с н оленев развивающийся мозг
Глава 1 РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА
РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА
ФОРМИРОВАНИЕ МОЗГА ОТ МОМЕНТА ОПЛОДОТВОРЕНИЯ ДО РОЖДЕНИЯ
После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой – эктодерма, внутренний – эндодерма и между ними – мезодерма. Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.
В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.
В следующие 10–20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки мозговых структур, который заканчивается только с наступлением половозрелости (рис. 1.2). Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.
Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг – в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.
В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы. Их парные части имеют в своем составе передние рога, которые находятся в лобных долях, задние рога, находящиеся в затылочных долях, и нижние рога, расположенные в височных долях. Боковые желудочки соединяются с полостью промежуточного мозга, которая является III желудочком. Через специальный проток (сильвиев водопровод) III желудочек соединяется с IV желудочком; IV желудочек образует полость заднего мозга и переходит в спинномозговой канал. На боковых стенках IV желудочка находятся отверстия Люшки, а на верхней стенке – отверстие Мажанди. Благодаря этим отверстиям полость желудочков сообщается с подпаутинным пространством. Жидкость, заполняющая желудочки головного мозга, называется эндолимфой и образуется из крови. Процесс образования эндолимфы протекает в специальных сплетениях кровеносных сосудов, (они называются хороидальными сплетениями). Такие сплетения находятся в полостях III и IV мозговых желудочков.
Сосуды головного мозга. Головной мозг человека очень интенсивно снабжается кровью. Это связано, прежде всего, с тем, что нервная ткань одна из наиболее работоспособных в нашем организме. Даже ночью, когда мы отдыхаем от дневной работы, наш мозг продолжает интенсивно работать (подробнее см. раздел «Активирующие системы мозга»). Кровоснабжение головного мозга происходит по следующей схеме. Головной мозг снабжается кровью по двум парам основных кровеносных сосудов: общим сонным артериям, которые проходят в области шеи и их пульсация легко прощупывается, и паре позвоночных артерий, заключенных в латеральных частях позвоночного столба (см. приложение 2). После того как позвоночные артерии покидают шейный последний позвонок, они сливаются в одну базальную артерию, которая проходит в специальной ложбине на основании моста. На основании мозга в результате слияния перечисленных артерий образуется кольцевой кровеносный сосуд. От него кровеносные сосуды (артерии) веерообразно охватывают весь мозг, включая большие полушария.
Венозная кровь собирается в специальные лакуны и покидает пределы головного мозга по яремным венам. Кровеносные сосуды головного мозга вмонтированы в мягкую мозговую оболочку. Сосуды многократно ветвятся и в виде тонких капилляров проникают в мозговую ткань.
Головной мозг человека надежно защищен от проникновения инфекций так называемым гематоэнцефалическим барьером. Этот барьер формируется уже в первую треть срока беременности и включает в себя три мозговые оболочки (самая внешняя – твердая, затем паутинная и мягкая, которая прилежит к поверхности мозга, в ней находятся кровеносные сосуды) и стенки кровеносных капилляров мозга. Другой составляющей частью этого барьера являются глобальные оболочки вокруг кровеносных сосудов, образованные отростками клеток глии. Отдельные мембраны клеток глии тесно прилегают друг к другу, создавая щелевые контакты между собой.
В головном мозге есть участки, где гематоэнцефалический барьер отсутствует. Это район гипоталамуса, полость III желудочка (субфорникальный орган) и полость IV желудочка (area postrema). Здесь стенки кровеносных сосудов имеют специальные места (так называемый фенестрированный, т.е. продырявленный, эпителий сосудов), в которых из нейронов головного мозга в кровеносное русло выбрасываются гормоны и их предшественники. Подробнее эти процессы будут рассмотрены в гл. 5.
Таким образом, с момента зачатия (слияние яйцеклетки со сперматозоидом) начинается развитие ребенка. За это время, которое занимает почти два десятка лет, развитие человека проходит несколько этапов (табл. 1.1).
Вопросы
1. Этапы развития центральной нервной системы человека.
2. Периоды развития нервной системы ребенка.
3. Что составляет гематоэнцефалический барьер?
4. Из какой части нервной трубки развиваются сенсорные и моторные элементы центральной нервной системы?
5. Схема кровоснабжения головного мозга.
Литература
Коновалов А. Н., Блинков С. М., Пуцило М. В. Атлас нейрохирургической анатомии. М., 1990.
Моренков Э. Д. Морфология мозга человека. М.: Изд-во Моск. ун-та, 1978.
Оленев С. Н. Развивающийся мозг. Л., 1979.
Савельев С. Д. Стереоскопический атлас мозга человека. М.: Area XVII, 1996.
Шаде Дж., Форд П. Основы неврологии. М., 1976.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
§ 3. Функциональная организация нервной системы
§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного
§ 5. Энергетические расходы нервной системы
§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью
§ 24. Эволюция ганглиозной нервной системы
§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае
§ 26. Происхождение нервной системы хордовых
§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых — трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать
8.2. Эволюция нервной системы
8.2. Эволюция нервной системы Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их
1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ
1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их
Нейробиологический подход к исследованию нервной системы человека
Нейробиологический подход к исследованию нервной системы человека В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том,
МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ
МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с
Глава 7 ВЫСШИЕ ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ
Глава 7 ВЫСШИЕ ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ Общепризнано, что нервная высшая деятельность человека и животных обеспечивается целым комплексом совместно работающих мозговых структур, каждая из которых вносит в этот процесс свой специфический вклад. Это означает, что нервная
Исследования нервной системы
Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях
Типы нервной системы
Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к
Направления эволюции нервной системы
Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей
Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ
Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ Известно, что центральная нервная система играет ведущую роль как высший интегрирующий орган и ее функциональное состояние имеет решающее значение для общего состояния живых организмов.
Заболевания нервной системы
Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30—60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при
Исследование нервной системы
Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие
8 Болезни нервной системы
8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая
С н оленев развивающийся мозг
Учебное пособие для студентов вузов
Почему нужно знать физиологию головного мозга психологу?
Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.
Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).
Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto – отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга – излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?
Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.
И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».
Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры – больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность: предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов – вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т.е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.
Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.
Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т.е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др., подробнее см. далее) некоторых характеристик психических функций – восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки – психофизиологии. Это обусловило взаимопроникновение двух областей знаний – психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр. Какие же подходы к исследованию физиологии головного мозга человека привели ученых к современной сумме знаний?
Эмбриональное развитие нервной системы позвоночных
Раннее развитие
Авторы
Нервная система всех позвоночных, включая человека, развивается из элементов наружного зародышевого листка – эктодермы. Этот процесс имеет определенные особенности у представителей разных групп, однако ему свойственны и общие для всех позвоночных закономерности.
В период гаструляции у высших позвоночных (у человека это конец 1-й недели развития и совпадает с имплантацией в стенку матки) происходят активные перемещения клеточного материала зародыша. В первой фазе гаструляции образуются два эмбриональных зародышевых листка – эпибласт (верхний листок) и гипобласт (нижний). Клетки эпибласта постепенно расходятся, образуя заполненную жидкостью амниотическую полость. Во второй фазе гаструляции небольшая группа клеток эпибласта, сформировавшая в дне амниотической полости зародышевый щиток, образует первичную полоску и гензеновский узелок. Последующая миграция клеток этих структур вглубь зародыша приводит к формированию среднего листка зародыша – мезодермы. Гаструляция завершается у всех позвоночных образованием трех зародышевых листков: эктодермы, мезодермы и энтодермы, а также формированием осевого комплекса зачатков органов. Особое значение на этом этапе развития принадлежит т.н. головному отростку (нотохорду), формирующемуся из мигрирующих клеток гензеновского узелка. К концу гаструляции формируются и все основные, соответствующие разным группам животных провизорные органы (желточный мешок, амнион, аллантоис, хорион, плацента), выполняющие защитные и питательные функции для эмбриона. Их число в ходе эволюции увеличивается. У человека гаструляция завершается к третьей недели внутриутробного развития.
Головной отросток дает начало развитию нотохорды – оси будущего зародыша. Клетки нотохорды и формирующейся затем хорды оказывают индуцирующее влияние на дифференцировку прилежащего к ним участка эктодермы в нервную пластинку и далее в нервную трубку (рис. 1). Как только развивается нотохорд, расположенная над ним эктодерма начинает утолщаться и формирует нервную пластинку, элементы которой интенсивно размножаются и дифференцируются, превращаясь в узкие цилиндрические нейроэпителиальные клетки, отличные от соседних клеток покровного эпителия. Основной причиной формирования нервной пластинки и замыкания ее в нервную трубку является преобразование нейроэпителиальных клеток, связанное с изменением ориентации компонентов их актинового цитоскелета. В результате интенсивного деления и неравномерного роста нейроэпителия происходит его инвагинация с последующим формированием нервной трубки.
Эмбриональное развитие ЦНС у млекопитающих и человека обычно разделяют на: эмбриональный (первые 6 недель), фетальный (с 6 до 24 недели) и перинатальный периоды (с 24 недели до рождения) (табл. 1).
Стадия развития | Возраст плода (недели) | Основные морфологические изменения в развитии мозга |
Эмбриональный период | ||
Формирование и разделение герминативного слоя | 2 | Нейрональная пластинка |
Дорсальная индукция: первичная нейруляция | 3–4 | Формирование: нервной трубки, нервного гребня и ее производных; закрытие рострального и каудального нейропоров; парных крыловидных пластинок |
Вентральная индукция: теленцефализация | 4–6 | Развитие конечного мозга и структур лица; формирование мозговых пузырей; развитие оптических и обонятельных плакод; появление зачатков ромбовидного мозга и мозжечка |
Фетальный период | ||
Нейрональная и глиальная пролиферация | 6–16 | Пролиферация клеток в вентрикулярной и субвентрикулярной зонах формирующихся отделов мозга, включая неокортекс; ранняя дифференциация нейробластов и глиобластов; процессы апоптоза; миграции клеток в стенке мозга |
Миграция | 12–24 | Миграция нейронов в формирующиеся отделы мозга; формирование мозолистого тела полушарий и других проекционных путей ЦНС |
Перинатальный период | ||
Регионализация | 24 – до рождения | Завершение процессов миграции и формирование основных отделов мозга; синаптогенез; созревание популяций нейронов и глиальных клеток |
Миелинизация | 24 – до 2х лет после рождения | Окончательное созревание морфологической структуры мозга; миелинизация основных трактов и связей; активное функциональное развитие важнейших отделов головного мозга (особенно ассоциативных областей полушарий) |
Содержание
Рис. 1. Схема ранней стадии развития зародыша человека (формирование головного отростка – нотохорды).
1 – головной отросток; 2 – эктодерма, 3 – первичная полоска, 4 – первичная ямка, 5 – энтодерма, 6 – формирующийся аллантоис, 7 – прехордальная пластинка, 8 – полость желточного мешка, 9 – амниотическая полость (по: Данилов, Боровая, 2016, с изменениями)
Рис. 3. Первичная индукция формирования нейроэпителия будущей нервной пластинки (по: Development of Nervous System, 2006, с изменениями).
Chd – хордин, Ng – ноггин, IMZ – эмбриональная мезодерма, BPM4 – костный морфогенетический белок, TGFr – рецептор к фактору роста опухолей
Рис. 4. Участие ряда сигнальных молекул, транскрипционных факторов и ростовых факторов в формировании нервной пластинки и нервной трубки на ранних этапах эмбриогенеза нервной системы (по: Development of Nervous System, 2006, с изменениями).
СH – хордин, NG – ноггин, FS – фоллистатин, Shh – sonic hedgehog, BMP – костный морфогенетический белок, FGF – фактор роста фибробластов, TGF – фактор роста опухолей, Pax3, 4, 6 – транскрипционные факторы, S – мезодермальные сомиты, NC – нервный гребень
Эмбриональный период (1–23 стадии по Carnegie)
В этот период развития на дорсальной стороне зародыша происходит обособление особого участка нейроэпителия и формирование нервной пластинки (neuronal plate) и начинаются процессы нейруляции.
На стадии нейруляции происходит формирование нескольких важных структур нервной системы: образуется нервная пластинка с последующим образованием нервной трубки и нервного гребня (рис. 2). Нейруляция у человека начинается в конце 3-й недели и полностью завершается к концу 4-й недели.
Вскоре после образования нервной пластинки (приблизительно на 18-е сутки у человека) она прогибается вдоль продольной оси, ее края приподнимаются и формируются нервный желобок и нервные валики. Позднее края нервных валиков смыкаются по срединной линии и образуется замкнутая нервная трубка. Краниальный и каудальный участки нервной трубки долго остаются незамкнутыми, их называют соответственно передним и задним нейропорами. Передний нейропор закрывается на 23–26-й день развития, а задний – на 26–30-й день.
Процесс нейрональной индукции связан с синтезом ряда биологически активных соединений, которые действуют на формирование нервной пластинки и нервной трубки. На клетки первичной эктодермы действует большое количество сигнальных молекул, индуцирующих процесс образования нейроэпителия и нейрональных стволовых клеток, из которых будут формироваться все элементы нервной ткани. Среди этих факторов необходимо отметить хордин (chordin), ноггин (noggin) и фоллистатин (follistatin), синтезируемые клетками первичной мезодермы, образующей нотохорду (будущая хорда и позвоночник). Они блокируют действие другого морфо-генетического фактора – BMP (bone morphogenetic protein), синтезируемого клетками эктодермы и индуцируют их дифференцировку в направлении образования нейроэпителия нервной пластинки (рис. 3).
Уже на ранних этапах развития зародыша нервная трубка на значительном протяжении разделяется проходящей по вентрикулярной поверхности пограничной бороздой, sulcus limitans, на два отдела: дорсальный – крыловидную пластинку, и вентральный – базальную пластинку. Участки мозга, развивающиеся из крыловидной пластинки, содержат ассоциативные и сенсорные ядра, из базальной – моторные и вегетативные. Самая ростральная часть (prosencephalon) не содержит базальной пластинки и целиком происходит из крыловидной. Отделы головного мозга, содержащие производные обеих пластинок – средний, задний, продолговатый – часто объединяют названием «ствол мозга».
На этапе формирования нервных желобков дифференцировку вентральной части нервной трубки (базальной пластинки) и развитие мотонейронов оказывает регулирующее влияние фактор Shh (sonic hedgehog) секретируемый сначала нотохордой, а затем хордой и вентральной частью самой нервной трубки. Дорсальную часть нервной трубки (крыловидную пластинку) контролируют морфогенетические белки BMP4 и MBP7, секретируемые клетками эктодермы, и ряд других ростовых и транскрипционных факторов: Pax 3, 4, 6 – транскрипционные факторы, FGF8 – фактор роста фибробластов, GDNF – нейротрофический фактор глии, BDNF, NT3,4 – нейротрофические факторы мозга и др. (рис. 4).
Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:
Вентрикулярная (VZ) зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные или иначе матричные клетки являются по сути нейрональными стволовыми клетками, т.е. предшественниками нейронов и клеток макроглии. Субвентрикулярная зона (SVZ) состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток. Промежуточная (плащевая или мантийная) зона (PZ) состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон – это зона активной миграции и дифференцировки молодых нейронов (нейробластов) и глии (глиобластов). Наружная (маргинальная MZ) зона содержит нервные волокна и отростки находящихся ниже нейронов. Нейробласты достигают мест своего окончательного расположения в структурах ЦНС; утрачивают способность к делению и в дальнейшем дифференцируются в зрелые нейроны. Глиобласты продолжают делиться и дают начало новым популяциям глиальных клеток: астроцитам и олигодендроцитам.
Образование нервного гребня
После смыкания валиков и образования нервной трубки, на ее боковых поверхностях выселяется группа клеток, формирующих т. н. нервный гребень (neural crest) (рис. 2). Клетки нервного гребня активно и целенаправленно мигрируют на большие расстояния в зародыше и способны дифференцироваться в разнообразные зрелые элементы тканей и органов. Миграция клеток определяется не только и не столько наличием свободного межклеточного пространства и отсутствием механических преград на пути перемещения, сколько взаимодействием мигрирующих клеток с молекулами межклеточного матрикса (коллаген, ламилин, фибронектин, аминоглюкозгликаны и др.). Формирование фенотипа клеток нервного гребня определяют многочисленные ростовые и дифференцирующие факторы, действующие на клетки гребня по ходу их миграции. В качестве примера можно привести процесс дифференцировки клеток туловищного отдела нервного гребня в нейроны симпатических ганглиев или в клетки хромаффинной ткани мозгового вещества надпочечников (рис. 5).
Клетки нервного гребня образуются почти на всём протяжении замыкающейся нервной трубки. Клетки из различных участков нервного гребня дифференцируются не одинаково. Разная дифференцировка клеток наблюдается как по длине гребня, так и по глубине залегания в нем. Из гребня могут образовываться и нервные узлы и большая часть структур черепа. Уникальность этой структуры позволила современным ученым даже считать нервный гребень четвертым зародышевым листком, наряду с эктодермой, энтодермой и мезодермой. Вот неполный список производных клеток нервного гребня:
Фетальный период развития (24–46 стадии по Carnegie)
В этот период развития происходят наиболее значительные события в развитии мозга. Сразу после завершения нейруляции и образования первичных мозговых пузырей, в стенке эмбрионального мозга начинаются интенсивные процессы пролиферации и дифференцировки. Процессы пролиферации и дифференцировки захватывают широкую полосу клеток, расположенных между наружной (базальной) и внутренней (апикальной) поверхностями стенки мозговых пузырей. Они представляют собой нейрональные стволовые клетки (НСК) и развиваются из нейроэпителия нервной пластинки. НСК активно делятся и в процессе прохождения клеточного цикла претерпевают сложные превращения, связанные с последовательными перемещениями в нервной трубке. Перемещение осуществляются путем смешения ядросодержащих отделов клеток внутри формирующихся отростков. Этот процесс получил название интеркинетической ядерной миграции. Ядросодержащие тела клеток двигаются к поверхности нервной трубки, вблизи которой они остаются на некоторое время. Затем ядросодержащие отделы клеток опять перемещаются к вентрикулярной поверхности, после чего НСК втягивают свои отростки и вступают в очередной митотический цикл (M). В результате формируется одно из первых структурных образований развивающейся стенки нервной трубки – вентрикулярный слой (рис. 6а, б).
В настоящее время показано, что популяции клеток, составляющих вентрикулярный и формирующийся несколько позднее субвентрикулярный слой, неоднородна. Не все клетки, перемещающиеся в пределах стенки мозга во время митотического цикла, вступают в митоз у вентрикулярной поверхности. В зависимости от присутствия у клеток отростков и характера их контакта с поверхностями стенки мозга выделяют три класса клеток предшественников: монополярные, биполярные и неполярные (рис. 6в).
Биполярные клетки (или апикальные предшественники АР) представляют собой либо НСК клетки, либо клетки т. н. радиальной глии (RG), в которые НСК превращаются на самых ранних этапах нейрогенеза. Отличительной особенностью этих клеток является наличие отростков, контактирующих с апикальной и базальной поверхностями стенки мозга на всем протяжении клеточного цикла. Интеркинетические перемещения ядра происходят по этим отросткам и заканчиваются митозом у апикальной поверхности. Монополярные предшественники появляются на более поздних стадиях, когда в стенке мозга формируется субвентрикулярный слой, содержащий также как и вентрикулярный слой НСК. Ядра этих клеток претерпевают интеркинетические перемещения по цитоплазме отростков клеток предшественников, однако в процессе митотического цикла их апикальные или базальные отростки могут терять связь соответственно с апикальной или базальной поверхностями стенки мозга. Митозы происходят как в вентрикулярном слое, так и в верхней области субвентрикулярного слоя. Во внутренних слоях субвентрикулярной зоны у человека недавно были обнаружены клетки предшественники с неполярной морфологией. Характерной чертой этих клеток является ретракция отростков перед митозом и потеря их контакта с апикальной и базальной поверхностью стенки мозга. Они получили наименование «базальные предшественники (ВР).
Фактически мы имеем дело с двумя путями образования нейронов в развивающемся мозге. Это – путь прямого нейрогенеза, когда источником нейробластов являются непосредственно НСК и нейрогенная радиальная глия, т. е. апикальные предшественники с моно- или биполярной морфологией, и путь непрямого нейрогенеза, когда источником нейробластов служат промежуточные нейрональные предшественники, являющиеся потомками клеток радиальной глии, т. е. базальные предшественники. Непрямой путь кортикогенеза может выступать в роли быстрого увеличения количества нейронов в условиях ограниченного времени (каждое асимметричное деление радиальной глии через стадию промежуточного нейронального предшественника может давать два – четыре нейрона) и тем самым регулировать площадь и толщину стенки мозга.
Таким образом, на первых этапах формирования нервной системы, в стенке эмбрионального мозга формируется широкий слой пролиферирующих нейрональных предшественников разного типа, активность которых в дальнейшем приводит к формированию будущих популяций нервных и глиальных клеток в различных отделах мозга.
Рис. 6. Классические схемы перемещения клеток в вентрикулярном слое нервной трубки (а, б) и современное представление (в) о гетерогенности нейрональных предшественников. (по: Нейроонтогенез, 1985; Обухов, 2008, Pernavelas et al., 2002, с изменениями)
VZ, ISVZ,OSVZ, MZ – вентрикулярный, внутренний и наружный субвентрикулярный и маргинальный слои стенки мозга; apical, basal – апикальная (внутренняя) и базальная (наружная) поверхности мозговой стенки; Tc, Ts, G1, G2, M – стадии митотического цикла; I – период интерфазы; NB – нейробласт
Рис. 8. Схема развития мозговых пузырей (A) и формирования головной части зародыша позвоночных (Б) (по: Обухов, Андреева, 2017; Developmental neurobiology, 2005).
А: сомитомеры и мозговые пузыри костистых рыб и амниот (а), хрящевых рыб и амфибий (б). 1-11 – сомитомеры (будущие туловищные сомиты); 12 – закладка ушной капсулы; 13 – спинальный ганглий; 14, 15 – дорсальный (14) и вентральный (15) корешки спинномозгового нерва; 16 – полость целома; 17 – гипобранхиальная мускулатура; 18 – обонятельный орган, 19 – глазной пузырь; 20, 21 – жаберные щели (20) и дуги (21); III–X, XII – черепно-мозговые нервы
Рис. 10. Раннее развитие головного мозга и зоны экспрессии транскрипционных факторов, контролирующих формирование основных отделов головного мозга млекопитающих, вид сверху (А) и сбоку (Б) (Echevarria et al., 2003, с изменениями).
Pros, Tel, Die, Mes, Rhomb, Met, Myel – отделы головного мозга, Р1–Р6 – прозомеры, r1–r2 – ромбомеры, ANR – anterior neural ridge (передний мозговой организатор), ZLI – zona limitans interthalamica organizer (таламический организатор), ISO – isthmic organizer (организатор перешейка), SC, IC – верхние и нижние бугорки четверохолмия, P1–5 – прозомеры, r1–2 – ромбомеры; Pax 3/7, Ent, Otx, Foxg, Gbx – транскрипционные факторы и место их действия; стрелки – направление диффузии регулирующих факторов
Дифференцировка нервной трубки и формирование основных отделов мозга
Замыкание нервной трубки начинается в середине зародыша, затем процесс распространяется к головному и хвостовому концам эмбриона, где некоторое время остаются незамкнутыми отверстия – передний и задний нейропоры (рис. 7).
Рис. 7. Ранние этапы формирования нервной трубки на примере развития мозга человека (по: Nieuwenhuys R. et al., 1999).
A–D – реконструкция вида человеческого зародыша и начальных этапов формирования нервной трубки, E–H – поперечные срезы эмбриона на данных стадиях развития; 1 – эктодерма, 2 – нервная пластинка, 3 – отверстие амниона, 4 – мозговая пластинка, 5 – нервная складка, 6 – нервный желобок, 7 – нервная трубка, 8 – зачаток головного мозга, 9 – передний нейропор, 10 – задний нейропор, 11 – нервный гребень, 12 – крыловидная пластинка, 13 – латеральная пластинка, 14 – базальная пластинка, 15 – полость первичных мозговых желудочков, 16 – зачатки спинальных ганглиев
Еще на стадии замыкания нейропоров начинается ростро-каудальная дифференцировка нервной трубки зародыша. Нервная трубка (как полагают, под индуцирующим воздействием хорды) постепенно погружается в мезодерму зародыша и под влиянием мезодермальных сомитов разделяется на сегментарные участки – нейромеры или прозомеры. Сомиты располагаются по сторонам нервной пластинки и вдавливаются в нее, определяя конфигурацию будущих отделов мозга (рис. 8).
В дальнейшем головные сомиты сливаются и образуют три основных сегмента: премандибулярный, мандибулярный и гиоидный. Границей головных сегментов служит область ушной капсулы, за которой формируются от 2–3 до 10–12 туловищных сегментов (в зависимости от группы позвоночных). Параллельно формируется система черепно-мозговых нервов. Каждый сегмент иннервируется определенными парами нервов: премандибулярный – терминальным и глазодвигательным нервом (III); мандибулярный – тройничным (V) и блоковым (IV) нервами; гиоидный – отводящим (VI) и лицевым (VII) нервами. Следующие за головными два сегмента иннервируются соответственно языкоглоточным (IX) и блуждающим (X) нервами. Ростральные туловищные сомиты у высших позвоночных иннервируются системой добавочного нерва (XI), включающего в себя разное количество корешков в зависимости от числа туловищных сомитов. Подъязычный нерв (XII), иннервирующий гипобранхиальную мускулатуру, которая развивается из закладки туловищных сегментов, по своей функции аналогичен вентральным (соматомоторным) корешкам спинномозговых нервов, иннервирующих поперечнополосатую мускулатуру туловища и конечностей.
Передний конец трубки в конце 3-й недели развития из-за активных процессов пролиферации и миграции нейронов в стенке мозга расширяется и формирует 3 первичные мозговые пузыря. Лежащий краниально пузырь образует первичный передний мозг, Prosencephalon, средний пузырь – первичный средний мозг Mesencephalon, а из третьего пузыря развивается первичный задний мозг Rhombencephalon. Далее располагаются структуры формирующегося спинного мозга – Medulla spinalis (рис. 9).
Рис. 9. Развитие мозга человека (по: Шаде, Форд, 1976).
А–Б – стадии трех (а) и пяти (б–д) мозговых пузырей; вид сверху (А) и сбоку (Б); 1–3 – первичные: передний (1), средний (2), ромбовидный (№) мозг; 4 – закладка спинного мозга, 5 – глазной бокал, 6–10 – отделы мозга: конечный (6), промежуточный (7), средний (8), задний (9), продолговатый (10); 11 – полушария конечного мозга, 20 – мозжечок, 22 – спинной мозг, V–IX – черепно-мозговые нервы. Стрелки – изгибы нервной трубки (с. и. – среднемозговой, ш. и. – шейный, м. и. – мостовой)
Спинной мозг образуется из каудальных отделов нервной трубки. Он представляет собой часть ЦНС, в структуре которой наиболее отчетливо сохраняются черты эмбриональных стадий развития мозга позвоночных: трубчатый характер строения и сегментарность.
После формирования мозговых пузырей в нервной системе начинаются сложные процессы внутренней дифференцировки и роста. Уже на ранних этапах развития зародыша нервная трубка на значительном протяжении разделяется проходящей по вентрикулярной поверхности пограничной бороздой, sulcus limitans, на два отдела: дорсальный – крыловидную пластинку, и вентральный – базальную пластинку. Участки мозга, развивающиеся из крыловидной пластинки, содержат сенсорные ядра, из базальной – моторные и вегетативные. Ростральная часть нервной трубки не содержит базальной пластинки и целиком происходит из крыловидной. Отделы головного мозга, содержащие производные обеих пластинок – средний, задний, продолговатый – часто объединяют названием «ствол мозга».
Изменения в развитии нервной трубки сопровождаются образованием нескольких изгибов на границах закладки различных отделов мозга. В течение первых двух месяцев эмбрионального развития образуется основной (среднемозговой) изгиб, когда передний и промежуточный мозг загибаются вперед и вниз. Затем формируется еще два (шейный и мостовой) изгиба. Одновременно первый и третий первичные мозговые пузыри разделяются каждый на два. Наступает стадия пяти мозговых пузырей. Самым ростральным становиться конечный мозг (Telencephalon), затем – промежуточный (Diencephalon). За промежуточным идет средний мозг (Mesencephalon). Первичный задний мозговой пузырь разделяется на задний мозг (Metencephalon) и продолговатый мозг (Medulla oblongata). Прозенцефалон включает производные первых шести прозомеров (нейромеров) P1–P6. Из структур Р1 в дальнейшем формируется средний мозг. Прозомеры Р2 и Р3 развиваются соответственно в таламус и преталамус. Из прозомеров Р4–Р6 развивается конечный мозг и гипоталамус. Из более каудальных сегментов нервной трубки (ромбомеров) развиваются структуры ствола и спинного мозга.
После формирования мозговых пузырей (5–10 недели развития) в структурах формирующейся нервной системы происходят сложные процессы внутренней дифференцировки и роста различных отделов головного и спинного мозга.
Формирование отделов мозга находится под контролем т. н. «вторичных организаторов» – групп клеток, синтезирующих ряд морфогенетических факторов, градиент концентрации которых определяет направление миграции и дифференцировки разных структур мозга (табл. 2; рис. 9, 10).
Ген | Место экспрессии | Функция |
Dlx 1, Dlx 2, Dlx 5 | Субпаллиум (ганглионарные возвышения), промежуточный мозг | Миграция субпаллиальных нейробрастов, миграция нейронов в кору из ганглионарных возвышений переднего мозгового пузыря |
Emx 1, Emx 2 | Конечный мозг | Пролиферация клеток в развивающемся мозге, миграция нейробластов |
Lhx 1, Lhx 2, Lhx 5 | Передний мозг, кора полушарий | Формирование подкорковых и корковых (архикортекс) отделов полушарий |
Nkx 2,1 Nkx 2,2 | Вентральные отделы полушарий | Пролиферация и миграция нейробластов в стриатуме |
Otx 1, Otx 2 | Передний мозг, средний мозг, передние отделы ствола мозга | Формирование структуры полушарий, включая кору мозга |
Pax 3, Pax 6 | Передний мозг | Миграция нейробластов в дорсальных отделах полушарий |
Развитие зачатка переднего мозга контролирует небольшая группа клеток, расположенная на верхушке нервной трубки и названная передним мозговым организатором (ANR – anterior neural ridge) и клетки на границе второго мозгового пузыря – zona limitans interthalamica (ZLI). Структуры среднего, заднего, продолговатого мозга и верхние сегменты спинного мозга контролируются еще одним организатором – isthmic organizer (ISO).
В перинатальный период заканчивается формирование внутренней структуры мозга. Начинается активная миелинизация головного и спинного мозга. Однако эти процессы не заканчиваются с рождением. Показано, что достаточно долго (месяцы и годы) после рождения происходит созревание и дифференцировка нервных структур и проводящих трактов. Более того, в настоящий период стало ясно, что во взрослый период происходит образование новых популяций нейронов и глиальных клеток за счет сохранения в мозге популяций НСК в структурах головного мозга.
- с н лазарев теория и практика
- с н трубецкой учение о логосе