на что распадается уран 235
УРАН-235: ОТ БОМБЫ ДО ПРИРОДНОГО ЯДЕРНОГО РЕАКТОРА
Именно это чудо-свойство изотопа используется при создании атомной бомбы — уран-235 отвечает за размножение нейтронов в природном уране-238. Процесс выглядит так: ядро урана-235 «обстреливают» нейтронами, из-за чего оно теряет стабильность и вскоре делится на две неравные части. В ходе этой реакции отделяется два-три новых нейтрона. Если они снова попадают в ядра урана, происходит размножение нейтронов в геометрической прогрессии — идет цепная реакция, что приводит к взрыву из-за быстрого выделения огромного количества тепла. С ураном-238, который составляет 99% природного урана, ничего подобного не происходит.
Период полураспада у всех изотопов урана очень длительный. У урана-235 — это 700 млн лет, а у урана-238 — 4,4 млрд лет, он долгожитель среди своих «собратьев». Радиоактивность природного металла настолько низкая, что люди, работающие на урановых приисках, обычно не имеют лучевой болезни. Популярна легенда об академике Игоре Курчатове, «отце» советской атомной бомбы. После работы с ураном он обыкновенно протирал руки обычной салфеткой или платком и при этом не имел со здоровьем никаких проблем, вызванных радиацией.
Но уран-235, который находится в природе в ничтожно малом количестве, гораздо более радиоактивен. В этом «виновато» его особенное строение: баланс между отталкивающей силой протонов в ядре атома и силой поверхностного натяжения, удерживающей ядро от распада, гораздо более хрупкий, чем в уране-238. Имея более сложный состав ядра, уран-235 легче принимает дополнительный нейтрон и проще вступает с ним в реакцию.
Уран известен человечеству еще с 79 года нашей эры, когда он использовался в керамической промышленности (в форме природного оксида) в нескольких частях Европы. Химический элемент был официально открыт только в 1789 году, когда во время эксперимента немецкий химик Мартин Генрих Клапрот наткнулся на странное, неизвестное вещество (оксид урана). Клапроту также приписывают открытие циркония, церия и теллура.
Впервые это стало известно на мировой арене в 1930-х годах, когда команда исследователей во главе с физиком Энрико Ферми, а затем Отто Ханом-Фрицем Страсманном раскрыла способность Урана распадаться (делиться) на более легкие элементы.
15. Нет недостатка в Уране как источнике энергии
Исследование, проведенное учеными Массачусетского технологического института в 2010 году показали, что более чем достаточно запасов урана для мировой атомной энергетики в обозримом будущем. В настоящее время все ядерные реакторы используют в этом процессе как уран, так и плутоний.
Интересно отметить, что большая часть используемого плутония фактически производится из изотопов урана, поскольку плутоний доступен только в небольших количествах в природе.
После успешного обнаружения способности деления урана, другая команда во главе с Энрико Ферми, на этот раз в рамках Манхэттенского проекта, начала работу над первым в мире ядерным реактором под названием Чикагская свая-1 (CP-1). 2 декабря 1942 года команда смогла инициировать первую в истории самоподдерживающуюся ядерную цепную реакцию в СР-1.
Их первоначальный план состоял в том, чтобы использовать обогащенный уран-235 в качестве топлива, но был отброшен из-за его дефицита в то время. Вместо этого реактор был заправлен 45 тоннами оксида урана и 5,4 тоннами металлического урана. В качестве замедлителя нейтронов было использовано около 360 тонн гранита. В отличие от многих современных ядерных реакторов, СР-1 не имел системы охлаждения.
13. Уран гораздо важнее, чем вы думаете
Распад тория, урана и калия-40 является основным источником тепла вблизи мантии Земли, который управляет критической мантийной конвекцией и удерживает внешнюю жидкость в противоположность твердому внутреннему ядру. Это тепло также играет важную роль в тектонике плит.
Кроме того, длительный период полураспада урана-238 (4,51× 10,9 лет) делает его идеальным для всех видов радиометрических исследований (радиоуглеродного датирования), т. е. Уран-уранового, уран–ториевого и уран-свинцового датирования. Он также используется для создания высокоэнергетических рентгеновских лучей.
12. Это самый тяжелый природный элемент, известный нам
Тяжесть элемента может быть определена двумя способами; с точки зрения его атомного веса и с точки зрения его плотности. С 92 протонами в его ядре и атомным весом около 238,0289 уран является самым тяжелым природным элементом на Земле.
Самым тяжелым синтетическим элементом, известным на сегодняшний день, является Оганесон (атомный номер 118). С другой стороны, самым тяжелым элементом по плотности является осмий (22,59 г / см 3 ).
11. Уран очень нестабилен
Все изотопы урана очень нестабильны, и это в основном из-за его размера. Том Зеллнер в своей книге «Уран: война, энергия и скала» описал уран примерно так: «Атом урана настолько перегружен, что он начал отливать из себя куски, как обманутый человек может сорвать с себя одежду».
10. Уран был впервые выделен в 1841 году.
Фотопластинки Беккереля, которая была засвечена излучением солей урана.
Первым человеком, который изолировал уран, был Эжен Пелиго, профессор химии в Национальной консерватории искусств и ремесел (Conservatoire National des Arts et Métiers) в Париже.
Пилиго успешно продемонстрировал, что таинственный черный порошок, открытый Мартином Генрихом Клапротом, был не чистым веществом, а оксидом урана (UO2 ). Он сделал это, обработав тетрахлорид урана (черный порошок) калием.
Затем в 1896 году физик Анри Беккерель обнаружил радиоактивные свойства урана наряду с самой радиоактивностью. Для этого он использовал несколько фосфоресцентных материалов, которые светятся в темноте после воздействия света.
Он накрыл фотопластинку черной бумагой и поочередно поместил разные фосфоресцентные соли. Он предположил, что свечение, создаваемое в ЭЛТ (электронно-лучевые трубки) рентгеновскими лучами, может быть связано с фосфоресценцией.
Результаты были неожиданными, так как урановая соль была единственным веществом, которое вызывало значительное почернение пластины. Исследование прояснило, что фосфоресценция не была позади запотевания пластины (соли урана не являются фосфоресцентными) и что там была какая-то форма невидимого излучения, которое проникало в черную бумагу и создавало вид, будто пластина подвергается воздействию света.
9. Природный реактор ядерного деления
Вам может быть интересно, как это возможно? Ну, чтобы понять это, вы должны сначала знать, что уран-235, который сегодня составляет всего около 0,72% природного урана, может выдерживать цепную реакцию деления, в отличие от урана-238. Он также разлагается гораздо быстрее, чем уран-238. Это означает, что уран-235 истощил намного больше, чем уран-238 с момента рождения Земли.
Краткие и быстрые факты
Теоретически, килограмм урана-235 может произвести
80 тераджоулей энергии. Потребовалось бы более 3000 тонн угля для производства такого же количества энергии.
Пенетраторы высокой плотности из обедненного урана военного класса
Однако прямое употребление этого вещества может привести к серьезным повреждениям многих органов, раку и длительным неврологическим расстройствам. Хотя потребление большого количества урана, безусловно, смертельно, почки могут справиться с низким уровнем воздействия урана.
Уран-235
239 Pu (α)
Активность одного грамма этого нуклида составляет приблизительно 80 кБк.
Содержание
Образование и распад
Уран-235 образуется в результате следующих распадов:
Распад урана-235 происходит по следующим направлениям:
Вынужденное деление
При распаде одного ядра 235 U обычно испускается 2-3 нейтрона (в среднем за акт деления возникает 2.5 свободных нейтрона). Каждый нейтрон, образовавшийся при распаде ядра 235 U, при попадании в другое ядро 235 U может вызвать новый акт распада, это явление называется цепной ядерной реакцией.
Гипотетически, количество нейтронов после второго этапа распада ядер может превышать 3² = 9. С каждым последующим этапом количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235 U или будучи захвачены иными материалами (например, 238 U).
Если в среднем каждый акт деления порождает один новый акт деления, то реакция становится самоподдерживающейся; это состояние называется критическим. (см. также Коэффициент размножения нейтронов)
Изомеры
Известен единственный изомер 235 U m со следующими характеристиками [2] :
Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.
Ядерная топка Земли
Общеизвестно, что Солнце и другие звезды черпают свою колоссальную энергию из пылающего в их недрах «термоядерного котла». Но и относительно холодная Земля излучает тепла заметно больше, чем можно было бы предположить на основе таких широко распространенных в природе процессов, как, например, естественный радиоактивный распад. Некоторые ученые считают, что причина этого кроется в работе гигантского атомного реактора в земных глубинах. Только в нашем геореакторе происходит не термоядерный синтез, как в звездах, а цепные реакции деления
Почему вообще так важна роль урана-235? Дело в том, что именно этот изотоп охотно делится под воздействием медленных нейтронов в отличие от преобладающего изотопа – урана-238, который может делиться только быстрыми нейтронами (а быстрые – в среде замедляются, и цепная реакция гаснет, не успев начаться).
Таким образом, за миллиарды лет до появления человека природа уже освоила технологию, над реализацией которой в середине ХХ в. бились лучшие умы планеты.
ИЗОТОПЫ УРАНА И ЦЕПНАЯ РЕАКЦИЯ ДЕЛЕНИЯ
Сама идея атомного реактора в земных недрах возникла примерно в это же время – и почти за двадцать лет до открытия феномена Окло! В 1953 г. американские физики Дж. Везерилл и М. Ингрэм выдвинули смелую гипотезу, что в древнейшие времена в скоплениях радиоактивных элементов, главным образом урана и тория, могли протекать цепные ядерные реакции. Датируя эти предположительные процессы эпохой более 2 млрд лет назад, авторы исходили из соображения, что в середине геологической истории Земли доля изотопа 235 U в общем уране была существенно выше, чем сейчас, и составляла более 3 % – как в топливе современных АЭС.
Поиски геореакторов, подобных оклоскому, предпринимались впоследствии и в других древних месторождениях, но они успехом не увенчались. Может быть, африканский реактор – это шутка Бога, результат случайного стечения обстоятельств и он действительно уникален? Даже если это так, идея, что в Земле могут идти – причем и в далеком прошлом, и в настоящее время! – ядерные реакции деления, не оставляет ученых.
Красноречивый гелий
Признаки работы природных реакторов ищут не только в земной коре, но и в недрах планеты. Одна из причин упорства исследователей заключается в том, что Земля излучает тепла примерно в 2,5 раза больше, чем должна отдавать в результате естественного распада радиоактивных элементов в коре (радиогенное тепло) и первичного нагрева. (Тепловая энергия, получаемая от Солнца, в этом балансе не учитывается). Если такую большую разницу пытаться объяснить только радиогенным теплом из внутренних областей планеты, то Земля в целом должна иметь нереально большие запасы радиоактивных элементов.
Но вот в цепных ядерных реакциях как раз выделяется тепла в несколько раз больше, чем при естественном радиоактивном распаде. Цепной механизм выделения энергии мог бы объяснить и упомянутый тепловой дисбаланс, и многие другие необычные явления. И если гипотетические реакторы расположены глубоко в недрах, то понятно, почему следы их активности не удалось найти в урановых месторождениях (за исключением Окло). Искали где ближе, но, может, стоит «копнуть вглубь»?
Итак, предположим, что где-то в теле Земли действует такой реактор. По каким признакам его можно обнаружить? Один из методов поиска – анализ продуктов деления, мигрирующих из зоны реакции и достигающих земной поверхности. В частности, очень интересен изотопный состав «солнечного элемента» – гелия.
Природный гелий состоит из двух стабильных изотопов: 4 He и 3 He. Некоторая часть гелия-3 поступает в атмосферу Земли с солнечным ветром и при β-распаде трития – тяжелого водорода, образующегося при соударении космических частиц с ядрами атомов, входящих в состав воздуха. Гелий-4 попадает в атмосферу в результате естественного распада урана и тория.
В воздухе на миллион атомов гелия-4 приходится всего полтора атома гелия-3. Но в базальтах срединно-океанических хребтов изотопа 3 He больше уже в 8 раз, а в некоторых изверженных магматических горных породах – в 40!
Как объяснить происхождение гелия с высоким содержанием изотопа 3 He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления.
Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов. Среди легких заряженных частиц доминируют ядра гелия-4 (α-частицы); их доля выхода около 90 %. Эту реакцию можно записать, например, так:
235 U + n ® 131 Xe + 99 Tc + 4 He + 2n.
В реакциях несколько другого типа образуется тритий (доля выхода до 10 %):
235 U + n ® 132 Cs + 99 Tc + 3 H + 2n.
Радиоактивный тритий, в свою очередь, распадается, испуская электрон (β-распад) и антинейтрино, с образованием гелия-3:
В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка. Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков! Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора.
Уран выпал в осадок?
Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд. Обычная радиоактивность – это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей (нейтроном). По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения.
Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов (актиноидов). Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли.
На рубеже XX–XXI вв. В.Ф. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана (UO2), проведенных в конце 1990-х гг. в Институте геологии и минералогии СО РАН (Новосибирск). В экспериментах на аппарате высокого давления типа «разрезная сфера» А. И. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа (для сравнения: в центре Земли давление около 360 ГПа). Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран!
Этот важный экспериментальный факт наводит на мысль, что миграция актиноидов в теле Земли могла быть следующей. После образования планеты в океане магмы, состоящей, в основном, из расплавов железа и силикатов, присутствовали и соединения урана. Со временем магма остывала, и происходило гравитационное разделение вещества по плотности. Силикаты, кристаллизуясь, всплывали в магме, плотность которой за счет железа была выше. Соединения же тяжелых актиноидов, выделяясь из расплава по мере роста давления и кристаллизуясь, оседали на внутреннее твердое железоникелевое ядро планеты.
Из сейсмологических исследований известно, что переходная зона между внешним жидким и внутренним твердым ядром Земли толщиной 2—3 км имеет мозаичную структуру. При этом основными структурными элементами являются относительно тонкие взвешенные слои протяженностью до нескольких десятков километров. Возможно, именно они и являются областями концентрации тяжелых радиоактивных элементов.
Не можешь найти – моделируй!
Когда речь идет о процессах на глубинах в тысячи километров, следует иметь в виду, что, с одной стороны, они недоступны непосредственному экспериментальному исследованию, с другой – их не всегда возможно изучать и в лабораторных установках, где трудно создать аналогичные физические условия. Но в современной науке существует еще один универсальный инструмент познания – компьютерное моделирование.
В 2005 г. ученые из Института гидродинамики СО РАН (Новосибирск) и Физико-энергетического института (Обнинск) численно смоделировали различные режимы работы геореакторов, начиная со времени образования Земли. Задача была не из легких, поскольку методы теории реакторов традиционно применяются для расчета процессов длительностью максимум в годы, а здесь потребовалось просчитывать интервалы в миллиарды лет!
Моделируемая среда представляла собой железоникелевый расплав с примесью углерода, в котором находились взвешенные кристаллы диоксида урана. Время начала моделируемых процессов – 4 млрд лет назад (содержание делящегося изотопа 235 U в природном уране тогда составляло 16 %, т. е. в 20 раз превышало современное значение).
238 U + n ® 239 Pu ® 235 U + 4 He.
В результате содержание легко делящегося урана-235 поддерживается на достаточно высоком уровне, и получается реактор-размножитель на быстрых нейтронах.
10 тыс. лет) и похолоданий (
90 тыс. лет), надежно установленная в этих исследованиях, может свидетельствовать в пользу импульсного режима работы геореакторов, тепловые потоки от которых достигают поверхности Земли.
Вполне естественно предположить, что при работе реактора из-за тепловыделения возникают конвективные потоки, вызывающие разрыхление активной зоны. В какой-то момент цепная реакция деления останавливается. Когда выделение тепла прекращается и конвективные потоки ослабевают, уран медленно оседает – цепная реакция возобновляется. Таким образом, геореактор может работать и в импульсном режиме.
Определяющим показателем хода цепной реакции является коэффициент размножения нейтронов k, который равен отношению числа нейтронов, вновь образовавшихся в реакциях деления, к количеству нейтронов, поглощенных в ходе реакции либо покинувших активную зону.
Чтобы цепная реакция была возможна, должно выполняться неравенство k ≥ 1. Тогда в каждом новом поколении нейтронов становится все больше, и они, в свою очередь, вызывают все больше делений ядер. Возникает лавинообразный процесс. Согласно проведенным расчетам максимально возможный коэффициент размножения ведет себя следующим образом: вначале он падает в течение 1 млрд лет, однако затем более-менее стабилизируется и остается больше единицы вплоть до настоящего времени.
Представляется, что более вероятен импульсный сценарий работы реактора, когда периоды активности перемежаются периодами «простоя». Так, как это было в маленьком природном реакторе Окло, но только с большей продолжительностью циклов. По мнению авторов, временные характеристики рассчитанного импульсного режима можно соотнести с рядом периодических явлений, наблюдаемых на поверхности Земли, таких как глобальные изменения климата или смена магнитных полюсов.
Откуда летят геонейтрино?
Сторонники точки зрения, что Земля является ядерным реактором, сегодня связывают особые надежды с электронным антинейтрино. Эта частица в больших количествах образуется в цепных реакциях, при последовательных β-распадах осколков деления тяжелых ядер.
В 2005 г. группа исследователей, работавшая на нейтринном детекторе KamLAND (Япония), сообщила о первых результатах регистрации антинейтрино из недр Земли – геонейтрино. В течение двух лет ученые зафиксировали 152 события, но после отсечения фона осталось всего 25 – по одному в месяц. (Главными источниками фона оказались промышленные реакторы Японии и Южной Кореи).
Полное число антинейтрино может быть частично связано с мощностью действующего геореактора и частично – с естественным распадом различных нестабильных ядер в недрах Земли. Из данных KamLAND следует, что полная плотность потока геонейтрино составляет примерно 16 млн частиц в секунду на кв. см. Это соответствует источнику тепла, порождаемого ядерными реакциями, мощностью от 24 до 60 ТВт. Первое из двух чисел оказалось близким к величине «избыточного» тепла, излучаемого Землей, о котором шла речь выше. И многие специалисты склоняются к мнению, что это объяснение наиболее правдоподобно.
Энергетические спектры нейтрино, образующихся при делении разных ядер, отличаются. При интерпретации данных KamLAND в 2007 г. В.Д. Русов с коллегами выполнили компьютерное моделирование и определили спектральные составляющие геонейтрино от различных внутренних источников – урана-238, тория-232, плутония-239. Суммарную мощность геореактора они оценили в 30 ТВт. Результаты этой работы также свидетельствуют в пользу импульсного режима размножения.
КОММЕНТАРИЙ СПЕЦИАЛИСТА ПО ГЕОДИНАМИКЕ
У замечательных экспериментов на KamLAND есть один существенный недостаток: в них нельзя определить расстояние до источника частиц, только направление. Для решения этой и других задач предполагается создать глобальную сеть детекторов. Подобный опыт у международного научного сообщества уже есть: в 2005 г. был запущен проект интеграции четырех нейтринных детекторов на четырех континентах – в Японии, Канаде, Италии и Антарктиде – для прогнозов вспышек сверхновых в Галактике.
Таким образом, в ближайшее десятилетие планируется зарегистрировать геонейтрино в нескольких точках земного шара. Объединение данных разных детекторов позволит наконец установить точное месторасположение источников этих частиц внутри нашей планеты и даст еще один довод «за» или «против» гипотезы «ядерной топки» Земли.
Вместо послесловия
Если бы взорвался весь уран Земли, событие было бы эквивалентно взрыву тротила в количестве, сравнимом с массой планеты! И Земля перестала бы существовать. Однако даже теоретически трудно представить механизм, по которому бы земной уран мог сконцентрироваться и одновременно прореагировать. Но взрыва даже нескольких процентов актиноидов вполне достаточно, чтобы отделить от Земли фрагмент размером с Луну.
1 ТВт = 1000 ГВт = 10 12 Вт
Мощность геореактора = 30 000 ГВт
Мощность Саяно-Шушенской ГЭС = 6,4 ГВт
Этот «апокалиптический» пассаж касается не только нашей планеты, но и других. Ведь большие тела Солнечной системы образовались из одного протопланетного облака, поэтому и содержание радиоактивных элементов в них может быть схожим. Все планеты, вероятно, прошли стадию гравитационного разделения вещества по плотности, в результате которого тяжелые актиноиды могли сконцентрироваться в их недрах.
Катастрофические ядерные события хорошо объясняют ряд так называемых нерегулярностей в Солнечной системе, казалось бы, ничем между собой не связанных. Среди них аномально большая масса спутника Земли – Луны, малая масса Марса, обратное суточное вращение Венеры, множество хаотично движущихся астероидов и комет. Не исключено, что исследования нашего «домашнего» земного реактора заставят нас по-новому взглянуть и на вопросы эволюции планет.
Анисичкин В.Ф. // Физика горения и взрыва. – 1997. – T. 33. – C. 138.
Анисичкин В.Ф., Бордзиловский С.А., Караханов С.М. и др. // Физика горения и взрыва. – 2009. – T. 45. – C. 100.
Митрофанов В.В., Анисичкин В.Ф., Воронин Д.В. и др. // V Забабахинские научные чтения. – Снежинск: Изд-во РФЯЦ ВНИИТФ, 1999. (Тр. междунар. конф.)
Овчинников В.М., Краснощеков Д.Н., Каазик П.Б. // Докл. РАН. – 2007. – T. 417. – C. 389.
Anisichkin V.F., Bezborodov A.A., Suslov I.R. // Transport Theory and Statistical Physics. – 2008. – V. 37. – P. 624.
Araki T. et al. // Nature. – 2005. – V. 436. – P. 499.
Rusov V.D., Pavlovich V.N., Vaschenko V.N. et al. // Journ. Geophys. Res. – 2007. – V. 112. – P. 1.
Авторы признательны академику В. М. Титову за поддержку проводимых в СО РАН исследований по цепным ядерным реакциям в недрах планет