нейротоксины что это простыми словами

Нейротоксин

Мощные нейротоксины, такие как батрахотоксин, воздействуют на нервную систему деполяризацией нервов и мышечных волокон, увеличивая проницаемость клеточной мембраны для ионов натрия.

Многие яды и токсины, используемые организмами для защиты от позвоночных, являются нейротоксинами. Наиболее частый эффект — паралич, наступающий очень быстро. Некоторыми животными нейротоксины используются при охоте, так как парализованная жертва становится удобной добычей.

Содержание

Источники нейротоксинов

Внешние

Нейротоксины, поступившие из внешней среды, относятся к экзогенным. Могут представлять собой газы (например, монооксид углерода, БОВ), металлы (ртуть [3] и др.), жидкости и твердые вещества.

Действие экзогенных нейротоксинов после проникновения в организм сильно зависит от их дозы.

Внутренние

Классификация и примеры

Ингибиторы каналов

Нервно-паралитические ОВ

Нейротоксичные препараты

См. также

Примечания

Полезное

Смотреть что такое «Нейротоксин» в других словарях:

нейротоксин — нейротоксин … Орфографический словарь-справочник

нейротоксин — сущ., кол во синонимов: 5 • зонгорин (2) • сакситоксин (4) • тетродотоксин (4) … Словарь синонимов

нейротоксин — Токсин, вызывающий нервные симптомы, действующий на нервные клетки [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN neurotoxi … Справочник технического переводчика

нейротоксин — rus нейротоксин (м) eng neurotoxic substance fra substance (f) neurotoxique deu Nervengift (n) spa sustancia (f) neurotóxica, neurotoxina (f) … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

нейротоксин — общее название ядовитых веществ биологического происхождения, обладающих избирательным действием на нервную систему … Большой медицинский словарь

Ботулинический нейротоксин типа A-гемагглютинин комплекс — (Clostridium botulinum toxine type A hemagglutine complex) Химическое соединение … Википедия

Нейротоксины — Нейротоксин токсин, специфически действующий на нервные клетки, обычно взаимодействуя с ионными каналами и протеинами мембраны. Многие яды и токсины, используемые организмами для защиты от позвоночных, являются нейротоксинами. Наиболее частый… … Википедия

Нейротоксичный яд — Нейротоксин токсин, специфически действующий на нервные клетки, обычно взаимодействуя с ионными каналами и протеинами мембраны. Многие яды и токсины, используемые организмами для защиты от позвоночных, являются нейротоксинами. Наиболее частый… … Википедия

ЦИАНИСТАЯ КИСЛОТА — Нейротоксин, который разрушает тела нейронов, но оставляет неповрежденными аксоны … Толковый словарь по психологии

Микотоксины — Рост плесневого гриба на поверхности жидкости Микотоксины (от греч … Википедия

Источник

Микрочипы в вакцинах? Анализ крови даёт удивительные результаты

Дискуссии о вакцинах и вакцинации от COVID-19 не затухают, а, наоборот, становятся всё более горячими. Даже серьёзные медики сомневаются, что у них есть полное представление о составе тех препаратов, которыми делаются прививки. Что же там находится на самом деле?

От чего умирают люди?

Скепсис российских медиков лишь усилился после недавнего заявления академика А. Гинцбурга (Институт Гамалеи, разработчик линейки «Спутников»). Он упомянул какие-то «маркеры» в препарате «Спутник V», которые позволяют определить, кто вакцинацию проходил, а кто лишь купил справку о вакцинации. Об этих «маркерах» в официальной информации о «Спутнике V» ничего не говорится.

Масла в огонь споров и сомнений по вопросу о составе прививочных препаратов добавила конференция учёных-патологоанатомов, которая прошла 20 сентября этого года в Германии в Институте патологии в Ройтлингене (Pathologischen Institut in Reutlingen). В мероприятии, как отмечают СМИ, участвовало от 30 до 40 специалистов, в том числе из Австрии. Ключевыми фигурами были:

Скриншот страницы pathologie-konferenz.de/en/

В центре внимания участников конференции были результаты вскрытий восьми умерших после вакцинации от COVID-19, которые проводились в этом году под руководством профессора Арне Буркхардта. Результаты упомянутых вскрытий удивительным образом подтверждают выводы коллеги Арне Буркхардта профессора, доктора Питера Ширмахера (Prof. Dr. Peter Schirmacher). Последний сделал вскрытия более 40 умерших, имевших инфицирование вирусом ковида. Питер Ширмахер уверенно заявил, что около трети из них умерли не от ковида, а от вакцинации против ковида.

Эти заявления были сделаны летом, власти и подконтрольные им СМИ пытались замолчать или опровергать выводы профессора. И вот подоспела конференция патологов в Ройтлингене, которая вновь вскрыла смертельную опасность вакцинаций против ковида.

Они уже в нас

Конференция транслировалась по видеосвязи. На ней были представлены многочисленные фотографии и рисунки, наглядно дополнявшие картину, которую описывали выступавшие патологи.

Анализ тонких тканей умерших проводился с помощью специального, так называемого «темнопольного» микроскопа. Он позволил выявить содержание в тканях посторонних микрочастиц, которые по форме представляют собой явно неживые структуры достаточно правильной геометрической формы. Внешне они выглядят… как микросхемы!

Скриншот кадра видео Cause of death after COVID-19 vaccination & Undeclared components of the COVID-19 vaccines / odysee.com

Версий появления таких инородных объектов две. Либо они были введены в кровоток готовыми, либо сформировались в организме человека из наночастиц, содержащихся в вакцине. Случайное попадание посторонних частиц в тело человека исключается, поскольку одни и те же инородные объекты выявлены у всех умерших после вакцинации.

Упомянутый выше профессор, доктор Вернер Берггольц как специалист по микрочипам высказал своё мнение по поводу «открытия» патологов. Он не исключает возможности использования выявленных в тканях умерших частиц в качестве тех самых «маркеров» и «идентификаторов», о присутствии которых в вакцинах высказывали подозрения сторонники так называемой «теории заговора».

Pfizer с дополнениями

Это размышление профессора вполне корреспондирует с мнением тех специалистов, которые пытались и пытаются выявить «маркеры» вакцин без вскрытия, путём углублённого химического и физического изучения самих препаратов. Есть ряд исследований, в которых говорится об обнаружении в составе по крайней мере двух препаратов – Pfizer и Moderna (мРНК-вакцины) – графена (также оксид графена), который никакой медицинской роли не выполняет, но вполне годится на роль «маркера», «идентификатора». Масла в огонь добавило заявление Карен Кингстон (Karen Kingston), бывшей сотрудницы компании Pfizer. Кингстон утверждает, что хотя и в патентах на вакцину Pfizer оксид графена не упоминается, он фигурирует в ряде сопроводительных документов.

Скриншот кадра видео Stew Peters show «Former Pfizer Employee Confirms Poison in COVID ‘Vaccine’»/ redvoicemedia.com

Ещё одно направление изучения «пытливыми скептиками» необъявленных производителями вакцин компонентов и свойств препаратов – попытки идентифицировать получивших вакцины людей с помощью специальных технических средств. Та яростная энергия, с которой «Силиконовая мафия» (ведущие IT-корпорации, контролирующие интернет и социальные сети) удаляет публикации подобного рода, также наводят на мысль, что нет дыма без огня.

Трудно поверить, что сказанное на конференции в Ройтлингене по поводу инородных частиц в прививочных препаратах – лишь «дым», который быстро рассеется. Дыма без огня не бывает. Просто этот огонь тщательно скрывают. До того момента, когда начнется вселенский пожар, который уже не остановишь.

Участники конференции приняли резолюцию с призывом к властям Германии, Австрии и других стран начать проводить массовые патологоанатомические исследования умерших после вакцинаций от ковида, обращаться с соответствующими запросами к производителям препаратов и, конечно же, немедленно остановить дальнейший процесс прививок от COVID-19 до полного прояснения вопроса.

Казалось бы, при чём тут Гейтс?

Идея вживления микрочипа в тело человека через прививочный укол вынашивалась мировой элитой давно. В «Prevent Disease.Com» (электронном издании США, специализирующемся на разоблачении планов американской и международной «медицинской мафии») ещё в 2009 году появилась статья «Are Populations Being Primed For Nano-Microchips Inside Vaccines?». Название статьи на русском: «Подталкивается ли население к принятию наночипов, упрятанных в вакцины?». Как отмечалось в указанной статье, ещё в последние годы ХХ века удалось разработать микрочипы нового поколения, основанные на использовании нанотехнологий. Сверхкомпактные (не больше пылинки, радиус порядка 5 микромиллиметра, что примерно в 10 раз меньше радиуса волоса) и недорогие. Вот что, в частности, говорилось в указанной выше статье: «Запущенный Всемирной организацией здравоохранения сценарий с пандемией свиного гриппа как нельзя лучше подходит для пропаганды и принуждения населения добровольно согласиться на введение микрочипов через нановакцины. Всё это будет сделано под лозунгом «высшего блага» для человечества».

Пять лет тому назад была запущена частно-государственная инициатива под кодовым названием «ID2020». Её инициатором был Билл Гейтс, основатель и руководитель IT-корпорации Microsoft, одновременно основатель и руководитель крупнейшего в США благотворительного фонда. Инициатива была поддержана ООН. Суть её проста – провести глобальную цифровую идентификацию населения для того, чтобы мировая элита могла его держать под своим контролем. В первых выступлениях Билла Гейтса как главного энтузиаста тотальной цифровой идентификации он не скрывал, что идентификация через чипизацию является самым простым и надёжным способом решения поставленной задачи.

Но встретив непонимание и даже гневные протесты со стороны ряда политиков и общественных деятелей, Гейтс больше эту идею не озвучивал. И, как считают некоторые эксперты, продолжал её двигать, давая деньги на разработки наночипов, которые станут «бесплатной добавкой» к прививочным препаратам. Решением задачи «наночип и вакцина в одном флаконе» занимались совместно, в тесной кооперации две структуры, находящиеся под контролем Билла Гейтса: упомянутое выше частно-государственное партнёрство «ID2020» и Альянс по вакцинациям GAVI (также частно-государственное партнёрство). Уже в 2018 году все упоминания о наночипах в составе вакцин были удалены с сайтов «ID2020» и GAVI.

Что с того?

Хотя с конференции в Ройтлингене прошло почти два месяца, вы наверняка ничего про неё не слышали – и это яркий пример контроля, установленного «Силиконовой мафией» над каналами распространения информации.

Видео и другие материалы конференции блокируют всеми возможными способами, а там, где нельзя заблокировать, выступают с плакатными «разоблачениями» прозвучавших там «фейков».

Чего только не сделаешь ради воспитания в людях доверия к «спасительным» вакцинам!

Источник

Нейротоксины в пище – способы воздействия на наш организм

Фото блюда

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Блок автора

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

К сожалению, такие токсины также можно найти в нашей пище. Растения, обработанные пестицидами, тяжелые металлы в рыбе, подсластители и некоторые очень обычные продукты, могут содержать токсины.

Алюминий

Исследования показывают, что алюминий может накапливаться в головном мозге, что приводит к головным болям, хронической усталости, различным неврологическим заболеваниям, рассеянному склерозу, даже болезни Альцгеймера и эпилепсии.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Алюминий является третьим наиболее распространенным металлом в окружающей среде и, вероятно, самым распространенным металлом на вашей кухне. Сегодня почти 90% домашних хозяйств используют посуду из алюминиевых сплавов.

Было доказано, что любая жидкость, сваренная в алюминиевом сосуде, получает ионы алюминия. Алюминий также осаждается в продуктах, которые были упакованы в алюминиевую фольгу. Более современные алюминиевые контейнеры анодируются, т.е. имеют более устойчивую поверхность, которая предотвращает износ и коррозию.

Однако, если поверхность поцарапана моющими средствами, существует серьезная опасность выщелачивания алюминия и проникновения в приготовленную пищу.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Аспартам

Аминокислоты, содержащиеся в нем, буквально вторгаются в клетки и приводят к их дегенерации. Это вещество является искусственным подсластителем и в то же время канцерогенным нейротоксином, к которому вы можете стать зависимыми. Его связывают со многими проблемами со здоровьем.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Глютен (клейковина)

Весьма большое внимание уделяется этому веществу. Это белок, содержащийся в пшенице, ржи, ячмене и овсе. Клейковина вызывает множество неврологических заболеваний, судороги, болезни Альцгеймера, Паркинсона, гипертонию, экзему, псориаз и т. д.

Скрытая почти во всех макаронных изделиях, клейковина является серьезной угрозой для нашего здоровья. Согласно статистике, у 1 из 300 человек в возрасте от 30 до 45 лет развивается непереносимость к глютену.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Чаще всего эта нетерпимость является наследственной, и позднее может иметь необратимые последствия. Клейковину не следует давать младенцам до седьмого месяца, потому что она не может быть переварена пищеварительной системой и может привести к аллергии.

Взрослым, страдающим различными аллергиями и астмой, рекомендуется использовать безглютеновую диету. Даже если нет нетерпимости к этому веществу.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Натрия глутамат

Исследования показали, что этот глутамат токсичен для мозга и вызывает головные боли, мигрень, склероз, различные типы инфекций головного мозга, болезни Альцгеймера и Паркинсона.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Мононатрий глутамат

Мононатрий глутамат вы встретите в соевом соусе, быстрых спагетти, бульонных кубиках, китайской еде, желатиновых продуктах, даже в сладостях, хотя и в минимальном количестве.

Совет. Избегайте упакованных продуктов, потому что, если вы их часто употребляете, вы накапливаете высокий «запас» мононатрий-глутамата. Пейте больше воды и не забывайте о витаминах, фруктах и овощах.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Фторид

В положительном эффекте этого вещества против кариеса нет споров. Тем не менее дискуссии по этому вопросу и против его использования возникают и по сей день. Фторид используется для улучшения здоровья зубов в течение десятилетий.

Он содержится в большей части пищи и питьевой воды. Мгновенные чаи имеют наибольшее количество фторида, а затем идет красное вино, рыба, креветки, виноградный сок, какао. В нижней части списка находятся картофель и ветчина с минимальным количеством фтора.

Следите за содержанием этого вещества в том, что вы потребляете, потому что передозировка приводит к обесцвечиванию зубов у детей, повреждению почек и печени, а также к значительному ослаблению иммунной системы.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Другие нейротоксины

Среди других нейротоксинов, которые вы должны контролировать в продуктах, являются: ртуть (главным образом, в рыбных продуктах), гидролизованный растительный белок, казеинат кальция и натрия, а также дрожжевой экстракт.

Совершенно невозможно очистить нашу пищу от всех этих нейротоксинов. Однако можно уменьшить их использование, зная, что они могут сделать.

Внимательно проинформируйте себя и подумайте о происхождении пищи. Используя больше витаминов и минералов, вы уменьшите их вред и с помощью большого количества воды и спорта избавитесь от них быстрее.

Источник

Яды — высокоточное оружие: компьютерное исследование природных нейротоксинов

Яды — высокоточное оружие: компьютерное исследование природных нейротоксинов

Потенциал-чувствительный натриевый канал имеет форму диафрагмы фотоаппарата, где пóровая часть одного домена канала взаимодействует с потенциал-чувствительной частью другого домена. α-Нейротоксины, по-видимому, отражают это строение в своей модульной архитектуре.

Авторы
Редакторы

Биологическая эволюция — общая форма существования живой материи. При детальном рассмотрении оказывается, что виды почти никогда не эволюционируют поодиночке: обычно в этом принимают участие их экологические партнеры, и изменение происходит в парах паразит—хозяин или хищник—жертва. Более того, коэволюцию часто можно проследить на молекулярном уровне, когда один вид совершенствует систему нападения, а второй вслед за ним — систему защиты (и наоборот). Параллель с холодной войной здесь настолько очевидна, что соответствующий феномен даже получил название эволюционной «гонки вооружений». Примером наиболее эффективных и элегантных систем нападения служат животные яды, содержащие в своем составе нейротоксины — вещества, воздействующие на нервную систему и мышцы жертвы.

Несмотря на детальную проработку теории эволюции профессионалами и многочисленные примеры, вошедшие в учебники и популярную литературу [1], воплощение эволюционного процесса зачастую настолько причудливо, что исследование изменений в живых организмах может быть интересно далеко не только ученым-теоретикам. Известно, что у эволюции нет воли и цели: живые организмы меняются, чтобы оставить максимальное потомство, а не чтобы достигнуть абстрактного совершенства [2]. Так, эволюционно прогрессивным признаком считается то, что позволяет лучше приспособиться к окружающим условиям в данный момент, а не красота или сложность устройства сами по себе.

Например, антарктическая ледяная рыба утратила гены гемоглобина из-за того, что условия ее обитания — нулевая или даже отрицательная (!) температура воды, растворимость кислорода в которой достаточно высокая, чтобы обеспечивать ткани этим газом просто за счет диффузии и усиления кровотока. Можно сказать, что в этом случае рыба «экономит» на гемоглобине [3]. Другие рыбы, которые живут в пещерах и никогда не выплывают на белый свет или обитают на очень больших глубинах, почти всегда за ненадобностью теряют зрение. Степень упрощения паразитических организмов вообще поражает воображение, причем в случае бактерий это приводит к кардинальному упрощению всего генетического аппарата: например, геном микоплазмы содержит всего около 500 генов, а у облигатного внутриклеточного симбионта Candidatus Carsonella ruddii и вовсе около 180 генов [4]. И всё перечисленное — прогрессивные признаки, поскольку они позволили упомянутым организмам максимально адаптироваться к обстановке, в которой они обитают. Более известный (и более «благородный») пример — эволюция человека, где развитие пошло по пути усложнения нервной системы и способности к коммуникации, а также к становлению богатой культуры, современное состояние которой мы имеем удовольствие ежедневно наблюдать вокруг. Одновременно возросла роль полового отбора и образования семей [5], — и все это тоже проделки эволюции [6].

В нашей статье речь пойдет об особой разновидности эволюционного процесса, которую можно назвать «гонкой вооружений» и в которой участвуют две стороны: нападающая и обороняющаяся (или «догоняющая» и «убегающая»). Чрезвычайно любопытно наблюдать «гонку» на молекулярном уровне. Поскольку изменение одной стороны согласовано с изменением второй, то и гонку вооружений иногда можно довольно подробно проследить по «молекулярной летописи» процессов, происходящих внутри живых организмов.

Уроки холодной войны

Вторая половина XX века, кроме замечательных открытий в молекулярной биологии, была ознаменована холодной войной — глобальной конфронтацией между социалистическим и капиталистическим строями. Это противостояние породило эффект гонки вооружений — процесс борьбы за военное превосходство с положительной обратной связью, вызвавший гипертрофию военно-промышленных комплексов СССР и США.

Похожий эффект наблюдается и в процессе коэволюции двух видов, связанных друг с другом в системе «хищник—жертва» или «паразит—хозяин»: изменение одного из видов неизбежно влечет изменение второго для сохранения паритета или получения превосходства. Хорошо известный пример эволюционной гонки вооружений — газель и гепард, каждому из которых приходится бегать из поколения в поколение все быстрее и быстрее, чтобы одному ускользнуть из пасти, а другому — остаться сытому.

Эволюционная гонка вооружений, или принцип Черной королевы

Подчеркивая параллель с холодной войной, биологи ввели понятие эволюционной гонки вооружений (англ. evolutionary arms race), приписывая этому процессу роль важнейшей движущей силы эволюции [7]. Более строго это понятие сформулировано в форме «принципа Черной Королевы», утверждающего, что в коэволюционных отношениях каждому из видов приходится «бежать со всех ног, чтобы только остаться на том же месте» (эта цитата из «Алисы в Зазеркалье» удачно передает суть принципа). Прямое экспериментальное подтверждение принципа Черной королевы получено на микроскопических рачках дафниях и их паразитических бактериях: «воскресив» из донного ила несколько поколений тех и других, биологи показали, что самые опасные для дафний паразиты — современные им, тогда как «прошлые» и «будущие» популяции бактерий заражали рачков с меньшей эффективностью [8].

Око за око, ген за ген

Хорошим примером эволюционной гонки вооружений являются растения с их паразитами. Во многих случаях наблюдается строгое соответствие системы устойчивости растения системе вирулентности его паразита. Более того, это соответствие сводится всего лишь к двум генам: гену растения, позволяющему противостоять заражению (гену резистентности, R) и гену паразита, необходимому для инфекции (гену авирулентности, Avr). Такие межвидовые отношения получили название «ген за ген» (англ. gene-for-gene) [9]. Растения, содержащие ген R, оказываются устойчивыми по отношению к паразитам с соответствующим геном Avr. Как правило, гены резистентности растений кодируют белки-рецепторы, регистрирующие появление паразита. Теперь паразит стремится изменить свой Avr-ген так, чтобы ускользнуть от узнавания рецептором растения. И наоборот, растение изменяет свой R-ген, чтобы по-прежнему детектировать заражение.

Вариация фаз

Одно из наиболее прогрессивных эволюционных приобретений высших позвоночных — развитая иммунная система, основанная на принципе комбинаторики и позволяющая противостоять практически любому чужеродному организму [10], [11]. Однако бактерии и вирусы на сдаются, им тоже есть что предъявить из своего арсенала. Хорошо известный пример — постоянно мутирующий вирус гриппа, к которому необходимо получать всё новые и новые вакцины [12]. Другой, не менее поразительный, пример — явление «смены фаз» у бактерий, заключающееся в случайном изменении фенотипа с высокой частотой, намного превышающей частоту обычных мутаций. Так, сальмонеллы используют этот прием для замены белка флагеллина, из которого построены бактериальные жгутики и который служит сигналом для запуска иммунологических реакций. Только у хозяина разовьется иммунный ответ, как сальмонелла меняет тип флагеллина и ускользает [13]!

Ядовитый арсенал

Пожалуй, самым эффективным средством как нападения, так и защиты служат яды, которые в процессе эволюции научились вырабатывать разнообразнейшие животные: многие кишечнополостные, членистоногие, моллюски, хордовые и другие (рис. 1). Присутствующие в ядах молекулы называют токсинами, а в том частном (но распространенном) случае, когда мишенью их действия служит нервная система и/или мышцы, — нейротоксинами.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Рисунок 1. Разнообразие ядовитых животных. На филогенетическом дереве многоклеточных отмечены типы животных, среди представителей которых встречаются ядовитые. Вокруг дерева расположены фотографии ядовитых животных (сверху — позвоночных, слева — членистоногих, слева внизу — иглокожих, справа вверху — моллюсков, справа внизу — губок, кишечнополостных и некоторых червей).

Состав яда животных различен: если, допустим, в яде пчелы присутствуют всего два основных компонента — мембраноактивный пептид мелиттин и гидролизующий липиды фермент фосфолипаза A2, — то в яде пауков, скорпионов, морских анемон и конусов, а также змей содержатся десятки, а иногда сотни или даже тысячи компонентов различной химической природы. Наблюдаемое в ядах разнообразие компонентов одного структурного типа сегодня принято описывать термином «эволюционно отредактированная комбинаторная библиотека» [14]. Эти молекулы обладают различной эффективностью и специфичностью в отношении разных рецепторов, а результирующая смесь токсинов эффективна в отношении широкого круга мишеней.

Эволюционное преимущество богатого арсенала — способность «следовать» за жертвой: если мишень действия основного компонента яда начнет ускользать (например, рецептор мутирует), в яде с большой вероятностью обнаружится слабо представленный, но более активный по отношению к новой форме рецептора токсин, и теперь уже ему суждено будет стать основой «вооружения» у будущих поколений ядовитых хищников.

«Всенепременнейше захватите телеграф!»

Каждый ПЧНК состоит из очень длинной полипептидной цепи (около двух тысяч остатков аминокислот), которая представлена четырьмя похожими повторами (рис. 2). При этом в пространстве канал составлен из пяти частей (или доменов). В образовании единственного порового домена (ПД) участвуют все повторы полипептидной цепи; в его центре формируется селективная для ионов Na + пора. Четыре — по одному от каждого повтора — потенциал-чувствительных домена (ПЧД) расположены вокруг центрального ПД [16]. Функция ПЧД — реагировать на изменение мембранного потенциала и передавать команду на открытие поры.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Рисунок 3. Некоторые природные нейротоксины, воздействующие на ПЧНК. Изображена модель пространственной организации канала; показан центральный ПД и два ПЧД (II и IV). Представлены фотографии ядовитых животных, служащих источником «классических» нейротоксинов. Тетродотоксин из рыбы фугу блокирует пору ПЧНК, связываясь с внеклеточной стороны. Батрахотоксин из кожи колумбийской лягушки проникает через мембрану и встраивается внутрь поры канала, вызывая его активацию. α-Токсины скорпионов связываются с ПЧД-IV и подавляют процесс естественной инактивации каналов. β-Токсины скорпионов связываются с ПЧД-II и активируют ПЧНК.

Но не все токсины блокируют канал: есть и такие, которые его активируют, то есть увеличивают время, когда канал находится в открытом состоянии. Примером таких молекул является батрахотоксин, содержащийся в секрете кожных желез некоторых Южноамериканских лягушек-листолазов. Распространенные инсектициды пиретроиды также относятся к активаторам ПЧНК.

α- и β-токсины из яда скорпионов представляют собой небольшие белки (

60—70 аминокислотных остатков), в структуре которых присутствует β-лист из трех тяжей и короткая α-спираль, скрепленные четырьмя дисульфидными связями (рис. 4). Хотя и те, и другие токсины, по сути, активируют канал, делают они это по-разному. α-Токсины мешают каналу закрыться, а β-токсины — помогают ему открыться. Соответственно и места взаимодействия с ПЧНК у этих токсинов разные: те и другие связываются с ПЧД, но для α-токсинов это ПЧД-IV, а для β-токсинов — ПЧД-II.

нейротоксины что это простыми словами. Смотреть фото нейротоксины что это простыми словами. Смотреть картинку нейротоксины что это простыми словами. Картинка про нейротоксины что это простыми словами. Фото нейротоксины что это простыми словами

Рисунок 4. Модульная структура α-токсинов скорпионов. Эти токсины — небольшие белки, составленные из β-листа и α-спирали, скрепленных дисульфидными связями. Такая жесткая и эволюционно консервативная структура образует «сердцевину» молекулы, а две петли и C-конец образуют динамически подвижный «модуль специфичности» (показан пунктирным овалом), отличающийся у млеко- (слева) и инсектотоксинов (справа). Рисунок показывает результаты анализа характерных внутренних движений по данным молекулярной динамики. Цветной спектр конформаций изображает динамическую подвижность каждой из молекул.

Остановимся теперь подробнее на α-токсинах и их «взаимоотношениях» с ПЧНК. Дело в том, что в яде скорпионов присутствуют молекулы, обладающие токсическим действием по отношению к насекомым или млекопитающим (назовем соответствующие α-токсины инсектотоксинами и млекотоксинами). И те, и другие связываются с ПЧД-IV, но только у разных каналов. У насекомых это свой канал, называемый Para [18], а у млекопитающих есть целых девять разновидностей каналов, обозначаемых Nav1.1—1.9 [19]. Разные ПЧНК млекопитающих выполняют разные функции. Например, Nav1.2 характерен для центральной нервной системы, Nav1.4 — для скелетной мускулатуры, Nav1.5 — для сердца [20]. А дальше в ход идет упомянутая «комбинаторная библиотека» яда скорпионов, в которой может найтись молекула, активная по отношению к выбранной мишени. Если это происходит, «владелец» такого яда получает эволюционное преимущество по сравнению с другими, и та часть его генома, которая отвечает за состав ядовитой библиотеки, широко распространяется в будущих поколениях скорпионов.

Присутствующие в яде скорпионов нейротоксины отличаются разнообразием: некоторые из них могут быть направлены исключительно на каналы насекомых (инсектотоксины), тогда как другие действуют на каналы млекопитающих (млекотоксины). Есть также молекулы, действующие сразу и на те, и на другие ПЧНК. Что лежит в основе молекулярной эволюции этих токсинов, позволяющей им угнаться сразу за множеством ускользающих мишеней? Попробуем ответить на этот вопрос.

Компьютерный анализ выявляет «молекулярную гонку вооружений»

В Институте биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН было проведено исследование, направленное на выявление особенностей млеко- и инсектотоксинов из яда скорпионов, определяющих их селективное взаимодействие с соответствующими ПЧНК. Работа состояла из двух частей:

Компьютерное моделирование было основано на методе молекулярной динамики (МД) [21]. Установлено, что молекулы α-токсинов, несмотря на свой небольшой размер и жесткую структуру, состоят из двух динамических модулей. Анализ характерных движений показал, что один из этих модулей достаточно «жесткий», а другой конформационно «пластичный». Более того, движения «пластичного» модуля различаются у млеко- и инсектотоксинов (рис. 4).

Идентифицированные с помощью МД части молекул получили название «сердцевины» и «модуля специфичности». Сердцевина α-токсинов оказывается эволюционно консервативным (очень сходно устроенным у инсекто- и млекотоксинов), а модуль специфичности — вариабельным, соответствующим конкретной мишени действия. Сердцевина, таким образом, отвечает за распознавание ПЧНК «вообще», а быстро изменяющийся в эволюции модуль специфичности позволяет токсину «настраиваться» на конкретный тип канала.

Было также обнаружено, что модуль специфичности млекотоксинов существенно более гидрофильный, чем у инсектотоксинов. Эта особенность, предположительно, отражает структурные детерминанты, позволяющие токсинам селективно распознавать свои мишени. Что интересно, анализ свойств ПЧНК показал ту же тенденцию для внеклеточной части S5—S6 повтора I: у каналов млекопитающих эти области более гидрофильны, а у каналов насекомых — гидрофобны. Сопоставление результатов анализа с накопленными биохимическими данными позволило предложить любопытный характер связывания α-токсинов с ПЧНК. Сердцевинный модуль, по-видимому, взаимодействует с ПЧД-IV, в то время как модуль специфичности связывается с петлей S5—S6 повтора I. Интересно, что данные области в структуре ПЧНК сближены, что также было показано в независимых экспериментах. Идея соответствия модульной организации токсинов доменной структуре каналов имеет интересный эволюционный смысл, позволяющий нам разглядеть гонку вооружений в противостоянии ядовитых животных и их жертв. Модульная структура предположительно позволяет токсинам гибко адаптироваться к изменяющейся мишени.

Компьютерный анализ может быть использован для предсказания активности токсинов с неизученными свойствами. В частности, для токсина M9 из яда Среднеазиатского скорпиона Mesobuthus eupeus, ставшего первым α-нейротоксином из скорпионьего яда, для которого была установлена пространственная структура (кстати, это тоже было сделано в ИБХ [22]), была предсказана активность в отношении каналов как млекопитающих, так и насекомых. Биоинженерный синтез и тестирование активности этого токсина на рекомбинантных ПЧНК подтвердили высказанное предположение. Результаты представленной работы были опубликованы в журнале Journal of Biological Chemistry [23]. Эволюционное обособление модулей α-токсинов, похоже, вызвано требованиями гонки вооружений — необходимостью оперативно адаптироваться вслед за изменяющимися условиями среды: появлением новых мишеней и изменением старых. Вряд ли этот подход является универсальным, но в данном случае он позволил с новой стороны взглянуть на взаимосвязь структура—функция для биологически активных пептидов.

Биоинженерия и нейробиология

Исследования молекулярных основ эволюционной гонки вооружений имеет не только фундаментальное значение. Например, заново созданные «дизайнерские» молекулы — аналоги нейротоксинов с заданной исследователями активностью — являются идеальными инструментами исследования нервной системы. Такие молекулы позволили бы прицельно регулировать работу ионных каналов и модифицировать нервный ответ желаемым образом.

Придание нейротоксинам желаемой селективности и видоспецифичности позволит, например, создать инсектицид нового поколения. Биоинженерно изготовленный или даже внедренный в геном растений инсектотоксин позволит эффективно бороться с насекомыми-вредителями. А можно представить себе возможность создания идеально селективного инсектотоксина, действующего на вредителей и не токсичного для полезных насекомых (например, пчел).

Наконец, идеально селективные нейротоксины — уже не яды, а точно настраиваемые нейрорегуляторы — нашли бы применение в молекулярной медицине для лечения заболеваний, связанных с дисфункцией ионных каналов и называемых каналопатиями. Среди них — различные неврологические и психические расстройства, а также к патологии скелетной и сердечной мускулатуры [24].

Статья поддержана грантом РФФИ д_с-13-04-11520 и первоначально опубликована в «Науке и жизни» [25]. См. также видеозапись «ядовитого» семинара, организованного Советом молодых ученых ИБХ РАН осенью 2013 года.

Видео 1. Доклад А.А. Василевского «Что-то. про паучков», сделанный на «ядовитом» семинаре Совета молодых ученых ИБХ РАН осенью 2013 года. В этом докладе также рассказывается о непростых взаимоотношениях нейротоксинов с их молекулярными мишенями.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *