нейроны головного мозга что это простыми словами

Нейроны для «чайников»

Нейроны – особая группа клеток организма, распространяющих информацию по всему телу. Используя электрические и химические сигналы, они помогают мозгу координировать все жизненно необходимые функции.

Если упростить, задачи нервной системы – собрать сигналы, поступающие из окружающей среды или из организма, оценить ситуацию, принять решение, как на них отреагировать (например, изменить частоту сердечных сокращений), а также подумать о происходящем и запомнить это. Основной инструмент для выполнения этих задач – нейроны, сплетенные по всему организму сложной сетью.

По средним оценкам, количество нейронов в головном мозге составляет 86 миллиардов, каждый из них связан еще с 1000 нейронов. Это создает невероятную сеть взаимодействия. Нейрон – основная единица нервной системы.

Нейроны (нервные клетки) составляют около 10% мозга, остальное – глиальные клетки и астроциты, функция которых заключается в поддержании и питании нейронов.

Как выглядит нейрон?

В строении нейрона можно выделить три части:

· Тело нейрона (сома) – получает информацию. Содержит ядро клетки.

· Дендриты – короткие отростки, принимающие информацию от других нейронов.

· Аксон – длинный отросток, несет информацию от тела нейрона в другие клетки. Чаще всего аксон оканчивается синапсом (контактом) с дендритами других нейронов.

нейроны головного мозга что это простыми словами. Смотреть фото нейроны головного мозга что это простыми словами. Смотреть картинку нейроны головного мозга что это простыми словами. Картинка про нейроны головного мозга что это простыми словами. Фото нейроны головного мозга что это простыми словами
Схема строения нейрона (здесь и далее рисунки из Википедии).

Дендриты и аксоны называют нервными волокнами.

Аксоны сильно варьируют по длине, от нескольких миллиметров до метра и более. Самыми длинными являются аксоны спинномозговых ганглиев.

Классификацию нейронов можно провести по нескольким параметрам, например, по строению или выполняемой функции.

Типы нейронов в зависимости от функции:

· Эфферентные (двигательные) нейроны – несут информацию от центральной нервной системы (головного и спинного мозга) к клеткам других частей тела.

· Афферентные (чувствительные) нейроны – собирают информацию от всего организма и несут ее в центральную нервную систему.

· Вставочные нейроны – передают информацию между нейронами, чаще в пределах центральной нервной системы.

Как нейроны передают информацию?

Нейрон, получая информацию от других клеток, накапливает ее до тех пор, пока она не превысит определенный порог. После этого нейрон посылает по аксону электрический импульс – потенциал действия.

Потенциал действия формируется движением электрически заряженных частиц через мембрану аксона.

В состоянии покоя электрический заряд внутри нейрона отрицательный относительно окружающей его межклеточной жидкости. Эта разница называется мембранным потенциалом. Обычно он составляет 70 милливольт.

Когда тело нейрона получает достаточно заряда, и он «выстреливает», в соседнем участке аксона происходит деполяризация – мембранный потенциал быстро растет, а затем падает примерно за 1/1000 секунды. Этот процесс запускает деполяризацию соседнего участка аксона, и так далее, пока импульс не пройдет по всей длине аксона. После процесса деполяризации наступает гиперполяризация – кратковременное состояние отдыха, в этот момент передача импульса невозможна.

нейроны головного мозга что это простыми словами. Смотреть фото нейроны головного мозга что это простыми словами. Смотреть картинку нейроны головного мозга что это простыми словами. Картинка про нейроны головного мозга что это простыми словами. Фото нейроны головного мозга что это простыми словами

Потенциал действия чаще всего генерируют ионы калия (К+) и натрия (Na+), которые по ионным каналам перемещаются из межклеточной жидкости внутрь клетки и обратно, меняя заряд нейрона и делая его сначала положительным, а затем снижая его.

Потенциал действия обеспечивает работу клетки по принципу «все или ничего», то есть импульс или передается, или нет. Слабые сигналы будут накапливаться в теле нейрона до тех пор, пока их заряда не будет достаточно для передачи по отросткам.

Миелин

нейроны головного мозга что это простыми словами. Смотреть фото нейроны головного мозга что это простыми словами. Смотреть картинку нейроны головного мозга что это простыми словами. Картинка про нейроны головного мозга что это простыми словами. Фото нейроны головного мозга что это простыми словами
Миелинизированное волокно в сравнении с немиелинизированным.

Миелин вырабатывается шванновскими клетками на периферии и олигодендроцитами в центральной нервной системе. По ходу волокна миелиновая оболочка прерывается – это перехваты Ранвье. Потенциал действия перемещается от перехвата к перехвату, что обеспечивает быструю передачу импульса.

Такое распространенное и серьезное заболевание, как рассеянный склероз, вызвано разрушением миелиновой оболочки.

Как работают синапсы

Нейроны и ткани, которым они передают импульс, физически не соприкасаются, между клетками всегда существует пространство – синапс.

В зависимости от способа передачи информации, синапсы могут быть химическими и электрическими.

После того как сигнал, передвигаясь по отростку нейрона, достигает синапса, происходит высвобождение химических веществ – нейромедиаторов (нейротрансмиттеров) в пространство между двумя нейронами. Это пространство называют синаптической щелью.

нейроны головного мозга что это простыми словами. Смотреть фото нейроны головного мозга что это простыми словами. Смотреть картинку нейроны головного мозга что это простыми словами. Картинка про нейроны головного мозга что это простыми словами. Фото нейроны головного мозга что это простыми словами
Схема строения химического синапса.

Нейромедиатор из передающего (пресинаптического) нейрона, попадая в синаптическую щель, взаимодействует с рецепторами на мембране принимающего (постсинаптического) нейрона, запуская целую цепь процессов.

Виды химических синапсов:

· глютаматэргический – медиатором является глютаминовая кислота, обладает возбуждающим эффектом на синапс;

· ГАМК-эргический – медиатором является гамма-аминомасляная кислота (ГАМК), обладает тормозящим эффектом на синапс;

· холинергический – медиатором является ацетилхолин, осуществляет нервно-мышечную передачу информации;

· адренергический – медиатором является адреналин.

Электрические синапсы встречаются реже, распространены в центральной нервной системе. Клетки сообщаются посредством особых белковых каналов. Пресинаптическая и постсинаптическая мембраны в электрических синапсах расположены близко друг к другу, поэтому импульс способен проходить непосредственно от клетки к клетке.

Скорость передачи импульса по электрическим синапсам гораздо выше, чем по химическим, поэтому они расположены преимущественно в тех отделах, где необходима быстрая реакция, например, отвечающих за защитные рефлексы.

Еще одно отличие двух типов синапсов в направлении передачи информации: если химические синапсы могут передавать импульс только в одном направлении, то электрические в этом смысле универсальны.

Заключение

Нейроны – это, пожалуй, самые необычные клетки организма. Каждое действие, которое осуществляет тело человека, обеспечивается работой нейронов. Сложная нейронная сеть формирует личность и сознание. Они отвечают как за самые примитивные рефлексы, так и за самые сложные процессы, связанные с мышлением.

Аминат Аджиева, портал «Вечная молодость» http://vechnayamolodost.ru по материалам Medical News Today: Neurons: The basics.

Читать статьи по темам:

Читать также:

Они восстанавливаются

Как нейробиологи-«революционеры» опровергали продержавшуюся 100 лет догму, гласившую, что нервные клетки не восстанавливаются.

Регенерация спинного мозга

Ткань, содержащая человеческие стволовые клетки, позволила парализованным крысам ходить и вернула чувство осязания конечностям.

Проспиртованные нейроны не восстанавливаются

Употребление алкоголя ведет не только к гибели уже существующих нервных клеток, но и к замедлению формирования новых.

Не спи за рулём!

Когда водитель утомлён, его внимание рассеивается, поскольку нейроны не реагируют на внешние стимулы так эффективно, как должны.

Фибриноген тормозит ремиелинизацию

Исследователи из Института Глэдстоун обнаружили интересную взаимосвязь восстановления миелина с белками плазмы крови.

Электронное СМИ зарегистрировано 12.03.2009

Свидетельство о регистрации Эл № ФС 77-35618

Источник

Что делает человека человеком, или Как работают нейроны

Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням и стал жить дольше. Он пытается манипулировать генами, «выращивать» органы для трансплантации и путем клонирования «творить» живых существ. Но для него по-прежнему остается величайшей загадкой, как функционирует его собственный мозг, как с помощью обычных электрических импульсов и небольшого набора нейромедиаторов нервная система не только координирует работу миллиардов клеток организма, но и обеспечивает возможность познавать, мыслить, запоминать, испытывать широчайшую гамму эмоций. На пути к постижению этих процессов человек должен, прежде всего, понять, как функционируют отдельные нервные клетки (нейроны).

Живые электросети

По приблизительным оценкам, в нервной системе человека более 100 млрд нейронов. Все структуры нервной клетки ориентированы на выполнение важнейшей для организма задачи – получение, переработка, проведение и передача информации, закодированной в виде электрических или химических сигналов (нервных импульсов).

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро, развитый белок-синтезирующий аппарат и другие органеллы, а также отростков: одного аксона, и нескольких, как правило, ветвящихся, дендритов. Длина аксонов обычно заметно превосходит размеры дентритов, в отдельных случаях достигая десятков сантиметров и даже метров. Например, гигантский аксон кальмараимеет толщину около 1 мм и несколько метров в длину; экспериментаторы не преминули воспользоваться такой удобной моделью, и опыты именно с нейронами кальмаров послужили выяснению механизма передачи нервных импульсов.

Снаружи нервная клетка окружена оболочкой (цитолеммой), которая не только обеспечивает обмен веществ между клеткой и окружающей средой, но также способна проводить нервный импульс. Дело в том, что между внутреннней поверхностью мембраны нейрона и внешней средой постоянно поддерживается разность электрических потенциалов. Это происходит благодаря работе так называемых «ионных насосов» – белковых комплексов, осуществляющих активный транспорт положительно заряженных ионов калия и натрия через мембрану. Такой активный перенос, а также постоянно протекающая пассивная диффузия ионов через поры в мембране обуславливают в покое отрицательный относительно внешней среды заряд с внутренней стороны мембраны нейрона.

Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений (активное поступление ионов натрия в нейрон и кратковременное изменение заряда с внутренней стороны мембраны с отрицательного на положительный), которые распространяются по всей нервной клетке. В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, нервный импульс в процессе распространения постоянно восстанавливается.

Основными функциями нервной клетки являются восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция). По дендритам – инженеры назвали бы их «приемниками» – импульсы поступают в тело нервной клетки, а по аксону – «передатчику» – идут от ее тела к мышцам, железам или другим нейронам.

В зоне контакта

Аксон имеет тысячи ответвлений, которые тянутся к дендритам других нейронов. Зона функционального контакта аксонов и дендритов называется синапсом. Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия нервной клетки в разнообразных реакциях организма. На телах крупных мотонейронов спинного мозга может насчитываться до 20 тыс синапсов.

В синапсе происходит преобразование электрических сигналов в химические и обратно. Передача возбуждения осуществляется с помощью биологически активных веществ – нейромедиаторов (ацетилхолина, адреналина, некоторых аминокислот, нейропептидов и др.). Они содержатся в особых пузырьках, находящихся в окончаниях аксонов – пресинаптической части. Когда нервный импульс достигает пресинаптической части, происходит выброс нейромедиаторов в синаптическую щель, они связываются с рецепторами, расположенными на теле или отростках второго нейрона (постсинаптической части), что приводит к генерации электрического сигнала – постсинаптического потенциала. Величина электрического сигнала прямо пропорциональна количеству нейромедиатора. Одни синапсы вызывают деполяризацию нейрона, другие – гиперполяризацию; первые являются возбуждающими, вторые – тормозящими. После прекращения выделения медиатора происходит удаление его остатков из синаптической щели и возвращение рецепторов постсинаптической мембраны в исходное состояние. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, определяет, будет ли он в данный момент генерировать нервный импульс.

Нейрокомпьютеры

Попытка смоделировать принципы работы биологических нейронных сетей привела к созданию такого устройства переработки информации как нейрокомпьютер. В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях (своего рода синапсах) между очень простыми процессорами, которые формально могут быть названы нейронами. Нейрокомпьютеры не программируют в традиционном смысле этого слова, а «обучают», настраивая эффективность всех «синаптических» связей между составляющими их «нейронами». Основными сферами применения нейрокомпьютеров их разработчики видят: распознавание визуальных и звуковых образов; экономическое, финансовое, политическое прогнозирование; управление в реальном времени производственными процессами, ракетами, самолетами; оптимизация при конструировании технических устройств и т.д.

«Голова – предмет темный…»

Нейроны можно разбить на три большие группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические – в ушной улитке, обонятельные – в хеморецепторах носа и др.), в электрическую импульсацию своих аксонов. Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и генерируют управляющие сигналы для эффекторов. Нейроны этой группы образуют центральную нервную систему (ЦНС). Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Если принципы функционирования рецепторных и эффекторных нейронов более или менее понятны ученым, то промежуточный этап, на котором организм «переваривает» поступившую информацию и принимает решение о том, как на нее отреагировать, понятен лишь на уровне простейших рефлекторных дуг. В большинстве же случаев нейрофизиологический механизм формирования тех или иных реакций остается загадкой. Не даром в научно-популярной литературе головной мозг человека часто сравнивают с «черным ящиком».

«…В вашей голове живут 30 млрд нейронов, хранящих ваши знания, навыки, накопленный жизненный опыт. После 25 лет размышлений данный факт кажется мне не менее поразительным, чем раньше. Тончайшая пленка, состоящая из нервных клеток, видит, чувствует, творит наше мировоззрение. Это просто невероятно! Наслаждение теплотой летнего дня и смелые мечты о будущем – все создается этими клетками… Ничего другого не существует: никакой магии, никакого специального соуса, только нейроны, исполняющие информационный танец,» – писал в своей книге «Об интеллекте» известнейший разработчик компьютеров, основатель Редвудского института нейрологии (США) Джефф Хокинс. Уже более полувека тысячи ученых-нейрофизиологов во всем мире пытаются понять хореографию этого «информационного танца», однако на сегодня известны лишь его отдельные фигуры и па, не позволяющие создать универсальную теорию функционирования головного мозга.

Следует отметить, что многие работы в области нейрофизиологии посвящены так называемой «функциональной локализации» – выяснению того, какой нейрон, группа нейронов или целая область мозга активируется в тех или иных ситуациях. На сегодня накоплен огромный массив информации о том, какие нейроны у человека, крысы, обезьяны избирательно активируются при наблюдении различных объектов, вдыхании феромонов, прослушивании музыки, разучивании стихотворений и т.д. Правда, иногда подобные опыты кажутся несколько курьезными. Так, еще в 70-е годы прошлого века одним из исследователей в мозге у крысы были обнаружены «нейроны зеленого крокодильчика»: эти клетки активировались, когда бегущее по лабиринту животное среди прочих предметов натыкалось на уже знакомую ему игрушку маленького зеленого крокодильчика. А другим ученым позднее в мозге у человека был локализован нейрон, «реагирующий» на фотографию президента США Била Клинтона. Все эти данные подтверждают теорию о том, что нейроны в головном мозге специализированы, однако ни в коей мере не объясняют, почему и каким образом происходит эта специализация.

Лишь в общих чертах понятны ученым нейрофизиологические механизмы обучения и памяти. Предполагается, что в процессе запоминания информации происходит формирование новых функциональных контактов между нейронами коры головного мозга. Иными словами, нейрофизиологическим «следом» памяти являются синапсы. Чем больше возникает новых синапсов, тем «богаче» память индивидуума. Типичная клетка в коре головного мозга образует несколько (до 10) тысяч синапсов. С учетом общего числа нейронов коры получается, что всего здесь могут сформироваться сотни миллиардов функциональных контактов! Под влиянием каких-либо ощущений, мыслей или эмоций происходит припоминание – возбуждение отдельных нейронов активизирует весь ансамбль, ответственный за хранение той или иной информации.

В 2000 г шведскому фармакологу Арвиду Карлссону и американским нейробиологам Полу Грингарду и Эрику Кенделу была присуждена Нобелевская премия по физиологии и медицине за открытия, касающиеся «передачи сигналов в нервной системе». Ученые продемонстрировали, что память большинства живых существ работает благодаря действию так называемых нейротрансмиттеров – дофамина, норадреналина и серотонина, эффект которых в отличие от классических нейромедиаторов развивается не за миллисекунды, а за сотни миллисекунд, секунды и даже часы. Именно этим и обусловлено их длительное, модулирующее влияние на функции нервных клеток, их роль в управлении сложными состояниями нервной системы – воспоминаниями, эмоциями, настроениями.

Следует также отметить, что величина сигнала, генерируемого на постсинаптической мембране, может быть различной даже при одинаковой величине исходного сигнала, достигшего пресинаптической части. Эти различия определяет так называемая эффективность, или вес, синапса, который может изменяться в процессе функционирования межнейронного контакта. По мнению многих исследователей, изменение эффективности синапсов также играет немаловажную роль в работе памяти. Возможно, часто используемая человеком информация хранится в нейронных сетях, связанных высокоэффективными синапсами, и поэтому быстро и легко «вспоминается». В то же время, синапсы, участвующие в хранении второстепенных, редко «извлекаемых» данных, по-видимому, характеризуются низкой эффективностью.

А все-таки они восстанавливаются!

Одна из наиболее волнующих с медицинской точки зрения проблем нейробиологии – возможность регенерации нервной ткани. Известно, что перерезанные или поврежденные волокна нейронов периферической нервной системы, окруженные неврилеммой (оболочкой из специализированных клеток), могут регенерировать, если тело клетки сохранилось в целости. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона. Аксоны в ЦНС не окружены неврилеммой и поэтому, по-видимому, не способны вновь прорастать к месту прежнего окончания. В то же время, до недавнего времени нейрофизиологи считали, что в течение жизни человека новые нейроны в ЦНС не образуются. «Нервные клетки не восстанавливаются!», – предостерегали нас ученые. Предполагалось, что поддержание нервной системы в «рабочем состоянии» даже при серьезных заболеваниях и травмах происходит благодаря ее исключительной пластичности: функции погибших нейронов берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Получается, что одна живая нервная клетка может функционально заменить девять погибших!

нейроны головного мозга что это простыми словами. Смотреть фото нейроны головного мозга что это простыми словами. Смотреть картинку нейроны головного мозга что это простыми словами. Картинка про нейроны головного мозга что это простыми словами. Фото нейроны головного мозга что это простыми словами

В настоящее время доказано, что в головном мозге взрослых млекопитающих образование новых нервных клеток (нейрогенез) все же происходит. Еще в 1965 г было показано, что новые нейроны регулярно появляются у взрослых крыс в гиппокампе – области мозга отвечающей за ранние фазы обучения и памяти. Спустя 15 лет ученые показали, что в мозге птиц новые нервные клетки появляются на протяжении всей жизни. Однако исследования мозга взрослых приматов на предмет нейрогенеза не давали обнадеживающих результатов. Лишь около 10 лет назад американские ученые разработали методику, которая доказала, что в мозге обезьян в течение всей жизнииз нейрональных стволовых клеток продуцируются новые нейроны. Исследователи вводили животным специальное вещество-метку (бромдиоксиуридин), которое включалось в ДНК только делящихся клеток. Так было обнаружено, что новые клетки начинали размножаться в субвентрикулярной зоне и уже оттуда мигрировали в кору, где и созревали до взрослого состояния. Новые нейроны обнаруживались в зонах головного мозга, связанных с когнитивными функциями, и не возникали в зонах, реализующих более примитивный уровень анализа. В связи с этим ученые предположили, что новые нейроны могут быть важны для процесса обучения и памяти. В пользу данной гипотезы говорит также следующее: большой процент новых нейронов гибнет в первые недели после того, как они родились; однако в тех ситуациях, когда происходит постоянное обучение, доля выживших нейронов значительно выше, чем тогда, когда они «не востребованы» – когда животное лишено возможности образовывать новый опыт.

На сегодня установлены универсальные механизмы гибели нейронов при различных заболеваниях: 1) повышение уровня свободных радикалов и окислительное повреждение мембран нейронов; 2) нарушение деятельности митохондрий нейронов; 3) неблагоприятное действие избытка возбуждающих нейротрансмиттеров глутамата и аспартата, приводящее к гиперактивации специфических рецепторов, избыточному накоплению внутриклеточного кальция, развитию окислительного стресса и гибели нейрона (феномен эксайтотоксичности). Исходя из этого, в качестве лекарственных средств – нейропротекторов в неврологии используют: препараты с антиоксидантными свойствами (витамины Е и С, др.), корректоры тканевого дыхания (коэнзим Q10, янтарная кислота, рибофлавини, др), а также блокаторы рецепторов глутамата (мемантин, др.).

Примерно в то же время была подтверждена возможность появления новых нейронов из стволовых клеток в головном мозге взрослого человека: патологоанатомическое исследование пациентов, получавших при жизни бромдиоксиуридин с терапевтической целью, показало, что нейроны, содержащие данное вещество-метку, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий.

Этот феномен всесторонне исследуется с целью лечения различных нейродегенеративных заболеваний, прежде всего болезней Альцгеймера и Паркинсона, ставших настоящим бичом для «стареющего» населения развитых стран. В экспериментах для трансплантации используют как нейрональные стволовые клетки, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга, так и эмбриональные стволовые клетки, способные превращаться практически в любые клетки организма. К сожалению, на сегодняшний день врачи не могут разрешить основную проблему, связанную с пересадкой нейрональных стволовых клеток: их активное размножение в организме реципиента в 30-40% случаев приводит к образованию злокачественных опухолей. Несмотря на это, специалисты не теряют оптимизма и называют трансплантацию стволовых клетокодним из наиболее перспективных подходов в терапии нейродегенеративных заболеваний.

Подготовила Татьяна Ткаченко

На фото рядом с заголовком: прогениторны клетки (предшественники) нейронов, выращенные в культуре; сканирующая электронная микроскопия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *