и рыб: у амфибий волокна достигают конечного мозга, но четкой участки не образуют. В лучеперые, лопатоперих и бесчелюстных также найдены волокна, направляющиеся к конечному мозгу и которые, как и в случае с амфибиями, не образуют четких соматосенсорных участков в коре.

Кроме коры соматотопической организация наблюдается и в низших отделах ЦНС. Так, спинномозговое ядро ​​тройничного нерва у человека состоит из трех частей, которые отвечают за разные участки лица. В Condylura cristata главное ядро тройничного нерва разделено на одиннадцать участков в соответствии с одиннадцати рецепторных полей рыла.

Моторная система

Моторная система предназначена для ответа на раздражение. Она обеспечивает реакцию и поведение живого существа. Если говорить о млекопитающих, то по соматосенсорная система, соматомоторным имеет определенный участок в коре головного мозга. Таких участков несколько. Для приматов и человека основной моторной участком является прецентральной извилина. Кроме того, в зависимости от вида, могут присутствовать дополнительные участки — дополнительная моторная участок, передняя премоорна участок. Стоит сказать, что для прецентральной извилины также характерна соматотопика примеру зацентральнои извилины. От коры направляются кортико-спинальные и кортико-бульбарные пути (в копытные своеобразный для них путь — пучок Бегли, следующий ипсилатерально, а не контрлатерально, как кортико-бульбарный путь).

По птиц, то аналогом моторной участка в них могут выступать височно-теменно-затылочной области и определенные дилинкы гиперпалиума. Пути от них выполняют аналогичные функции кортико-спинальных и кортико-бульбарных путей млекопитающих. У птиц имеется еще один важный путь — затылочно-середньомозковий, который по сути является гомологом пучка Бэгли.

По анамниотив, то их моторная система еще требует пристального изучения. Определены волокна в пластинке кровли, волокна от ретикулярной формации, вестибулярных ядер, которые направляются в спинного мозга. По моторных участков в конечном мозга, то этот вопрос требует более детального изучения.

Гомеостаз и эндокринология

Каждое живое существо имеет определенный набор физиологических и биохимических показателей, обеспечивающих ее нормальную жизнедеятельность. Под влиянием окружающей среды и изменений внутри самого организма эти показатели меняют свое значение. Если они меняются слишком сильно, существо может погибнуть. Под гомеостазом (уместен термин — гомеокинез) и понимают способность организма поддерживать постоянство этих показателей.

В контексте мозга важнейшим участком, контролирует многие висцеральных функций, а следовательно и поддерживает гомеостаз, является гипоталамус. В самом гипоталамусе находятся группы ядер, выделяют активные гормоны; он также анатомически совмещенный с гипофизом, который выделяет еще большее количество гормонов. Связь гипофиза и гипоталамуса не только анатомический, но и функционально-биохимический: гипоталамус выделяет рилизинг-факторы, которые венозной сеткой (а у костных рыб и миног — благодаря диффузии) попадают в гипофиза и стимулируют или подавляют выделение тропного гормона. Тропных гормон действует на ткань-мишень, в которой выделяется гормон, непосредственно выполняет биологическую функцию (например, адреналин, якйы ускоряет сердцебиение и сужает сосуды). Кроме этого прямой связи, существует обратные связи, контролирующие адекватное выделение гормонов: при увеличении количества гормона уменьшается количество тропного гормона и увеличивается количество статина; при уменьшении гормона — увеличивается количество тропного гормона и либеринов.

В гипоталамусе находятся ядра, которые не связаны с продукцией гормонов, а с приветственными фукции и поддержкой определенных показателей гомеостаза. Так, у теплокровных животных в гипоталамусе находятся переднее и заднее ядра, которые регулируют температуру тела (переднее отвечает за теплоотдачу, заднее — теплопродукции). Задне- и передньомедиальни ядра отвечают за пищевое поведение, агрессию.

В продолговатом мозге содержатся важные центры — дыхательный, глотания, слюноотделения, рвота, сердечно-сосудистый центр. Поражение этих образований завершается смертью существа.

Еще одним отделом, который влияет в определенной степени влияет на гомеостаз является эпифиз. Он через мелатонин и серотонин влияет на циркадные ритмы, влияет на созревание организма.

Сон и активность

Сон характерно практически для всех живых существ. Приведенные данные о том, что подобные сна состояния существуют у дрозофил и C. elegans. Мало изученным (как и его распространенность) является сон рыб и амфибий. Для рептилий, птиц и млекопитающих сон является обязательным периодом жизни.

Нейрофизиология сна лучше изучена для птиц и млекопитающих и является одинаковой для этих классов. Во сне розризняюь две фазы — фазы быстрого и медленного сна. Для первой стадии характерны низкий вольтаж и высокая частота; для второй стадии — высокий вольтаж и низкая частота. Во время быстрого сна человек может видеть сны. Считается, что быстрый сон характерно только для амниоты (в том числе и рептилий).

Природа сна не изучена до конца. Однако, изучены определенные структуры головного мозга, связанные со сном и бодростью. Так, на сон влияют гомеостаз и циркадные ритмы. Гипоталамус является основным регулятором гомеостаза, поэтому влияет и на сон. Супрахиазмальне ядро ​​гипоталамуса является одним из основных контролеров циркадных ритмов. Гомеостаз и циркадные ритмы в своей взаимодействий регулируют сон: суточная активность регулируется циркадных ритмов, при этом, например, во время сна меняются показатели давления, сердцебиение). Важным участком, которая выступает триггером сна, является преоптическая участок. При ее разрушении у животных, последние теряли способность к засыпанию. Разрушение заднего гипоталамуса приводит к чрезмерному сна.

Еще одной важной системой, которая регулирует импульсы, поступающие в кору и гипоталамуса, есть сетчатое образование. Важнейшими ядрами является синее пятно, оральное мостовое ядро, нижкомостове ядро. Также считается, что у млекопитающих активность этих ядер регулирует таламического сетчатое ядро.

Вокализация и язык

Все млекопитающие, птицы, большинство рептилий и некоторые амфибий способны издавать звуки, с помощью которых они могут общаться с себе подобными, защищать территорию, находить сексуального партнера. У человека эта способность является необходимостью для полной интеграции в социум и развилась настолько, что превратилась в язык.

Когда говорят о языке сперва понимают способность говорить, то есть устную речь. У людей центр речи расположен в задней трети нижней лобной извилины доминантного полушария — это центр Брока. Также человек способен к пониманию и обучение из услышанного — это обеспечивает центр Вернике. Также, к образованию языка приобщаюсь дополнительная моторная область; дальше их аксоны направляются к моторным ядер V, VII, XII и двойного ядра и собственно влияют на артикуляцию. Другой важный путь, который включает в себя и эмоциональную составляющую языка, следует от коры поясной извилины к серого вещества вокруг водопровода в среднем мозге. Это центр является важнейшим центром вещания для большинства млекопитающих. У человека он связан с продолговатым мозгом, с путями к дыхательных мышц и таким образом привлекает дыхания в речи. Для других млекопитающих главными выдаче звуков есть дополнительная моторная участок, поясная извилина и выше названная серое вещество вокруг водопровода.

У птиц участком в конечном мозга, отвечающий за звукообразования является верхней вокальный центр (в некоторых попугаев роль HVC выполняют другие специфические образования). HVC связан со слуховой системой. Волокна от HVC направляются к участку X и твердого ядра. К твердого ядра также подходят волокна непосредственно от участка X. В дальнейшем волокна направляются к двум мишеней — части ядра XII нерва (XIIst), которое отвечает за сиринкс и к дыхательного центра. В папугай эта система усложнена специфическими творениями, но схема его построения является типичной. В непоющие птиц вокально-респираторный путь значительно упрощен — волокна от заднего нидопалиума направляются в аркопалиума, а оттуда к ядрам в продолговатом мозге.

Некоторые лягушки также способны к выдаче звуков. Волокна, которые контролируют звукообразования начинаются в переднем стриатуме. Они направляются в продолговатого мозга, в передтрийчастого ядра (или передтрийчастои участка; номенклатура отличается у разных видов), а дальше к моторным ядер черепных нервов. Некоторые волокна направляются также от преоптической участка.

Эволюция

Различные теории и их критика

Одна из первых теорий, объясняющий эволюционное развитие головного мозга, принадлежит Чарльзу Джадсон Херрик. Он считал, что мозг предшественников позвоночных был слабо разделен на отделы. В течение своего исторического развития мозг в дальнейших позвоночных становился все сложнее по строению. Такая теория идеально вписывалась в контекст scala naturae и поэтому на долгое время стала определяющей.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *