Клеточная мембрана это что кратко

Научная электронная библиотека

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что краткоучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что краткотранспортировка питательных веществ и утилизация продуктов обмена клетки;

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что краткобуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что краткоподдержание тургора (упругость) клетки;

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратковсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

1_1 Строение клеточной мембраны

Клеточная мембрана (плазмалемма или плазмолемма)

Определение понятия

Образное представление о мембране

Свойства мембраны

2. Полупроницаемость (частичная проницаемость).

3. Избирательная (синоним: селективная) проницаемость.

4. Активная проницаемость (синоним: активный транспорт).

5. Управляемая проницаемость.

6. Фагоцитоц и пиноцитоз.

9. Изменения электрического и химического потенциала.

10. Раздражимость. Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лигандов (управляющих веществ). Важно отметить, что сигнальное вещество воздействует на рецептор снаружи, а изменения продолжаются внутри клетки. Получается, что мембрана передала информацию из окружающей среды во внутреннюю среду клетки.

11. Каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.

12. Изменение формы поверхности и её площади. Это позволяет мембране образовывать выросты наружу или, наоборот, впячивания внутрь клетки.

13. Способность образовывать контакты с другими клеточными мембранами.

Краткий список свойств мембраны

Функции мембраны

1. Неполная изоляция внутреннего содержимого от внешней среды.

4. Через мембрану осуществляется также информационный обмен между клеткой и окружающей её средой. Специальные молекулярные рецепторы, расположенные на мембране, могут связываться с управляющими веществами (гормонами, медиаторами, модуляторами) и запускать в клетке биохимические реакции, приводящие к различным изменениям в работе клетки или в её структурах.

Видео: Строение мембраны клетки

Видеолекция: Подробно о строении мембраны и транспорте

Строение мембраны

Ниже представлены микрофотографии реальных клеточных мембран контактирующих клеток, полученные с помощью электронного микроскопа, а также схематический рисунок, показывающий трёхслойность мембраны и мозаичность её белковых слоёв. Для увеличения изображения кликните на него.

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Отдельное изображение внутреннего липидного (жирового) слоя клеточной мембраны, пронизанного интегральными встроенными белками. Верхний и нижний белковые слои удалены, чтобы не мешать рассмотрению липидного двойного слоя

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что краткоКлеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рисунок выше: Неполное схематичное изображение клеточной мембраны (клеточной оболочки), приведённое в Википедии.

Учтите, что наружный и внутренний слои поверхностных белков здесь с мембраны сняты, чтобы нам лучше был виден центральный жировой двойной липидный слой. В реальной клеточной мембране сверху и снизу по жировой плёночке (мелкие шарики на рисунке) плавают большие белковые «острова», и мембрана получается более толстой, трёхслойной: белок-жир-белок. Так что она на самом деле похожа на сэндвич из двух белковых «кусков хлеба» с жирным слоем «масла» посередине, т.е. имеет трёхслойное строение, а не двухслойное.

Живая клетка — это маленький «белково-жировой мешочек», заполненный полужидким желеобразным содержимым, которое пронизано плёнками и трубочками.

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Можно дать и более точное научное определение клетке:

Клетка – это ограниченная активной мембраной, упорядоченная, структурированная неоднородная система биополимеров, участвующих в единой совокупности обменных, энергетических и информационных процессов, и также осуществляющих поддержание и воспроизведение всей системы в целом.

Внутри клетка также пронизана мембранами, а между мембранами находится не вода, а вязкий гель/золь изменяемой плотности. Поэтому взаимодействующие молекулы в клетке не плавают свободно, как в пробирке с водным раствором, а в основном сидят (иммобилизованы) на полимерных структурах цитоскелета или внутриклеточных мембранах. И химические реакции поэтому проходят внутри клетки почти как в твердом теле, а не в жидкости. Наружная мембрана, окружающая клетку, также облеплена ферментами и молекулярными рецепторами, что делает её очень активной частью клетки.

Мембранные липиды

В состав липидов мембран входят в основном фосфолипиды, сфингомиелины и холестерин, а также в меньших количествах гликолипиды.

С химической точки зрения фосфолипид состоит из четырёх частей: глицерина, двух жирных кислот с длинной углеводородной цепью, фосфорной кислоты и особой для каждого фосфолипида группы, которую принято называть характеристической группой. Трёхатомный спирт глицерин связывает через сложно-эфирную связь две жирные кислоты и остаток фосфорной кислоты, к которой присоединена характеристическая группа (например, этаноламин).

fosfolipid.jpeg

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. ___. Структурная формула фосфатидилэтаноламина как пример амфифильной (гидрофобной/гидрофильной) молекулы фосфолипида. Кроме этаноламина характеристической группой фосфолипида может быть также холин, инозитол, серин и некоторые другие молекулы.

fosfatidilholin.jpg

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. ___. Молекулярная структура фосфатидилхолина (=лецитина). Источник изображения: https://pandia.ru/text/80/650/73429-4.php

Мембранная плёночка является двойной, т. е. она состоит из двух липидных плёночек, слипшихся друг с другом с помощью своих липидных «хвостиков». Поэтому в учебниках пишут, что основа клеточной мембраны состоит из двух липидных слоёв (или из «бислоя«, т.е. двойного слоя). У каждого отдельно взятого липидного слоя одна сторона может смачиваться водой, а другая — не может. Так вот, эти плёночки слипаются друг с другом именно своими несмачивающимися сторонами. Примерно так можно соединить две щётки, направив их щетиной друг к другу и слегка придавив.

Мембранные белки

Белки мембраны включены в липидный двойной слой двумя способами:

Интегральные белки различаются по степени погруженности в гидрофобную часть бислоя. Они могут располагаться по обеим сторонам мембраны и при этом либо частично погружаются в мембрану, либо располагаются трансмембранно. Погруженная часть интегральных белков содержит большое количество аминокислот с гидрофобными радикалами, которые обеспечивают гидрофобное взаимодействие с липидами мембран. Гидрофобные взаимодействия поддерживают определенную ориентацию белков в мембране. Гидрофильная выступающая часть белка не может переместиться в гидрофобный слой. Часть мембранных белков ковалентно связана с моносахаридными остатками или олигосахаридными цепями и представляет собой гликопротеины. В отличие от нерастворимых фибриллярных белков растворимые белки имеют почти сферическую (глобулярную) форму. Глобулярным белкам свойственна высокоупорядоченная пространственная структура (конформация), которая способствует выполнению специфических биологических функций (Албертс и соавт., 1994).

Подвижными в мембране являются не только липиды, но и мембранные белки. Если белки не закреплены в мембране, они «плавают» в липидном бислое как в жидкости. Поэтому говорят, что биомембраны имеют жидкостно-мозаичную структуру. При этом «дрейф» белков в плоскости мембраны происходит достаточно легко, переход их с внешней стороны мембраны на внутреннюю («флип-флоп») невозможен, а переход липидов происходит крайне редко. Для «перескока» липидов необходимы специальные белки транслокаторы. Исключение составляет жир холестерин, который может легко переходить с одной стороны мембраны на другую. Интегральные мембранные белки имеют трансмембранные спирализованные участки (домены), которые однократно или многократно пересекают липидный бислой. Такие белки прочно связаны с липидным окружением. Периферические мембранные белки удерживаются на мембране с помощью липидного «якоря» и связаны с другими компонентами мембраны; например, они часто бывают ассоциированы с интегральными мембранными белками. У интегральных мембранных белков фрагмент пептидной цепи, пересекающий липидный бислой, обычно состоит из 21–25 преимущественно гидрофобных аминокислот, которые образуют правую трансмембранную α-спираль с 6 или 7 витками (Фалер, Шилдс, 2004).

Мембрана бактерий

Оболочка прокариотической клетки грамотрицательных бактерий состоит из нескольких слоёв, показанных на рисунке ниже.
Слои оболочки грамотрицательных бактерий:
1. Внутренняя трёхслойная цитоплазматическая мембрана, которая соприкасается с цитоплазмой.
2. Клеточная стенка, которая состоит из муреина.
3. Наружная трёхслойная цитоплазматическая мембрана, которая имеет такую же систему липидов с белковыми комплексами, как и внутренняя мембрана.
Общение грамотрицательных бактериальных клеток с внешним миром через такую сложную трёхступенчатую структуру не даёт им преимущества в выживании в суровых условиях по сравнению с грамположительным бактериями, имеющими менее мощную оболочку. Они точно так же плохо переносят высокие температуры, повышенную кислотность и перепады давления.

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. Сложная тройная клеточная оболочка грамотрицательных бактерий. Источник изображения: https://probakterii.ru/prokaryotes/organelles/membrana-bakterij.html

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Клеточная мембрана это что кратко. Смотреть фото Клеточная мембрана это что кратко. Смотреть картинку Клеточная мембрана это что кратко. Картинка про Клеточная мембрана это что кратко. Фото Клеточная мембрана это что кратко

Рис. Domain-length scales and the biomembrane as a protein–lipid composite material. (a) Length scales of domains in biomembranes. Shells, complexes and nanoclusters range from 1–10 nm, whereas nanodomains such as caveolae can be as large as 100 nm. (b) A schematic representation of the biomembrane as a composite of lipids and proteins. Estimates of lateral protein concentration are about 30,000 per μm2 based on rhodopsin in the rod outer segment28,29 and transmembrane proteins in the baby hamster kidney (BHK) cell membrane27. Lipids were assumed to occupy a surface area of ∼0.68 nm2 (diameter ∼0.93 nm) and an α-helix ∼1 nm2 (diameter ∼1.1 nm). A 30 × 30 nm2 section of membrane is depicted with 32 lipids on a side, 35 transmembrane proteins with 15 single-span, 12 tetraspan and eight heptaspan α-helical proteins, having assumed crosssectional areas in the plane of the membrane of 1 nm2, 4.5 nm2 and 8 nm2, respectively. Taking into account the area excluded by the proteins, the numerical lipid : protein ratio is ∼50. For a single-span helix with a diameter of ∼1.1 nm, there are about seven lipids in the first boundary layer; for a tetraspan protein with a diameter of ∼2.4 nm, there are about 11 lipids in the first boundary layer; for a heptaspan protein (such as rhodopsin) with a diameter of ∼3.2 nm, there would be about 14 lipids in the first boundary layer. Such first-boundary layer lipids are shown in white, whereas the second layer is shown in red. All other lipids are shown in yellow. Lipid-binding proteins and adaptors linking transmembrane proteins to membrane proximate cytoskeletal filaments are also depicted as different coloured structures beneath the plane of the membrane, but ectodomains of the membrane proteins are omitted for clarity. Источник изображения: https://www.nature.com/articles/ncb0107-7

Видеолекция: Плазматическая мембрана. Е.В. Шеваль, к.б.н.

Видеолекция: Мембрана как клеточная граница. А. Иляскин

Важность ионных каналов мембраны

Вообще, встроенные в мембрану белки ещё называются интегральными, именно потому что они как бы включаются в состав мембраны и пронизывают её насквозь. Другие белки, не интегральные, образуют как бы острова, «плавающие» по поверхности мембраны: либо по её наружной поверхности, либо по внутренней. Ведь всем известно, что жир является хорошей смазкой и скользить по нему получается легко!

Выводы

1. В целом, мембрана получается трёхслойной:

1) наружный слой из белковых «островов»,

2) жировое двухслойное «море» (липидный бислой), т.е. двойная липидная плёнка,

3) внутренний слой из белковых «островов».

2. В мембрану встроены специальные белковые структуры, обеспечивающие её протицаемость для ионов или других веществ. Не надо забывать, что в некоторых местах жировое море пронизано интегральными белками насквозь. И именно интегральные белки образуют специальные транспортные структуры клеточной мембраны (смотрите раздел 1_2 Транспортные механизмы мембраны). Через них вещества попадают внутрь клетки, а также выводятся из клетки наружу.

3. С любой стороны мембраны (наружной и внутренней), а также внутри мембраны могут располагаться белки-ферменты, которые влияют и на состояние самой мембраны и на жизнь всей клетки.

В медицине мембранные белки зачастую используются как “мишени” для лекарственных средств. В качестве таких мишеней выступают рецепторы, ионные каналы, ферменты, транспортные системы. В последнее время кроме мембраны мишенью для лекарственных веществ становятся также гены, спрятанные в клеточном ядре.

Видео: Введение в биофизику клеточной мембраны: Структура мембран 1 (Владимиров Ю.А.)

Видео: История, строение и функции клеточной мембраны: Структура мембран 2 (Владимиров Ю.А.)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *