неинвазивное артериальное давление что это
Неинвазивное артериальное давление что это
Неинвазивное измерение артериального давления приемлемо у большинства пациентов, поскольку у многих из них нет необходимости в постоянной оценке гемодинамики. Непрямое измерение АД может осуществляться на основе аускулътативного, осциллометрического и доплеровского методов. Кроме того, в настоящее время неинвазивное измерение АД может производиться на основе фотоплетозмографического метода.
Метод Короткова, основанный на аускультации, представляет собой наиболее часто используемый способ неинвазивного измерения АД. При правильном применении он позволяет довольно точно измерять АД у больных со стабильной гемодинамикой. Известно, что аускультативный метод дает неточные результаты у больных с высоким общим периферическим сосудистым сопротивлением, которое отмечается при синдроме шока или использовании сосудосуживающих препаратов. Несмотря на то что отмечена корреляция между данными, получаемыми с помощью аускультативного метода и прямого измерения АД, при сниженном тонусе периферических сосудов и при гиповолемии аускультативный метод все-таки считается непригодным для постоянного измерения АД, которое необходимо у нестабильного больного.
Устройства для автоматического неинвазивного измерения АД приобрели большую популярность благодаря относительно небольшой их стоимости, точности измерения АД и возможности многократных и частых измерений.
Осциллометрия представляет собой метод непрямого определения АД, базирующийся на измерении манометрических осцилляции, вызванных пульсацией артерий во время сдувания манжетки. Манжетка надувается и сдувается с помощью специальной помпы, помещенной в блок монитора или автоматический тонометр. Манжетка соединена с манометром. После создания в ней давления, превышающего систолическое АД, она постепенно сдувается. При первом появлении пульсирующих волн под манжеткой на манометре появляются осцилляторные колебания, которые соответствуют систолическому АД. По мере сдувания манжетки амплитуда осцилляции увеличивается до максимальной, что соответствует прямому измерению среднего АД. Диастолическое АД определяют при исчезновении осцилляции.
Для измерения системного АД используется также доплеров-ский метод.
Доплеровский датчик помещают над артерией. Датчик излучает звуковые волны и воспринимает их после того, как они отражаются от стенки сосуда. Затем производится частотный анализ отраженной волны, на основании чего можно судить о движении стенки сосуда или кровотоке в нем.
При использовании манжетки можно с приемлемой точностью определить систолическое и диастолическое АД. Недостатки методики связаны с различными помехами, которые могут быть вызваны движениями пациента или перемещением датчика.
Метод фотоплетизмографии позволяет осуществлять непрямое измерение АД благодаря использованию пальцевой манжетки, содержащей источник инфракрасного излучения и фотометрический датчик.
Объем кровотока мониторируют путем анализа отраженных инфракрасных лучей. Давление в манжетке повышают до тех пор, пока наружное давление, окружающее палец, позволяет поддерживать постоянный кровоток. Это наружное давление эквивалентно среднему АД. Поскольку устройство позволяет измерять давление при каждом сердечном цикле, существует возможность постоянного измерения систолического и диастолического АД. Вместе с тем следует учитывать, что при периферической вазоконстрикции могут быть получены неточные результаты.
Сравнительные исследования аускультативного, осциллометрического методов с инвазивным демонстрируют различные результаты.
У взрослых индивидуумов со стабильной гемодинамикой неинвазивные методики могут завышать систолическое и занижать диастолическое АД до 15 % по сравнению с одновременным прямым измерением.
Среди всех неинвазивных методов наиболее точно можно измерить систолическое АД с помощью осциллометрического метода. При непрямом измерении систолического АД возможны погрешности, которые зависят от величины манжетки, а также используемого при этом мониторного оборудования. Кроме того, к дополнительным факторам, которые могут приводить к ошибкам измерения, относят скорость сдувания манжетки, ее размер и позицию на руке, объем конечности, смещение датчика и анатомические вариации артерий.
Частое надувание манжетки может привести к трофическим нарушениям на коже и повреждению локтевого нерва. При неинвазивном измерении АД возможны ошибки, связанные с нарушением ритма сердца. Кроме того, понижение эластичности артериальной стенки, наблюдаемое при выраженном атеросклерозе, может приводить к нарушению окклюзии артерии при надувании манжетки, в результате чего измеренное неинвазивно АД выше измеренного с помощью артериального катетера. Несмотря на вышеизложенное, автоматическое неинвазивное измерение АД представляет собой эффективный метод мониторирования у относительно стабильного пациента, у которого не требуются частые измерения АД в течение коротких промежутков времени.
При неустойчивой гемодинамике непрямые методы измерения давления являются менее точными, поскольку требуют определенных затрат времени на измерение и с их помощью нельзя производить очень частые измерения. Аускультативный метод существенно завышает систолическое АД, а осциллометрический и доплеровскии методы несостоятельны у нестабильных пациентов. У оперированных пациентов ошибки непрямого измерения могут превышать 30 мм рт. ст. У больных, которым осуществляется введение вазоактивных препаратов, несоответствия могут быть еще большими.
Показаниями к прямому измерению АД являются нестабильная гемодинамика, выраженная вызоконстрикция периферических сосудов, введение вазоактивных препаратов. Также эта методика применяется у больных, состояние которых требует постоянного измерения АД. Установка артериального катетера или канюли показана также при необходимости частого забора проб для анализов артериальной крови.
Неинвазивное непрерывное измерение артериального давления
Артериальным давлением называют давление, которое оказывает кровь на стенки артерии. Его принято измерять в мм. рт. ст относительно атмосферного. Поскольку давление в кровеносной системе человека нагнетается сердцем, которое периодически сокращается, артериальное давление не является постоянной величиной. В момент сокращения сердечной мышцы уровень давления максимален и его называют систолическим артериальным давлением (САД), в момент расслабления минимален – диастолическое артериальное давление (ДАД) (см. рис. 1). Кроме того, стремление организма поддерживать свой гомеостаз и чуткое реагирование на внешние раздражители и стресс приводят к колебаниям САД и ДАД во времени. Так, стрессовые ситуации и физические нагрузки провоцируют увеличение артериального давления. Причиной повышения артериального давления могут быть также различные заболевания, такие как: атеросклероз, артериальная гипертензия, воспаление почек, ожирение и многое другое.
Рис.1. Типовая диаграмма изменения артериального давления [2]
Стойкое повышенное кровяное давление подвергает организм различным рискам: повышает риск возникновения инфаркта миокарда, инсульта, развитие почечной или сердечной недостаточности. По официальным данным Всемирной организации здравоохранения около миллиарда людей страдают от высокого кровяного давления, и в год умирает более девяти миллионов человек от последствий этого заболевания [1].
Сегодня по данным Всемирной организации здравоохранения (ВОЗ) в экономически развитых странах доля взрослых людей, страдающих от повышенного артериального давления, достигает 25 %. Только 5 % из них знают о своем заболевании, в свою очередь 40 % получают соответствующее лечение, и только у 10– 20 % отмечается устойчивая нормализация артериального давления.
В США высокое артериальное давление является причиной смертности приблизительно 60 000 человек в год. Лица с повышенным артериальным давлением живут в среднем на 10 лет меньше, чем люди, не страдающие гипертонической болезнью.
Методы измерения АД принято делить на две категории: инвазивные и неинвазивные. К неинвазивным относятся методы, основанные на аускультации артерии методом тонов Короткова и осциллографическом методе регистрации, в то время как инвазивные методы применяются при обследовании тяжелобольных в условиях стационара, так как предполагают осуществление измерения посредством введения датчика давления непосредственно в артерию. Наиболее широко распространен метод тонов Короткова, применяемый для ручного измерения АД с помощью сфигмоманометра. Для проведения автоматического измерения, как правило, применяется осциллометрический метод, основанный на анализе пульсаций давления, в основном благодаря большей помехоустойчивости по отношению к внешним шумам [4].
Для обследования пациентов врачи могут применять устройства с различными методами измерения, однако примерно в 10-20 % случаев измерения оказываются завышенными из-за страха и волнения пациента во время процедуры измерения. Этот эффект называют «эффектом белого халата». Кроме того, поскольку АД может значительно меняться у человека в течение суток, характер измерения может представлять для врача значительную ценность. С целью избежать проявления эффекта «белого халата» и получить картину измерения АД в течение длительного периода времени, врачи устанавливают пациенту суточный монитор артериального давления. При этом и здесь не обходится без трудностей – СМАД измеряют АД в запрограммированные заранее промежутки времени. При этом частота измерения не может быть высокой, поскольку лежащий в основе метода измерения осциллометрический метод предполагает полное пережатие плечевой артерии до полного подавления пульсаций крови, и это приводит к значительному дискомфорту обследуемого. Испытываемые неудобства сказываются на уровне кровяного давления, что вносит искажение в результаты измерений. В то же время слишком большие интервалы между измерениями могут привести к пропуску важной информации об уровне АД обследуемого.
Авторы в [5] оценивают кровяное давление, опираясь на предположение, что есть соответствие между длительностью распространения пульсовой волны и кровяным давлением. Параметр, который используется для измерения – время распространения пульсовой волны.
Публикация научной статьи. Пошаговая инструкция
Есть вопрос? Задайте его Вашему персональному менеджеру. Служба поддержки призвана помочь пользователям в решении любых проблем, связанных с вопросами публикации своих работ и другими аспектами работы издательства «Проблемы науки».
Реаниматологическая
школа профессора
Сергея Васильевича
Царенко
Общая информацияПроект «Больница на дому»Нейрореанимация ЛРЦ РосздраваОбмен опытомНаши проекты: 5.2. Мониторинг гемодинамики.Учитывая роль гипотонии как ведущего фактора вторичного повреждения мозга, трудно переоценить важность мониторинга артериального давления. С технической точки зрения возможно инвазивное и неинвазивное определение АД. Инвазивное измерение АД отличается большей точностью. Высокая частота получения показателей (при каждом сердечном сокращении) подразумевает их меньшую инертность при изменении артериального давления. При инвазивном способе возможны осложнения и артефакты. Основные осложнения возникают из-за тромбоза артерии, в которой находится катетер. Для профилактики тромбоза необходимо промывание артериального катетера под постоянным давлением небольшим количеством жидкости, например, используя инфузомат. Важен также тщательный выбор оптимального места пункции и размера катетера. Безопаснее катетеризировать лучевую артерию из-за наличия артериальной дуги кисти. Если сохранена анатомическая целостность этой дуги, то при тромбозе лучевой артерии кровоснабжение кисти не нарушается, так как кровоток обеспечивается локтевой артерией. Для суждения о целостности артериальной дуги кисти перед пункцией лучевой артерии проводят пробу Аллена. Методика пробы следующая. Пальцем придавливаются лучевая и локтевая артерии к кости, затем компрессия локтевой артерии прекращается. Если нормальный цвет кожи кисти восстанавливается в течение 6 секунд, то проба Аллена считается положительной и пункция артерии признается безопасной. Если проба Аллена отрицательная (до 8 сек и более), то пунктируют другую артерию – лучевую на противоположной стороне или более крупную, например бедренную. Калибр лучевой артерии пропорционален размеру кисти, поэтому обычно используют катетеры размером 20 G. При частичной окклюзии артерии катетером возникают артефакты в виде высоких остроконечных спайков (рис. 5.1). Отличить это мнимое повышение систолического АД от истинного можно, анализируя характер кривой. Еще одной причиной артефактов может быть нарушение деятельности жидкостной системы, соединяющей артериальный катетер и прикроватный монитор. В ней не должно быть воздуха, сглаживающего (демпфирующего) кривую артериального давления. Нужно быть внимательным при размещении измерительной камеры, которая должна располагаться на уровне передней подмышечной линии (уровень правого предсердия). Для точного измерения АД инвазивным способом нельзя избыточно удлинять соединительные трубки между катетером и измерительной камерой. Необходимо использовать только трубки рекомендованной производителем длины и диаметра, так как этим предупреждается возникновение ненужных резонансных колебаний в системе. Если больной находится в горизонтальном положении, то показатели приборов отражают давление во всех крупных артериях. Проблема становится сложнее, если нужно приподнять головной конец кровати. Расположение камеры на уровне правого предсердия по-прежнему будет отражать давление в аорте и крупных артериях рук и ног. Для корректного измерения давления в сонной артерии (а именно она нас интересует как источник кровоснабжения мозга), большинство исследователей считает, что камеру устройства нужно располагать на уровне наружного слухового прохода (уровень отверстия Монро). Неинвазивное измерение давления безопаснее, менее зависимо от технических особенностей, но может иметь значительные отклонения от истинного уровня при низком АД. Следует использовать правильное расположение манжеты на руке, размещая метку на ней точно над точкой пульсации артерии локтевого сгиба. Нельзя использовать слишком узкую манжету (ее ширина должна быть не менее 2/3 окружности руки). Значительным недостатком неинвазивного способа является более редкое измерение давления, чем при инвазивном методе. Гемодинамический мониторинг кроме показателей АД включает измерение других показателей давления, измерение сердечного выброса, контроль газового состава крови, измерение желудочного рН, визуализационные методы (эхокардиографию). Немного физиологии Проблема в другом. Изменения АД являются точным и чутким показателем улучшения или ухудшения гемодинамики. Приток крови к органам, в том числе и к мозгу, определяется двумя факторами: сколько крови будет доставлено к ним, и как ее пропустят сосуды «при входе» в орган. Иными словами, приток зависит от объема крови и тонуса приносящих сосудов. Оба этих фактора являются участниками формирования интегративного показателя, называемого артериальным давлением. Кровоснабжение мозга представляет собой наиболее яркий пример важности измерения АД. Введение препаратов, изменяющих артериальное давление в большей степени, чем сердечный выброс (допамин и норадреналин) повышает перфузию мозга. Этот положительный факт отражают не только инструментальные показатели перфузионного давления, но и повышение уровня бодрствования, уменьшение очаговых и стволовых неврологических симптомов. При введении препаратов, в основном повышающих сердечный выброс (добутамин), подобные изменения неврологического статуса не наблюдаются. Конечно, нужны серьезные исследования мозгового кровотока, возможно, с использованием современных методов нейровизуализации, но уже эти данные нуждаются во внимании. Изложенные соображения не умаляют важности оценки других гемодинамических показателей, отражающих функциональную активность системной гемодинамики. Неинвазивные методы исследования динамики артериального давленияПолный текст:АннотацияВ работе рассматриваются основные методы автоматического неинвазивного измерения артериального давления (АД), применяемые для длительного мониторирования. Обсуждаются преимущества и недостатки дискретного измерения АД по тонам Короткова (ТК) и по осцилляциям в плечевой манжете. В настоящее время АД принято измерять во время дефляции манжеты. При этом давление в ней должно быть поднято на величину порядка 20–30 мм рт. ст. выше систолического. Поскольку величина АД до измерения может быть неизвестна, увеличивается риск поднятия давления в манжете выше оптимального. Поэтому в последнее время предлагаются методы определения АД во время инфляции манжеты. При этом величина АД, определенная как по ТК, так и по осциллометрии, отличается от таковой во время дефляции манжеты. Разница меняется с возрастом и уровнем АД и в ряде случаев оказывается клинически значимой. Обсуждаются причины и следствия таких различий. В отделениях интенсивной терапии и в операционных требуется непрерывное измерение АД. По сравнению с дискретным измерением оно позволяет своевременно выявлять гипотензию, оценивать ее длительность, что способствует улучшению ведения больных. Инвазивный метод определения имеет известные ограничения и осложнения, что стимулировало разработку приборов для неинвазивного контроля. Несмотря на проводимые сравнения их точности с другими методами измерения, этот вопрос продолжает дискутироваться. Рассмотренным в настоящем обзоре методам неинвазивного контроля уровня АД свойственны как достоинства, так и ограничения, что определяет необходимость дальнейших исследований в этой области. Ключевые словаОб авторахИванов Сергей Юрьевич — кандидат медицинских наук, старший научный сотрудник научно-исследовательской лаборатории профилактической кардиологии. ул. Аккуратова, д. 2, Санкт-Петербург, 197341. Список литературы1. Nitzan M, Adar Y, Hoffman E, Shalom E, Engelberg S, Ben-Dov IZ et al. Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds. Sensors. 2013;13(11):14797–14812. 2. Ogedegbe G, Pickering T. Principles and techniques of blood pressure measurement. Cardiology Clinics. 2010;28(4):571–586. 3. Geddes LA, Voelz M, Combs C, Reiner D, Babbs CF. Characterization of the oscillometric method for measuring indirect blood pressure. Ann Biomed Eng. 1982;10(6):271–280. 4. Amoore JN, Vacher E, Murray IC, Mieke S, King ST, Smith FE et al. Effect of the shapes of the oscillometric pulse amplitude envelopes and their characteristic ratios on the differences between auscultatory and oscillometric blood pressure measurements. Blood Press Monit. 2007;12(5):297–305. 5. Yang F, Chen F, Zhu M, Chen A, Zheng D. Significantly reduced blood pressure measurement variability for both normotensive and hypertensive subjects: effect of polynomial curve fitting of oscillometric pulses. BioMed Res Intern. 2017;2017: 5201069, https://doi.org/10.1155/2017/5201069. 6. Рогоза А. Н, Гориева Ш. Б. Возможности автоматических осциллометрических приборов при измерении артериального давления у пациентов с фибрилляцией предсердий. Системные гипертензии. 2012;4:40–43 [Rogoza AN, Goriyeva ShB. The capacities of automated oscillometric blood pressure measuring devices in patients with atrial fibrillation. Systemic Hypertension. 2012;4:40–43. In Russian]. 7. Тихоненко В. М. Достоинства метода Короткова при мониторировании артериального давления. Вестник аритмологии. 2005;40:36–38 [Tikhonenko VM. Advantages the Korotkoff method in monitoring of arterial pressure. Vestnik Arhythmologii = Arrhythmology Bulletin. 2005;40:36–38. In Russian]. 8. Иванов С. Ю., Бондаренко Б. Б. Сравнительная точность измерения артериального давления аускультативным и осциллометрическим методом. Бюллетень ФЦСКЭ. 2011;3:12–20 [Ivanov SY, Bondarenko BB. Comparative accuracy of the blood pressure measurement with auscultatory and oscillographic methods. Bulleten Almazov FHBEC = Bulletin of the Almazov Centre (Translational Medicine). 2011;3:12–20. In Russian]. 9. Watanabe N, Bando YK, Kawachi T, Yamakita H, Futatsuyama K, Honda Y et al. Development and validation of a novel cuff-less blood pressure monitoring device. JACC Basic Transl Sci. 2017;2(6):631–642. 10. Sheshadri V, Tiwari AK, Nagappa M, Venkatraghavan L. Accuracy in blood pressure monitoring: The effect of noninvasive blood pressure cuff inflation on intra-arterial blood pressure values. Anesth Essays Res. 2017;11(1):169–173. 11. Sasaki J, Kikuchi Y, Usuda T, Hori S. Validation of inflationary noninvasive blood pressure monitoring in the emergency room. Blood Press Monit. 2015;20(6):325–9. 12. Alpert BS. Validation of the Welch Allyn SureBP (inflation) and StepBP (deflation) algorithms by AAMI standard testing and BHS data analysis. Blood Press Monit. 2011;16(2):96–98. 13. Yamashita A, Irikoma S. Comparison of inflationary non-invasive blood pressure (iNIBP) monitoring technology and conventional deflationary non-invasive blood pressure (dNIBP) measurement in detecting hypotension during cesarean section. JA Clin Rep. 2018;4(1):5. doi:10.1186/s40981-017-0145-y 14. Liu C, Zheng D, Griffiths C, Murray A. Oscillometric waveform difference between cuff inflation and deflation during blood pressure measurement. Computing Cardiol. 2014;41:849– 852. 15. Zheng D, Pan F, Murray A. Effect of mechanical behaviour of the brachial artery on blood pressure measurement during both cuff inflation and cuff deflation. Blood Press Monit. 2013;18 (5):265–271. 16. Fabian V, Havlik J, Dvorak J, Kremen V, Sajgalik P, Bellamy V et al. Differences in mean arterial pressure of young and elderly people measured by oscillometry during inflation and deflation of the arm cuff. Biomed Tech (Berl). 2016;61(6):611–621. doi:10.1515/bmt-2015-0098 17. Vychytil J, Moravec F, Kochova P, Kuncova J, Svıglerova J. Modelling of the mechanical behaviour of porcine carotid artery undergoing inflation-deflation test. Appl Comput Mech. 2010;4: 251–262. 18. Drzewiecki G, Pilla JJ. Noninvasive measurement of the human brachial artery pressure-area relation in collapse and hypertension. Ann Biomed Eng. 1998;26(6):965–974. 19. Bank AJ, Kaiser DR, Rajala S, Cheng A. In vivo human brachial artery elastic mechanics: effects of smooth muscle relaxation. Circulation. 1999;100(1):41–47. 20. Foran TG, Sheahan NF. Compression of the brachial artery in vivo. Physiol Meas. 2004;25(2):553–564. 21. Bassez S, Flaud P, Chauveau M. Modeling of the deformation of flexible tubes using a single law: application to veins of the lower limb in man. J Biomech Eng. 2001;123(1):58–65. 22. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis. 2012;1(4): cvd.2012. 012016. doi:10.1258/cvd.2012.012016 23. Skaug EA, Aspenes ST, Oldervoll L, Mørkedal B, Vatten L, Wisløff U et al. Age and gender differences of endothelial function in 4739 healthy adults: the HUNT3 fitness study. Eur J Prev Cardiol. 2013;20(4):531–540. 24. Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–1479. 25. Grabowski EF, Jaffe EA, Weksler BB. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med. 1985;105(1):36–43. 26. Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T et al. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun. 1989;161(2):859–864. 27. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65(2):252–256. 28. Van Popele NM, Grobbee DE, Bots ML, Asmar R, Topouchian J, Reneman RS et al. Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke. 2001;32 (2):454–460. 29. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):199–204. doi:10.1186/cc1489 30. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15(4): R197. doi:10.1186/cc10364 31. Peňáz J. Photoelectric measurement of blood pressure, volume and flow in the finger. Digest of the 10th International Conference on Medical and Biological Engineering. Dresden. 1973. 104 p. 32. Lakhal K, Martin M, Faiz S, Ehrmann S, Blanloeil Y, Asehnoune K et al. The CNAP finger cuff for noninvasive beat-tobeat monitoring of arterial blood pressure: an evaluation in intensive care unit patients and a comparison with 2 intermittent devices. Anesth Analg. 2016;123(5):1126–1135. 33. Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Winter DC, Eckerle JS. Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology. 1991;75 (2):333–340. 34. Hansen S, Staber M. Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error. Eur J Anaesthesiol. 2006;23 (9):781–787. 35. Walsh M, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery. Anesthesiology. 2013;119(3):507–515. 36. Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery. Anesthesiology. 2017;126(1):47–65. 37. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123(3):515–523. 38. Bijker JB, Persoon S, Peelen LM, Moons KG, Kalkman CJ, Kappelle LJ et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested casecontrol study. Anesthesiology. 2012;116(3):658–664. 39. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100(1):4–10. 40. Tassoudis V, Vretzakis G, Petsiti A, Stamatiou G, Bouzia K, Melekos M et al. Impact of intraoperative hypotension on hospital stay in major abdominal surgery. J Anesth. 2011;25(4):492–499. 41. Schramm C, Baat L, Plaschke K. Continuous noninvasive arterial pressure: assessment in older and high-risk patients under analgesic sedation. Blood Press Monit. 2011;16(6):270–276. 42. Ilies C, Bauer M, Berg P, Rosenberg J, Hedderich J, Bein B et al. Investigation of the agreement of a continuous noninvasive arterial pressure device in comparison with invasive radial artery measurement. Br J Anaesth. 2012;108(2):202–210. 43. Akkermans J, Diepeveen M, Ganzevoort W, van Montfrans GA, Westerhof BE, Wolf H. Continuous non-invasive blood pressure monitoring, a validation study of Nexfin in a pregnant population. Hypertens Pregnancy. 2009;28(2):230–242. 44. Eeftinck Schattenkerk DW, van Lieshout JJ, van den Meiracker AH, Wesseling KR, Blanc S, Wieling W et al. Nexfin noninvasive continuous blood pressure validated against RivaRocci/Korotkoff. Am J Hypertens. 2009;22(4):378–383. 45. Chen G, Chung E, Meng L, Alexander B, Vu T, Rinehart J et al. Impact of non invasive and beat-to-beat arterial pressure monitoring on intraoperative hemodynamic management. J Clin Monit Comput. 2012;26(2):133–140. 46. Benes J, Simanova A, Tovarnicka T, Sevcikova S, Kletecka J, Zatloukal J et al. Continuous non-invasive monitoring improves blood pressure stability in upright position: randomized controlled trial. J Clin Monit Comput. 2015;29(1):11–17. 47. Hahn R, Rinösl H, Neuner M, Kettner SC. Clinical validation of a continuous non-invasive haemodynamic monitor (CNAP™; 500) during general anaesthesia. Br J Anaesth. 2012;108(4):581–585. 48. Biais M, Vidil L, Roullet S, Masson F, Quinart A, Revel P et al. Continuous non-invasive arterial pressure measurement: evaluation of CNAP device during vascular surgery. Ann Fr Anesth Reanim. 2010;29(7–8):530–535. 49. McCarthy T, Telec N, Dennis A, Griffiths J, Buettner A. Ability of non-invasive intermittent blood pressure monitoring and a continuous non-invasive arterial pressure monitor (CNAP™) to provide new readings in each 1-min interval during elective caesarean section under spinal anaesthesia. Anaesthesia. 2012;67 (3):274–279. 50. Eckert S, Horstkotte D. Comparison of Portapres noninvasive blood pressure measurement in the finger with intra-aortic pressure measurement during incremental bicycle exercise. Blood Press Monit. 2002;7(3):179–183. 51. Kim SH, Lilot M, Sidhu KS, Rinehart J, Yu Z, Canales C et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120 (5):1080–1097. 52. Fortin J, Lerche K, Flot-zinger D, O’Brien T. Is the standard supplied by the Association for the Advancement of Medical Instrumentation the measure of all things for noninvasive continuous hemodynamic devices? Anesthesiology. 2015;122 (1):208–209. Для цитирования:Иванов С.Ю., Бондаренко Б.Б. Неинвазивные методы исследования динамики артериального давления. Артериальная гипертензия. 2018;24(6):637-645. https://doi.org/10.18705/1607-419X-2018-24-6-637-645 For citation:Ivanov S.Yu., Bondarenko B.B. Non-invasive methods for studying the dynamics of blood pressure. «Arterial’naya Gipertenziya» («Arterial Hypertension»). 2018;24(6):637-645. (In Russ.) https://doi.org/10.18705/1607-419X-2018-24-6-637-645
|