нейтронный реактор пик что это

Нейтронный реактор пик что это

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Национальный исследовательский центр «Курчатовский институт» запускает в Гатчине (Ленинградская область) реактор ПИК — пучковый исследовательский комплекс. Он надолго станет мощнейшим в мире источником нейтронов. Пробный пуск установки уже состоялся. Планируется, что она выйдет на полную мощность в 2022 году.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Нейтроны нужны всем. С их помощью изучают ядерные реакции и поведение элементарных частиц. Облучение нейтронами помогает выяснить внутреннюю структуру, состав и магнитные свойства вещества. Это необходимо физикам, занимающимся свойствами твердых тел, материаловедам, химикам, биологам, фармацевтам. Медики применяют и совершенствуют методы лечения рака с помощью нейтронного облучения. Инженеры вырабатывают технические решения для конструкций, которым предстоит работать в условиях нейтронного облучения (такие системы используются в ядерной энергетике, а в обозримом будущем понадобятся и на термоядерных электростанциях). Список примеров можно продолжать еще долго. И практически по всем этим направлениям будут работать ученые на десятках экспериментальных установок, которые войдут в реактор ПИК.

ПИК имеет много общего с энергетическими атомными реакторами, установленными на АЭС. Так, в качестве топлива используется уран-235. Под действием нейтронов его ядра делятся, испуская новые нейтроны, которые, в свою очередь, делят новые ядра. Так происходит цепная реакция.

Однако основное назначение ПИК — вырабатывать не энергию, а нейтроны. Поэтому с энергетической точки зрения он имеет сравнительно небольшую мощность в 100 мегаватт (обычный энергоблок атомной электростанции вдесятеро мощнее). Однако эта мощность сосредоточена в небольшом объеме активной зоны: около 50 литров. Это позволяет создать необычайно плотный поток нейтронов, который отводится из реактора по специальным каналам (нейтроноводам).

Нейтроны, образующиеся при делении ядер, имеют огромную скорость (а значит, и энергию). Между тем для физиков, химиков и других исследователей представляют интерес частицы с самыми разными энергиями в зависимости от конкретной научной задачи. Поэтому применяется вещество, замедляющее нейтроны (в ПИК это обычная вода).

В разных зонах реактора частицы замедляются в разной степени. Поэтому в распоряжении ученых оказываются потоки самых разных нейтронов: от горячих (самых быстрых) до ультрахолодных (самых медленных).

Чтобы нейтроны не разлетались из активной зоны, используется отражатель. На ПИК он состоит из тяжелой воды. В молекулах этого вещества водород представлен своим тяжелым изотопом — дейтерием. Такая вода практически не поглощает нейтроны. Поэтому она возвращает их обратно в активную зону, препятствуя утечке. В отражателе имеется 21 канал, по которому нейтроны выводятся из реактора, так сказать, в руки экспериментаторов.

Кроме того, конструкция установки позволяет размещать образец, который нужно облучить нейтронами, прямо внутри реактора.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Строительство реактора началось в 1976 году на территории НИИ, ныне носящего название Петербургский институт ядерной физики имени Б.П. Константинова (ПИЯФ) и входящего в НИЦ «Курчатовский институт».

В 1986 году, когда установка была готова более чем наполовину, грянула авария на Чернобыльской АЭС. Чтобы эта катастрофа не повторилась, требования к безопасности ядерных объектов были серьезно усилены. Проект ПИК был заново проанализирован, модернизирован и приведен в соответствие с новыми нормами. К началу 1990-х строительство было уже близко к завершению, но тут началась эпоха перемен. Работы были практически заморожены до середины 2000-х годов. Затем финансирование проекта возобновилось, но его объемы не позволяли ПИЯФ завершить строительство своими силами.

Перелом в судьбе ПИК произошел в 2010 году, когда ПИЯФ вошел в состав Курчатовского института. За короткое время реактор был существенно модернизирован, некоторые элементы были полностью заменены. Теперь он представляет собой современную установку класса «мегасайенс».

28 февраля 2011 года состоялся физический пуск реактора. Это значит, что систему запустили на небольшой мощности, которая не требует специально отводить от нее тепло, — установка охлаждается естественным образом. Впереди энергетический пуск, то есть запуск на полную мощность.

Постепенно ученые налаживали сложнейший комплекс из реактора и установок для экспериментов с полученными нейтронами, и сейчас он почти готов.

«В настоящее время начата подготовка инфраструктуры экспериментов: источники холодных и горячих нейтронов, научные станции, системы транспортировки нейтронов и другое оборудование. Первая фаза этой работы будет закончена в следующем году, когда в соответствии с указом Президента Российской Федерации будут запущены первые пять установок для проведения нейтронных исследований», — рассказывает Максим Владимирович Румянцев, заместитель главного инженера реактора ПИК.

Полномасштабное начало экспериментов планируется на 2022 год после ввода в эксплуатацию первого источника холодных нейтронов и нейтроноводной системы, уточняет эксперт.

«По своим возможностям ПИК превосходит все существующие и строящиеся нейтронные источники», — отмечает Сергей Иванович Воробьев, ученый секретарь Национального исследовательского центра «Курчатовский институт» — ПИЯФ.

Установка отличается от большинства аналогичных зарубежных проектов очень мощными нейтронными потоками в отражателе, наличием нейтронной ловушки с рекордным потоком и увеличенным числом экспериментальных каналов для вывода нейтронов из реактора, конкретизирует ученый.

Ближайший конкурент ПИК — исследовательский реактор в Международном институте Лауэ-Ланжевена (Гренобль, Франция). Однако последний остановит свою работу в середине 2020-х годов.

Кроме того, в городе Лунд (Швеция) строится импульсный источник нейтронов ESS. Но он основан на других принципах получения нейтронов и по своим возможностям дополняет ПИК, а не конкурирует с ним.

«В ближайшее десятилетие установка ПИК будет лучшей в Европе в своем классе и станет основой Международного центра нейтронных исследований мирового класса в Гатчине», — обещает Воробьев.

Начало исследований на реакторе ПИК и создание Международного центра нейтронных исследований (МЦНИ) является важнейшим событием для всего мирового научного сообщества.

«Мы наблюдаем большой интерес западных коллег к нашим проектам и открыты для международного научного сотрудничества. Так, уже подписано соглашение с Обществом Гельмгольца (Германия) о размещении на базе реактора ПИК станций из Научного центра ГКСС (Геестхахт). Это позволит проводить исследования в области физики конденсированного состояния и материаловедения», — делится фактами Воробьев.

В МЦНИ будут проводиться исследования в области физики, химии, биологии, наук о Земле, материаловедения, технологического контроля изделий, работ по развитию технологий микро- и наноэлектроники, производства изотопов и так далее.

«Такие возможности открывают новые горизонты для исследований: европейские страны, где располагаются крупнейшие научные центры, выражают желание включиться в проект создания МЦНИ. Например, уже готовится межправительственное соглашение между Россией и Германией о вхождении последней в Международный центр нейтронных исследований на базе реактора ПИК», — продолжает эксперт.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Установки класса «мегасайенс» во всем мире являются точкой притяжения молодых перспективных кадров. ПИК в этом смысле отнюдь не исключение.

Молодежи есть откуда узнать про этот проект. Сотрудники ПИЯФ преподают на профильных кафедрах в Санкт-Петербургском государственном университете (СПбГУ — один из важнейших участников национального проекта «Образование» и один из центров мирового уровня) и Санкт-Петербургском государственном политехническом университете — вузе-участнике «Проекта 5-100», вовлеченном в формирование сети национальных лидеров образования в рамках федерального проекта «Молодые профессионалы». По инициативе президента НИЦ «Курчатовский институт» Михаила Валентиновича Ковальчука на физическом факультете СПбГУ создана кафедра ядерно-физических методов исследования. Реакторный комплекс станет базовой установкой для студентов этой кафедры.

Петру Ивановичу Конику, заместителю начальника отдела координации международных проектов НИЦ «Курчатовский институт» — ПИЯФ, всего 28 лет. Кажется, совсем недавно он окончил по специальности «Физика» Санкт-Петербургский государственный университет. Теперь же его деятельность — разработка и оптимизация нейтроноводной системы реактора ПИК, а также обеспечение международного (главным образом российско-немецкого) сотрудничества в области использования возможностей реактора ПИК.

«Меня привлекает прикладная направленность как всего проекта в целом, так и моей собственной работы. Реактор ПИК ориентирован на решение практических задач, таких как разработка новых материалов, решение структур белковых молекул, исследование напряжений напряжение (в промышленных изделиях) — мера внутренних сил, возникающих в изделии, подвергнутом внешней деформации в промышленных изделиях. Мои собственные задачи в области оптимизации нейтронных пучков лежат на стыке науки и инженерного дела», — поясняет специалист.

Свою будущую карьеру физик уверенно связывает с проектом ПИК.

«В случае создания Международного центра нейтронных исследований на базе реактора ПИК Гатчина превратится в один из главных нейтронных городов мира, поэтому работа в НИЦ «Курчатовский институт» — ПИЯФ станет еще более привлекательной с точки зрения собственных научных задач и карьерных возможностей», — констатирует Коник.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

ПИК — объект целевой поддержки со стороны государства, в частности, в рамках национального проекта «Наука».

Гатчинский реактор ПИК сегодня входит в федеральную программу развития синхротронно-нейтронных исследований синхротрон — циклическая установка для ускорения элементарных частиц до близкой к световой скорости; принцип действия основан на явлении резонанса; к синхротронам относится, например, Большой адронный коллайдер и «Нуклотрон» в ускорительном комплексе NICA и является одним из флагманских проектов уникальных научных мегаустановок в России, заключает ученый.

Федеральные проекты в сфере высшего образования включены в Национальный проект «Образование». Их цель — обеспечение глобальной конкурентоспособности российской высшей школы. «Молодые профессионалы» — проект, направленный на формирование сети национальных лидеров высшего образования.

Университеты-лидеры проведут обновление содержания образовательных программ за счет реализации проектов в ходе обучения, решения профессиональных задач (практико- и проектно-ориентированные программы) в кооперации с работодателями, а также обеспечат переход на модульное построение образовательных программ с включением «коротких» программ (адаптивность и гибкость). Со стороны государства будут обеспечены технологическая инфраструктура онлайн-обучения, нормативно-правовая база для использования онлайн-курсов и развития академической мобильности студентов. Также будут созданы условия для академической мобильности научно-педагогических работников (в первую очередь внутрироссийской) и поддержаны лучшие практики. Системным эффектом от реализованных мероприятий будет являться повышение востребованности выпускников образовательных организаций высшего образования на рынке труда.

Источник

Нейтронный реактор ПИК начал выход на мощность 10 мегаватт

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Исследовательский нейтронный реактор ПИК, который находится Гатчине под Петербургом, вышел на следующую стадию энергетического пуска — его мощность начали повышать на уровень 10 мегаватт, а вывод реактора на рабочую мощность в 100 мегаватт планируется на 2022 год. О выводе реактора на энергетический режим работы говорится в сообщении на сайте Курчатовского института.

Реактор ПИК начали строить в 1976 году в Петербургском институте ядерной физики имени Константинова (ПИЯФ), который сейчас входит в состав Курчатовского института. Поток нейтронов, который он должен был генерировать, предлагалось использовать для высокоточных исследований структуры вещества — в частности, биологических молекул, которые сложно изучать с помощью рентгеновского или синхротронного излучения.

После аварии на Чернобыльской АЭС строительство было остановлено и возобновилось только в 2007 году. В феврале 2011 года состоялся физический пуск на мощности порядка 100 ватт — на минимальном контролируемом уровне мощности. Тогда же реактор был включен в программу «Мегасайенс», которая предусматривает поддержку строительства в России крупных научных установок с международным участием. В рамках этой программы также идет строительство коллайдера NICA в Дубне, планируется создание нового синхротрона в Протвино.

В конце февраля 2019 года было объявлено, что реактор прошел первую стадию энергетического пуска и выведен на энергию 100 киловатт. Тогда сообщалось, что выход на энергию в 1 мегаватт должен состояться до конца 2019 года.

В понедельник в ходе заседания Совета по науке и образованию президент Курчатовского института Михаил Ковальчук объявил, что начинаются тестовые эксперименты на первых пяти экспериментальных станциях реактора ПИК, две из которых созданы германскими учеными. Всего на реакторе планируется построить 25 экспериментальных станций. Как сообщила N + 1 представитель ПИЯФ, на этом этапе реактор начали выводить на уровень в 10 мегаватт. Один из участников проекта, в свою очередь, уточнил, что ранее реактор работал на мощности в 3 мегаватта. Затем ученые и инженеры начнут проверку работоспособности и управляемости реактора в этом интервале мощности. Полноценная научная работа на реакторе начнется после его вывода на мощность в 100 мегаватт, выход на эту ступень ожидается в 2022 году, сообщила представитель ПИЯФ.

Об истории и предназначении нейтронного реактора ПИК можно прочитать в нашем материале «Энергетический пуск», а о другой российской мегаустановке, строительство которой близится к завершению — о коллайдере NICA — читайте в статье «Маленький взрыв».

Источник

Энергетический пуск

Под Гатчиной заработал исследовательский нейтронный реактор ПИК

В Гатчине под Петербургом прошел первый этап энергетического пуска исследовательского нейтронного реактора ПИК, который строился с середины 1970-х годов. Реактор, предназначенный для изучения элементарных частиц, структуры биологических молекул и многих других задач, выведен на энергию 100 киловатт, но до проектной мощности в 100 мегаватт он доберется примерно через два года. Подробнее о том, как строился ПИК, как он устроен и какие задачи будет решать, читайте в нашем материале.

Научный долгострой

Физики-ядерщики в постсоветскую эпоху сформулировали грустную «теорему»: до запуска реактора ПИК остается девять лет. Всегда девять лет. В самом деле, реактор ПИК, принадлежащий Петербургскому институту ядерной физики (Гатчинa) — старейший долгострой среди российских научных проектов. Параметры процессов, которые будут протекать в реакторе, впервые рассчитали еще в середине 1960-х Юрий Петров и Алексей Ерыкалов, одновременно инженеры под руководством Кира Королева начали прорабатывать модель установки. В 1976 году ПИК начали строить.

В 1983 году заработал критический стенд — маломощный макет, строение и физические свойства которого воспроизводят «большой» реактор. Эксперименты с критической сборкой подтвердили, что расчеты ученых верны. В 1986 году ПИК был готов больше чем наполовину — строители возвели технические здания, ученые начали налаживать оборудование. А потом произошла авария на Чернобыльской АЭС.

После катастрофы требования к ядерной безопасности сильно ужесточились, проект реактора пришлось заморозить и полностью переработать, а затем заново пройти экспертизу. В 1988 году эти работы удалось завершить, и к 1991 году реактор практически достроили. К сожалению, после распада СССР финансирование проекта резко снизилось, и его пришлось законсервировать.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Вид на корпус реактора и бассейн выдержки

Впрочем, в каком-то смысле длительная задержка в строительстве реактора даже оказалась удачной — за это время вычислительная мощность компьютеров сильно выросла, и теоретические расчеты удалось перепроверить с помощью численного моделирования.

Полноценные работы на реакторе возобновили только в 2007 году, когда правительство РФ выделило на строительство ПИК около шести миллиардов рублей. Еще несколько лет ушло на восстановление после консервации. В 2009 году был сдан в эксплуатацию первый пусковой комплекс, после чего ученые пообещали запустить реактор. Но задержки финансирования и проверки Ростехнадзора оттягивали этот момент на неопределенный срок.

Наконец, в феврале 2011 года состоялся физический пуск реактора на мощности порядка 100 ватт (мощность электрической лампочки). Физический пуск — это еще не полноценное начало работы, это скорее проверка реактора. При физическом пуске в установку загружают топливо и выводят реактор на минимальный контролируемый уровень мощности, а затем смотрят, насколько сильно поведение установки отличается от ожидаемого.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Технологический зал ПИК

Такие проверки проводят потому, что при сооружении реактора допускаются технические отклонения от расчетных параметров, а также возникают небольшие отличия в химическом и нуклидном составе частей реактора (например, поглотителей и твэлов). Из-за этого характеристики активной зоны могут немного отличаться от расчетных. В то же время, чтобы обеспечить безопасную работу с реактором, необходимо знать эти параметры с высокой степенью точности.

В том же году гатчинский реактор вошел в программу «Мегасайенс», которая поддерживает проекты с международным участием и предполагает финансирование в масштабах десяти миллиардов долларов. Подробнее прочитать про другие проекты-участники этой программы — синхротронные ускорители в Москве и Новосибирске — можно в нашем материале «Больше синхротронов». Кроме того, ученым удалось договориться о сотрудничестве с Юлихским центром по нейтронным исследованиям (Германия), который передал ПИКу научное оборудование, оставшееся после реактора FRG-1, закрытого в 2010 году. В обмен немецкие исследователи получили 15 процентов времени работы реактора.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Удаленный мониторинг процесса загрузки активной зоны реактора

После физического пуска следует уже настоящий, энергетический пуск, при котором реактор выводят на проектную мощность. В 2011 году руководство НИЦ «Курчатовский институт», поглотившего к тому времени ПИЯФ, обещало, что энергетический пуск состоится в ближайшие несколько лет, однако по неизвестным причинам этот процесс задержался.

В ноябре прошлого года президент НИЦ «Курчатовский институт» Михаил Ковальчук сообщил, что разрешение «Ростехнадзора» на энергетический пуск реактора на мощности 100 киловатт (примерно в тысячу раз меньше проектной мощности) уже получено, причем пуск состоится в начале февраля. По информации N + 1, реактор был выведен на эту мощность уже в январе 2019 года. При этом приборы, работающие на реакторе, предназначены только для измерения его параметров, а независимые эксперименты с нейтронными пучками пока еще не готовы. Поэтому назвать этот пуск по-настоящему полноценным нельзя. Тем не менее, он подтверждает, что реактор готов наращивать мощность.

Устройство и характеристики ПИК

Проектная мощность ПИК составляет сто мегаватт, максимальная плотность потока тепловых нейтронов — около пяти квадриллионов (5 × 10 15 ) частиц на квадратный сантиметр в секунду. В отражателе плотность падает до 1,3 × 10 15 нейтронов на квадратный сантиметр в секунду. Это рекордное значение для реакторов непрерывного действия.

На первый взгляд кажется, что мощность реактора ПИК сравнительно невелика. В самом деле, реакторы РБМК-1000 или ВВЭР-1000, установленные на большинстве российских АЭС, генерируют около 1000 мегаватт, а самый мощный реактор в мире, заработавший в прошлом году в Китае, производит 1750 мегаватт энергии. Это на порядок выше мощности ПИК.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Рабочая зона реактора с твэлами (серые точки)

Объясняется эта разница тем, что ПИК — исследовательский реактор и для него на первом месте стоит производство нейтронов, а не тепла. С одной стороны, чтобы повысить мощность реактора, надо организовать хорошее охлаждение рабочей зоны, а для этого необходимо увеличить ее размер. С другой стороны, чем больше размер рабочей зоны, тем меньше нейтронов успевает ее покинуть. При нынешнем уровне развития техники мощность реактора ПИК, выделяющаяся в 50 литрах его рабочей зоны, позволяет получить максимальный поток нейтронов.

В рабочей зоне реактора находится 27 килограмм обогащенного до 90 процентов урана, который охлаждается «легкой» (обычной) водой. Это означает, что 90 процентов составляет изотоп уран-235. Следует иметь в виду, что в обычных энергетических реакторах уровень обогащения по этому изотопу не превышает 3-5 процентов, для быстрых реакторов он составляет около 15–25 процентов, а уровень выше 85 процентов соответствует оружейному урану.

Рабочая зона окружена тяжеловодным отражателем толщиной около двух метров, который поглощает бóльшую часть быстрых нейтронов и гамма-квантов, обеспечивает максимальное отношение потока нейтронов к мощности и позволяет заменять экспериментальные каналы после пуска реактора. По каналам нейтроны отводятся из реактора к экспериментальным установкам.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Внутреннее устройство реактора ПИК. Цифрой 1 обозначена активная зона, цифрой 2 — отражатель из тяжелой воды. Экспериментальные каналы подписаны

Всего экспериментальных каналов у ПИКа 22 — десять горизонтальных, шесть наклонных и шесть вертикальных. Это позволяет подключить к установке до 50 экспериментальных станций, работающих одновременно. В зависимости от того, из какой области реактора забираются нейтроны и какую обработку проходят, их энергия может меняться от 0,2 электронвольт (горячие нейтроны) до 2 × 10 −7 электронвольт (ультрахолодные нейтроны).

Научные задачи

Около половины каналов-нейтроноводов ученые отдадут экспериментам из области ядерной физики и физики частиц.

Во-первых, исследователи измерят электрический заряд и дипольный момент нейтрона. Во-вторых, ученые в подробностях исследуют β-распад нейтрона — уточнят его период, измерят корреляционные константы процесса и проверят закон сохранения T-четности. Возможно, эти эксперименты объяснят загадку времени жизни нейтрона и укажут на физику за пределами Стандартной модели. В-третьих, часть экспериментов будет посвящена осцилляциям нейтрино и поиску стерильных нейтрино.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Схема реактора (кружок в центре) и каналов, отводящих нейтроны к экспериментальным установкам

Кроме того, на установке будут проводиться нейтронно-оптические и нейтронно-интерферометрические эксперименты, а также исследования слабого нуклон-нуклонного взаимодействия. Все эти темы в настоящее время активно обсуждаются в научном сообществе (чтобы убедиться в этом, достаточно почитать новости), поэтому результатов ПИК ждут не только экспериментаторы, но и теоретики.

На второй половине каналов будут располагаться эксперименты по физике конденсированного состояния. Проще говоря, в этих экспериментах ученые будут определять кристаллическое строение веществ с помощью нейтронных дифрактометров, спектрометров и рефлектометров различных конструкций. Более того, с помощью нейтронов можно наблюдать за динамикой атомов — «снимать кино», а не статичные картинки. Такие измерения широко используются в современном материаловедении, геологии, химии, биологии, медицине и даже археологии.

Попробуем разобраться, почему нейтроны так удобно использовать для исследования внутренней структуры вещества. Характерное расстояние между атомами кристаллической решетки, как правило, составляет несколько ангстрем (10 −8 сантиметров), поэтому разглядеть их можно только с помощью частиц со сравнимой длиной волны — рентгеновских или гамма-лучей, электронов, протонов и нейтронов. Тем не менее, по сравнению с остальными кандидатами, нейтроны имеют ряд важных преимуществ.

Во-первых, при одинаковой длине волны кинетическая энергия тяжелых нейтронов гораздо меньше, чем у легких фотонов или электронов (электрон почти в две тысячи раз легче нейтрона, фотон вообще не имеет массы). Вдобавок к этому, нейтроны электрически нейтральны. Следовательно, они слабо взаимодействуют с образцом и с их помощью можно «заснять» низкоэнергетические процессы — например, тепловые колебания атомов.

Во-вторых, нейтроны имеют ненулевой магнитный момент (спин), а потому чувствительны к магнитным свойствам вещества. Например, они могут ухватить возбуждения в высокотемпературных сверхпроводниках.

В-третьих, нейтроны взаимодействуют с ядрами атомов, а не с электронными оболочками, а потому гораздо лучше «чувствуют» изотопический состав вещества. В частности, с помощью нейтронов можно разглядеть легкие атомы водорода и кислорода в соединениях тяжелых элементов, что практически недоступно для других методов. Поэтому нейтронные «микроскопы» играют важную роль при исследовании биологических соединений и разработке материалов для водородной энергетики.

Экспериментальные установки на ПИК планируют вводить постепенно. Буклет ПИЯФа сообщает, что к 2019 году на реакторе будут работать только 12 научных станций: три из них посвящены ядерной физике и физике элементарных частиц, еще девять — физике конденсированного состояния. К 2021 году число установок доведут до 19.

Часть экспериментов будут ставить зарубежные ученые — руководители проекта утверждают, что им уже поступили заявки от нескольких крупных европейских институтов. Учитывая, какие исследования можно провести на ПИК, в это можно легко поверить.

нейтронный реактор пик что это. Смотреть фото нейтронный реактор пик что это. Смотреть картинку нейтронный реактор пик что это. Картинка про нейтронный реактор пик что это. Фото нейтронный реактор пик что это

Расположение реактора и экспериментальных установок (в масштабе)

Аналоги установки в мире

Несмотря на то, что проект реактора ПИК был предложен еще в 1960-х годах прошлого века, он до сих пор остается актуальным. Как утверждают эксперты ПИЯФ, разработанная тогда схема реактора — охлаждаемая «легкой» водой активная зона и отражатель из тяжелой воды — до сих пор считается самой эффективной. Практически все современные реакторы-источники нейтронов построены по той же схеме.

В настоящее время в мире работает около ста реакторов с выведенными нейтронными пучками, предназначенных для физических исследований. Около двадцати из них создают потоки порядка 10 14 нейтронов в секунду на квадратный сантиметр, и всего два генерируют мощности, сравнимые с заявленной мощностью ПИК.

Первый — это реактор HFR (High Flux Reactor) в институте Лауэ-Ланжевена в Гренобле (Франция), мощность которого составляет примерно 58 мегаватт, а поток — около 1,5 × 10 15 нейтронов на квадратный сантиметр в секунду. Благодаря такому потоку на установке могут одновременно работать около сорока групп ученых.

Вторая установка — HFIR (High Flux Isotope Reactor) Окриджской национальной лаборатории (США) — обеспечивает поток порядка 10 15 нейтронов на квадратный сантиметр в секунду при тепловой мощности около 85 мегаватт. Раньше в США также работал реактор HFBR, имевший сравнимую мощность и поток нейтронов, однако в 1999 году его окончательно закрыли.

Еще один реактор, совсем чуть-чуть «не дотягивающий» до рекордных значений, — немецкий FRM II с мощностью 20 мегаватт и потоком около 8 × 10 14 нейтронов на квадратный сантиметр в секунду.

Более того, «реакторы-рекордсмены» были построены примерно в то же время, в которое был разработан проект ПИК — в 1960-1970 годах. Реактор HFIR в Ок-Ридже вышел на максимальную мощность в 1966 году, HFR в Гренобле — в 1971-м. Со временем такие реакторы «выгорают» под действием мощного потока нейтронов, и работать с ними становится опасно. Именно по этой причине остановили реактор HFBR, на котором произошла утечка тяжелой воды, а HFR и HFIR в 1990-х годах реконструировали — в том числе, чтобы соответствовать новым требованиям ядерной безопасности, ужесточенным после Чернобыльской аварии.

Впрочем, даже с учетом реконструкции реактору в Гренобле осталось работать около десяти лет. HFIR, который работает в более щадящем режиме (161 день в год против 200), «протянет» чуть дольше, до 2040-х годов. Реактор FRM II к этому времени тоже уже закроется.

При этом замену «выгоревшим» реакторам ученые строить не собираются, надеясь заменить их ускорителями, на которых нейтроны рождаются за счет столкновений протонов и мишени. В Ок-Ридже такой ускоритель работает с 2006 года, в Европе его планируют достроить уже в этом году.

Впрочем, несмотря на то, что пиковый поток на таких установках в десятки раз превышает поток реакторов, их интегральный поток (усредненный за долгое время) все-таки меньше 10 15 нейтронов на квадратный сантиметр в секунду. Таким образом, в ближайшие 15–20 лет аналогов ПИК в мире практически не останется.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *