на что влияет дискриминант в параболе
От чего зависит вид графика функции
Функция вида y = a*x 2 + b*x + c, где a, b, c – некоторые вещественные числа, причем а отлично от нуля, а x и y – переменные, называется квадратичной функцией. Графиком квадратичной функции y = a*x 2 + b*x + c является линия, называемая в математике параболой. Общий вид параболы представлен на рисунке ниже.
График квадратичной функции
Исследуем расположение графика квадратичной функции, в зависимости от формы и вида квадратного трехчлена. Первым критерием, влияющим на общий вид графика квадратичной функции, является знак при старшем коэффициенте.
Если при старшем коэффициенте в квадратном трехчлене стоит знак «плюс», то парабола будет иметь ветви направленные вверх. Если при старшем коэффициенте в квадратном трехчлене стоит знак «минус», то парабола будет иметь ветви направленные вниз.
Следующим критерием является значение дискриминанта квадратного уравнения.
Формула корней квадратного уравнения a*x 2 + b*x+ c = 0.
Если дискриминант больше нуля, то квадратное уравнение имеет два корня: (x = (-b ± √D)/(2*a)). Если дискриминант равен нулю, то квадратное уравнение имеет один корень: (x = (-b/(2*a)). Если дискриминант отрицателен, то квадратное уравнение не имеет корней.
Корнем квадратного уравнения a*x 2 + b*x + c = 0 называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 + b*x + c обращается в нуль. Обращение в нуль значение функции равносильно тому, что график функции будет в этой точке пересекать ось Ох.
Следовательно, в зависимости от, того какое будет значение дискриминанта, вершина параболы будет расположена относительно оси координат одним из следующих трех способов: ниже оси Ох, на оси Ох, выше оси Ох. На следующем рисунке показаны основные расположения графика квадратичной функции, в зависимости от перечисленных выше двух критериев.
Квадратичная функция (ЕГЭ 2022)
Проверь себя, ответь на эти вопросы:
В конце статьи ты будешь знать ответы на эти вопросы.
Квадратичная функция — коротко о главном
Квадратичная функция – функция вида \( y=a<
^<2>>+bx+c\), где \( a\ne 0\), \( b\) и \( c\) – любые числа (коэффициенты), \( c\) – свободный член.
График квадратичной функции – парабола.
Вершина параболы: \( \displaystyle <
Квадратичная функция вида: \( y=a<
Чем больше значение \( \displaystyle a\) (по модулю), тем у́же становится парабола (ветви становятся более крутыми). И наоборот, чем меньше \( \displaystyle a\), тем парабола шире.
Варианты расположения параболы в зависимости от коэффициента \( \displaystyle a\) и дискриминанта \( \displaystyle D=<^<2>>-4ac\).
Что такое функция?
Не знаешь? Тогда сперва прочитай тему «Функции» – она несложная, но очень важная.
А мы пока повторим.
Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).
То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).
Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции».
Все дело в понятии «область определения»:
Для некоторых функций не все аргументы можно подставить в зависимость.
Например, для функции \( y=\sqrt
Кстати, а с линейной функцией ты уже дружишь? Про нее все написано в теме «Линейная функция» – там ты поймешь, что в функциях ничего страшного нет и научишься понимать и использовать коэффициенты (это циферки перед буквой \( x\)).
И еще, надеюсь, ты умеешь решать квадратные уравнения? Освежить память можно, почитав тему «Квадратные уравнения».
Квадратичная функция — подробнее
Квадратичная функция – это функция вида \( y=a<
^<2>>+bx+c\), где \( a\ne 0\), \( b\) и \( c\) – любые числа (они и называются коэффициентами).
Число \( a\) называют старшим или первым коэффициентом такой функции, \( b\) – вторым коэффициентом, а \( c\) – свободным членом.
Другими словами, квадратичная функция – это зависимость, содержащая аргумент в квадрате. Отсюда и ее название.
Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений\( E\left( y \right)\).
Какими могут быть значения аргумента квадратичной функции \( y=a<
Значит, область определения – все действительные числа:
А теперь множество значений. Все ли значения может принимать функция?
Достаточно рассмотреть самую простую квадратичную функцию \( y=<
\), чтобы убедиться в обратном: ведь какое бы число мы не возводили в квадрат, результат всегда будет больше или равен нулю.
Значит, эта функция всегда не меньше нуля.
А вот больше нуля она может быть сколько угодно: ведь бесконечно большой x в квадрате будет еще больше.
Таким образом, можем написать для \( y=<
В каждом отдельном случае область значений будет разная, но всегда – ограниченная.
График квадратичной функции
Наверняка ты слышал, что график квадратичной функции называется параболой. Как она выглядит? Сейчас нарисуем
Кстати мы очень подробно разобрали как быстро и правильно рисовать параболу. Переходи по ссылке и всему научишься.
Начнем с простейшей квадратичной функции – \( y=<
Составим таблицу значений:
x | -2 | -1 | 0 | 1 | 2 |
y | 4 | 1 | 0 | 1 | 4 |
Нарисуем эти точки на координатной плоскости и соединим их плавной линией:
Именно так и выглядит парабола. Самая нижняя ее точка называется вершиной, а части спарва и слева от вершины называем ветвями параболы. Как видим, ветви симметричны относительно вертикали, проходящей через вершину.
Рассмотрим теперь другую функцию: \( y=<
Составим таблицу значений:
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
y | 5 | 0 | -3 | -4 | -3 | 0 | 5 |
Сравним два рисунка.
Видно, что это как будто одна и та же парабола, просто расположенная в разных местах.
Во второй параболе вершина переместилась в точку \( \left( 1;-4 \right)\), а ветви переехали вместе с ней.
Да, так оно и есть: все параболы с одинаковым старшим коэффициентом, a выглядят одинаково – даже при разных остальных коэффициентах.
Кстати, если хочешь научиться быстро и правильно рисовать график квадратичной функции, то переходи по ссылке, там отличная статья.
Коэффициенты квадратичной функции
Давай разберем, на что влияют коэффициенты квадратичной функции.
Начнем со старшего коэффициента.
Будем рассматривать функции вида \( y=a<
Что ты видишь? Чем они отличаются? Какую закономерность можно заметить?
Во-первых, это невозможно не заметить, если \( \displaystyle \mathbf \mathbf<0>\) – вверх.
Значит, если парабола пересекает ось \( \displaystyle Ox\) в двух точках, то у нас два корня квадратного уравнения.
Если не пересекает – корней нет.
Но бывает ведь, что дискриминант уравнения равен нулю, и тогда только один корень. В этом случае парабола касается оси \( \displaystyle Ox\) вершиной:
А что такое вершина параболы?
Вершина параболы
Корень уравнения в этом случае указывает на вершину параболы. Если вспомнить формулу корня квадратного уравнения при \( \displaystyle D=0\), получим формулу вершины:
Это тоже бывает очень полезно.
Итак, всего возможны шесть разных вариантов расположения параболы. Вот они все на одном рисунке:
А теперь порешаем задачки.
Решение задач
1. График какой из функций избражен на рисунке?
2. Найдите сумму корней квадратного уравнения \( a<
3. Найдите произведение корней квадратного уравнения \( a<
4. По графику функции \( y=<
Решения
1. Первое: куда «смотрят» ветви параболы? Вниз. А что это значит? Правильно, \( \displaystyle a
Преобразования графиков функций (ЕГЭ 18. Задачи с параметром)
Научились строить график какой-то функции? А что, если я теперь поменяю один из коэффициентов? Или «заключу» часть функции в модуль?
Можно ли не строить для этого новый график, а просто передвинуть/растянуть старый?
Можно! И на этом уроке мы научимся производить такие трансформации.
Благодаря таким трансформациям мы станем понимать, как выглядят графики функций при всех значениях параметра и научимся решать задачи из ЕГЭ на эту тему.
Дискриминант
Дискриминантом квадратного трехчлена называют выражение \(b^<2>-4ac\), где \(a, b\) и \(c\) – коэффициенты данного трехчлена.
Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).
Дискриминант и корни квадратного уравнения
Значение дискриминанта показывает количество корней квадратного уравнения:
— если \(D\) положителен – уравнение будет иметь два корня;
— если \(D\) равен нулю – только один корень;
— если \(D\) отрицателен – корней нет.
Если дискриминант положителен
В этом случае корень из него – это некоторое положительное число, а значит \(x_<1>\) и \(x_<2>\) будут различны по значению, ведь в первой формуле \(\sqrt
Пример: Найдите корни уравнения \(x^2+2x-3=0\)
Решение:
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Найдем корни уравнения
Получили два различных корня из-за разных знаков перед \(\sqrt
Если дискриминант равен нулю
А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.
То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.
Пример: Найдите корни уравнения \(x^2-4x+4=0\)
Решение:
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Находим корни уравнения
Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.
Если дискриминант отрицателен
В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.
Пример: Найдите корни уравнения \(x^2+x+3=0\)
Решение
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Находим корни уравнения
Оба корня содержат невычислимое выражение \(\sqrt<-11>\), значит, и сами не вычислимы
То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение \(x^2+x+3\) получился ноль.
Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.
Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!
Квадратичная функция
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
После этого по точкам строили график:
Параболу y = ax 2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.
1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a 2 с равными по модулю, но противоположными по знаку значениями a.
2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).
3. Абсцисса вершины параболы y = ax 2 + bx + c находится по формуле:
Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что
где D = b 2 − 4ac — дискриминант.
4. Точки пересечения параболы y = ax 2 + bx + c с осью X находятся с помощью решения квадратного уравнения ax 2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.
5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).
Посмотрим, как расположена квадратичная функция (парабола) в зависимости от знака коэффициента а и дискриминанта D.
Где же в реальной жизни можно увидеть параболу (квадратичную функцию)?
Мяч, брошенный под углом к горизонту, летит по параболе. Зависимость его высоты от времени — квадратичная функция. Струя воды из фонтана или шланга, направленная под углом к горизонту, рисует в пространстве именно параболу. Но это не всё. Разберите карманный фонарик. Вы увидите, что за лампочкой расположено зеркальце, имеющее параболическую форму. Спутниковая антенна или антенна телескопа имеют форму параболы. Случайно ли это?
Оказывается, параболическое зеркало обладает интереснейшим свойством — весь поток света, падающий на его поверхность, оно собирает в одной точке, называемой фокусом параболы. Вот почему форма антенн — параболическая. И наоборот, если в фокусе параболы расположен источник света, то отражённые от зеркала лучи света будут параллельны. Поэтому карманный фонарик дает направленный луч света, хорошо видимый в темноте.
Решая задачи ЕГЭ с физическим или экономическим содержанием, мы часто будем замечать в них квадратичные зависимости одной переменной от другой. И конечно, будем пользоваться свойствами квадратичной функции.
Квадратичная функция и ее график
В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.
Функция вида , где 0″ title=»a<>0″/> называется квадратичной функцией.
В уравнении квадратичной функции:
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .
В случае квадратичной функции нужно решить квадратное уравнение .
В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если 0″ title=»a>0″/>,то график функции выглядит как-то так:
2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если 0″ title=»a>0″/>,то график функции выглядит примерно так:
,
Если 0″ title=»a>0″/>,то график функции выглядит примерно так:
Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.
Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.
1. Функция задана формулой .
Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции
1. Направление ветвей параболы.
Так как 0″ title=»a=2>0″/>,ветви параболы направлены вверх.
2. Найдем дискриминант квадратного трехчлена
0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>
Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.
Для того, чтобы найти их координаты, решим уравнение:
,
3. Координаты вершины параболы:
4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.
Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:
Этот способ можно несколько упростить.
1. Найдем координаты вершины параболы.
2. Найдем координаты точек, стоящих справа и слева от вершины.
Воспользуемся результатами построения графика функции
Кррдинаты вершины параболы
Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2
Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:
Нанесем эти точки на координатную плоскость и соединим плавной линией:
Построим для примера график функции .
Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно
Выделим в уравнении функции полный квадрат:
Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):
Построим для примера график функции y=(x-2)(x+1)
(х-2)(х+1)=0, отсюда
2. Координаты вершины параболы:
3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.
Нанесем эти точки на координатную плоскость и построим график:
График квадратичной функции.
Перед вами график квадратичной функции вида .
Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента ,
— сдвига графика функции вдоль оси от значения ,
— сдвига графика функции вдоль оси от значения
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений и :
И.В. Фельдман, репетитор по математике.