нанометры в процессоре чем меньше тем лучше
Что означают термины 7nm и 10nm для процессоров и почему они имеют значение
Что означают термины «7nm» и «10nm» для процессоров и почему они имеют значение
Постараюсь объяснить просто. Процессоры производятся с использованием миллиардов крошечных транзисторов, электрических затворов, которые включаются и выключаются для выполнения расчетов. Для этого им требуется энергия, и чем меньше транзистор, тем меньше требуется мощность. «7nm» и «10nm» — это размеры этих транзисторов, а «nm» — нанометры. Именно они являются полезными для оценки производительности конкретного процессора.
Для справки, «10nm» — это новый технологический процесс Intel, который должен дебютировать в 4 квартале 2019 года, а «7nm» обычно относится к процессу TSMC, на котором основаны новые процессоры AMD и чип A12X Apple.
Так почему же эти новые процессы так важны?
Закон Мура, старое наблюдение о том, что количество транзисторов на чипе удваивается каждый год, а затраты вдвое сокращаются, удерживался в течение длительного времени. Еще в конце 90-х и начале 2000-х годов транзисторы сокращались вдвое каждые два года, что приводило к их значительному улучшению. Но дальнейшее уменьшение стало более сложным, и, например, мы не наблюдали уменьшения транзистора от Intel с 2014 года. Так что эти новые технологические процессы являются первыми крупными сокращениями за долгое время, особенно со стороны Intel, и представляют собой краткое возрождение закона Мура.
С появлением новых процессоров AMD на 7-нм процессорах TSMC и чипов A12X Apple, у них появляется шанс обойти Intel по производительности и создать здоровую конкуренцию монополии этой компании на рынке. По крайней мере до тех пор, пока 10-нм чипы Intel «Sunny Cove» не начнут поступать в продажу.
Что «nm» на самом деле означает
Процессоры выполнены с помощью фотолитографии, где образ процессора вытравливается на куске кремния. Точная методика выполнения этой операции обычно называется технологическим процессом и измеряется тем, насколько малым может быть изготовление транзисторов.
Поскольку более компактные транзисторы более энергоэффективны, они могут выполнять больше вычислений без перегрева, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет уменьшить размеры матрицы, что снижает затраты и может увеличить плотность при тех же размерах, а это означает увеличение количества ядер на чип.
Плотность 7 нм в два раза выше, чем у предыдущего 14 нм узла, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что значительно превосходит их предыдущие 32 ядра (и 28 ядра Intel).
Важно отметить, что, хотя Intel все еще находится на 14-нм процессоре, а AMD собирается запустить свои 7-нм процессоры очень скоро, это не означает, что AMD будут работать в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких маленьких масштабах эти значения уже не столь точны.
Мобильные чипы претерпят наибольшие улучшения
Уменьшение транзисторов — это не только производительность; оно также имеет огромное значение для маломощных чипов мобильных устройств и ноутбуков. С 7 нм (по сравнению с 14 нм) вы можете получить на 25% больше производительности при той же мощности, или вы можете получить ту же производительность за половину мощности.
Это означает более длительное время работы от батареи при одинаковой производительности и гораздо более мощные чипы для небольших устройств. Мы уже видели, как чип A12X от Apple выигрывал некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри смартфона, И это только первый 7-нм чип, который появился на рынке.
Уменьшение узлов всегда является хорошей новостью, так как более быстрые и энергоэффективные чипы влияют практически на все аспекты технологического мира. 2019 год будет очень интересным для технических специалистов и, конечно, очень приятно видеть, что закон Мура еще не совсем мертв.
Спасибо, что читаете! Подписывайтесь на мои каналы в Telegram, Яндекс.Мессенджере и Яндекс.Дзен. Только там последние обновления блога и новости мира информационных технологий.
Респект за пост! Спасибо за работу!
Хотите больше постов? Узнавать новости технологий? Читать обзоры на гаджеты? Для всего этого, а также для продвижения сайта, покупки нового дизайна и оплаты хостинга, мне необходима помощь от вас, преданные и благодарные читатели. Подробнее о донатах читайте на специальной странице.
Заранее спасибо! Все собранные средства будут пущены на развитие сайта. Поддержка проекта является подарком владельцу сайта.
7 нм против 12: о чем говорит технологический процесс процессора
В сентябре 2019 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…
Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.
Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.
Что собой в принципе представляет каждый микропроцессор
Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.
Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.
Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.
Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.
Какие этапы проходят процессоры во время производства
Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.
1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.
2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.
3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.
4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.
5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.
6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.
7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.
8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.
9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.
10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.
11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.
12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.
13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.
14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.
Хронология уменьшения размера технологического процесса
Чем меньше нанометров в технологическом процессе, тем:
Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.
Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.
Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.
В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2016 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.
Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников
Содержание
Содержание
Одна из главных характеристик процессоров и других микрочипов — техпроцесс. Что означает этот термин и насколько он влияет на производительность — разберемся в этом блоге.
Что такое техпроцесс
Ключевым элементом практически каждой вычислительной схемы является транзистор. Это полупроводниковый элемент, который служит для управления токами. Из транзисторов собираются основные логические элементы, а на их основе создаются различные комбинационные схемы и уже непосредственно процессоры.
Чем больше транзисторов в процессоре — тем выше его производительность, ведь можно поместить на кристалл большее количество логических элементов для выполнения разных операций.
В 1971 году вышел первый микропроцессор — Intel 4004. В нем было всего 2250 транзисторов. В 1978 мир увидел Intel 8086 и в нем помещались целых 29 000 транзисторов. Легендарный Pentium 4 уже включал 42 миллиона. Сегодня эти числа дошли до миллиардов, например, в AMD Epyc Rome поместилось 39,54 миллиарда транзисторов.
Модель | Год выпуска | Кол-во транзисторов |
Xeon Broadwell-E5 | 2016 | 7 200 000 000 |
Ryzen 5 1600 X | 2017 | 4 800 000 000 |
Apple A12 Bionic (шестиядерный ARM64) | 2018 | 6 900 000 000 |
Qualcomm Snapdragon 8cx | 2018 | 8 500 000 000 |
AMD Ryzen 7 3700X | 2019 | 5 990 000 000 |
AMD Ryzen 9 3900X | 2019 | 9 890 000 000 |
Apple M1 ARM | 2020 | 16 000 000 000 |
Много это или мало? На 2020 год на нашей планете приблизительно 7,8 миллиардов человек. Если представить, что каждый из них это один транзистор, то полтора населения планеты
с легкостью поместилась бы в процессоре Apple A14 Bionic.
В 1975 году Гордон Мур, основатель Intel, вывел скорректированный закон, согласно которому число транзисторов на схеме удваивается каждые 24 месяца.
Нетрудно посчитать, что с момента выхода первого процессора до сего дня, а это всего-то 50 лет, число транзисторов увеличилось в 10 000 000 раз!
Казалось бы, поскольку транзисторов так много, то и схемы должны вырасти в размерах на несколько порядков. Площадь кристалла у первого процессора Intel 4004 — 12 мм², а у современных процессоров AMD Epyc — 717 мм² (33,5 млрд. транзисторов). Получается, по площади кристалла процессоры выросли всего в 60 раз.
Как же инженерам удается втискивать такое огромное количество транзисторов в столь маленькие площади? Ответ очевиден — размер транзисторов также уменьшается. Так
и появился термин, который дал обозначение размеру используемых
полупроводниковых элементов.
Упрощенно говоря, техпроцесс — это толщина транзисторного слоя, который применяется в процессорах.
Чем мельче транзисторы, тем меньше они потребляют энергии, но при этом сохраняют текущую производительность. Именно поэтому новые процессоры имеют большую вычислительную мощность, но при этом практически не увеличиваются в размерах
и не потребляют киловатты энергии.
Какие существуют техпроцессы: вчера и сегодня
Первые микросхемы до 1990-х выпускались по технологическому процессу 3,5 микрометра. Эти показатели означали непосредственно линейное разрешение литографического оборудования. Если вам трудно представить, насколько небольшая величина в 3 микрометра, то давайте узнаем, сколько транзисторов может поместиться в ширине человечного волоса.
Уже тогда транзисторы были настолько маленькими, что пару десятков с легкостью помещались в толщине человеческого волоса. Сейчас техпроцесс принято соотносить с длиной затвора транзисторов, которые используются в микросхеме. Нынешние транзисторы вышли на размеры в несколько нанометров.
Для Intel актуальный техпроцесс — 14 нм. Насколько это мало? Посмотрите в сравнении
с вирусом:
Однако по факту текущие числа — это частично коммерческие наименования. Это означает, что в продуктах по техпроцессу 5 нм на самом деле размер транзисторов не ровно столько, а лишь приближенно. Например, в недавнем исследовании эксперты сравнили транзисторы от Intel по усовершенствованному техпроцессу 14 нм и транзисторы от компании TSMC на 7 нм. Оказалось, что фактические размеры на самом деле отличаются не на много, поэтому величины на самом деле относительные.
Рекордсменом сегодня является компания Samsung, которая уже освоила техпроцесс 5 нм. По нему производятся чипы Apple A14 для мобильной техники. Одна из последних новинок Apple M1 — первый ARM процессор, который будет установлен в ноутбуках от Apple.
Продукцию по техпроцессу в 3 нм Samsung планирует выпускать уже к 2021 году. Если разработчикам действительно удастся приблизиться к таким размерам, то один транзистор можно будет сравнить уже с некоторыми молекулами.
Насколько маленьким может быть техпроцесс
Уменьшение размеров транзисторов позволяет делать более энергоэффективные и мощные процессоры, но какой предел? На самом деле ответа никто не знает.
Проблема кроется в самой конструкции транзистора. Уменьшение прослойки между эмиттером и коллектором приводит к тому, что электроны начинают самостоятельно просачиваться, а это делает транзистор неуправляемым. Ток утечки становится слишком большим, что также повышает потребление энергии.
Не стоит забывать, что каждый транзистор выделяет тепло. Уже сейчас процессоры Intel Core i9-10ХХХ нагреваются до 95 градусов Цельсия, и это вполне нормальный показатель. Однако при увеличении плотности транзисторов температуры дойдут до таких пределов, когда даже водяное охлаждение окажется полностью бесполезным.
Самые смелые предсказания — это техпроцесс в 1,4 нм к 2029 году. Разработка еще меньших транзисторов, по словам ученых, будет нерентабельной, поэтому инженерам придется искать другие способы решения проблемы. Среди возможных альтернатив — использование передовых материалов вместо кремния, например, графена.
Разбираем мифы о техпроцессах 14 и 7 нм с техноблогером der8auer и размышляем о будущем индустрии
Не нуждающийся в особых представлениях техноблогер Roman Hartung, более известный под ником der8auer, провёл исследования транзисторов в процессорах Intel и AMD, выполненных по нормам технологических процессов 14 и 7 нанометров, соответственно. Для исследования были взяты старшие модели в настольных линейках компаний: Core i9-10900K, выпущенный на собственных мощностях Intel, и Ryzen 9 3950X, изготовленный силами TSMC.
реклама
С помощью сканирующего электронного микроскопа были получены изображения транзисторов в области расположения кеш-памяти второго уровня. Транзисторы кэша были выбраны в качестве эталона для сравнения, поскольку представляют собой стандартизированную структуру и не имеют большого разброса по параметрам в рамках одного блока.
Пристальное изучение полученных изображений полупроводниковой структуры показало несколько любопытных фактов. Так, различия ширины затвора транзистора у 14 и 7 нм техпроцессов оказались минимальны: 24 нм у Intel против 22 нм у AMD, высота затворов так и вовсе оказалась равна на уровне погрешности. Как видим, никакого кратного отличия, на которое намекают маркетинговые наименования техпроцессов, нет.
реклама
Всё это наводит на некоторые мысли. Так, рост производительности процессоров AMD RYZEN вероятнее всего может быть обусловлен в первую очередь именно инженерной работой и совершенствованием архитектуры, а не успехами TSMC в переименовании своих техпроцессов. Следовательно, ощутимый прирост от поколения к поколению будет зависеть от задела к модернизации, избранной AMD технологии чиплетов. Поскольку это первый опыт применения данной компоновки кристаллов, делать какие-то долгосрочные прогнозы сложно, но очевидно, что однажды возможности дальнейшего совершенствования будут исчерпаны, и AMD придётся у перейти к схеме +5% каждый год, либо менять парадигму и искать новые пути развития.
реклама
В то же время переход процессоров Intel на 10 и 7 нм может принести гораздо больший, чем можно предполагать, прирост, поскольку компания не увлекалась маркетингом нанометров, просто добавляя знаки + к своим 14 нанометрам, следовательно, новый техпроцесс может оказаться действительно значительно более продвинутым. Кроме того, Intel уже смотрит в будущее и проводит исследования в области альтернативных методов пространственной компоновки транзисторов и структур кристалла процессора.
Как бы то ни было, становится очевидно, что пресловутые числа в названиях техпроцессов не отражают физической реальности и размеров полупроводниковых элементов. Грядущие 5 и 3 нм от TSMC и Samsung, вероятнее всего, так же будут представлять из себя по сути 7++ и 7+++ технологии. Размеры элементов транзистора уменьшаются незначительно, увеличение плотности размещения транзисторов на единице площади достигается в первую очередь совершенствованием библиотек элементов, развитием программ-автотрассировщиков, оптимизацией самой структуры и компоновки блоков кристалла.
А значит, опасаться, что уже в текущем десятилетии мы упрёмся в физические ограничения создания транзистора на атомном уровне, не стоит. Тормозом станет, скорее, непомерная стоимость разработки и изготовления более совершенных степперов и проблема с созданием новых сверхмощных источников УФ-излучения. Впрочем, решение, возможно, уже не за горами и кроется в применении новых материалов, в частности соединений германия, гафния, либо графена. Но это уже совсем другая история.