Что такое зеркало в микроскопе
Что такое зеркало в микроскопе
фЕНБ: хУФТПКУФЧП НЙЛТПУЛПРБ Й РТБЧЙМБ ТБВПФЩ У ОЙН
нБФЕТЙБМЩ Й ПВПТХДПЧБОЙЕ. нЙЛТПУЛПРЩ: нвт-1, вйпмбн, нйлнед-1, нву-1; ЛПНРМЕЛФ РПУФПСООЩИ НЙЛТПРТЕРБТБФПЧ «бОБФПНЙС ТБУФЕОЙК».
тБЪТЕЫБАЭБС УРПУПВОПУФШ НЙЛТПУЛПРБ ДБЕФ ТБЪДЕМШОПЕ ЙЪПВТБЦЕОЙЕ ДЧХИ ВМЙЪЛЙИ ДТХЗ ДТХЗХ МЙОЙК. оЕЧППТХЦЕООЩК ЮЕМПЧЕЮЕУЛЙК ЗМБЪ ЙНЕЕФ ТБЪТЕЫБАЭХА УРПУПВОПУФШ ПЛПМП 1/10 НН ЙМЙ 100 НЛН. мХЮЫЙК УЧЕФПЧПК НЙЛТПУЛПР РТЙНЕТОП Ч 500 ТБЪ ХМХЮЫБЕФ ЧПЪНПЦОПУФШ ЮЕМПЧЕЮЕУЛПЗП ЗМБЪБ, Ф. Е. ЕЗП ТБЪТЕЫБАЭБС УРПУПВОПУФШ УПУФБЧМСЕФ ПЛПМП 0,2 НЛН ЙМЙ 200 ОН.
тБЪТЕЫБАЭБС УРПУПВОПУФШ Й ХЧЕМЙЮЕОЙЕ ОЕ ПДОП Й ФПЦЕ. еУМЙ У РПНПЭША УЧЕФПЧПЗП НЙЛТПУЛПРБ РПМХЮЙФШ ЖПФПЗТБЖЙЙ ДЧХИ МЙОЙК, ТБУРПМПЦЕООЩИ ОБ ТБУУФПСОЙЙ НЕОЕЕ 0,2 НЛН, ФП, ЛБЛ ВЩ ОЕ ХЧЕМЙЮЙЧБФШ ЙЪПВТБЦЕОЙЕ, МЙОЙЙ ВХДХФ УМЙЧБФШУС Ч ПДОХ. нПЦОП РПМХЮЙФШ ВПМШЫПЕ ХЧЕМЙЮЕОЙЕ, ОП ОЕ ХМХЮЫЙФШ ЕЗП ТБЪТЕЫЕОЙЕ.
ч ХЮЕВОЩИ МБВПТБФПТЙСИ ПВЩЮОП ЙУРПМШЪХАФ УЧЕФПЧЩЕ НЙЛТПУЛПРЩ, ОБ ЛПФПТЩИ НЙЛТПРТЕРБТБФЩ ТБУУНБФТЙЧБАФУС У ЙУРПМШЪПЧБОЙЕН ЕУФЕУФЧЕООПЗП ЙМЙ ЙУЛХУУФЧЕООПЗП УЧЕФБ. оБЙВПМЕЕ ТБУРТПУФТБОЕОЩ УЧЕФПЧЩЕ ВЙПМПЗЙЮЕУЛЙЕ НЙЛТПУЛПРЩ: вйпмбн, нйлнед, нвт (НЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК ТБВПЮЙК), нвй (НЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК ЙУУМЕДПЧБФЕМШУЛЙК) Й нву (НЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК УФЕТЕПУЛПРЙЮЕУЛЙК). пОЙ ДБАФ ХЧЕМЙЮЕОЙЕ Ч РТЕДЕМБИ ПФ 56 ДП 1350 ТБЪ. уФЕТЕПНЙЛТПУЛПР (нву) ПВЕУРЕЮЙЧБЕФ РПДМЙООП ПВЯЕНОПЕ ЧПУРТЙСФЙЕ НЙЛТППВЯЕЛФБ Й ХЧЕМЙЮЙЧБЕФ ПФ 3,5 ДП 88 ТБЪ.
ч НЙЛТПУЛПРЕ ЧЩДЕМСАФ ДЧЕ УЙУФЕНЩ: ПРФЙЮЕУЛХА Й НЕИБОЙЮЕУЛХА (ТЙУ. 1). л ПРФЙЮЕУЛПК УЙУФЕНЕ ПФОПУСФ ПВЯЕЛФЙЧЩ, ПЛХМСТЩ Й ПУЧЕФЙФЕМШОПЕ ХУФТПКУФЧП (ЛПОДЕОУПТ У ДЙБЖТБЗНПК Й УЧЕФПЖЙМШФТПН, ЪЕТЛБМП ЙМЙ ЬМЕЛФТППУЧЕФЙФЕМШ).
тЙУ. 1. хУФТПКУФЧП УЧЕФПЧЩИ НЙЛТПУЛПРПЧ:
пЛХМСТ ХУФТПЕО ОБНОПЗП РТПЭЕ ПВЯЕЛФЙЧБ. пО УПУФПЙФ ЙЪ 2-3 МЙОЪ, ЧНПОФЙТПЧБООЩИ Ч НЕФБММЙЮЕУЛЙК ГЙМЙОДТ. нЕЦДХ МЙОЪБНЙ ТБУРПМПЦЕОБ РПУФПСООБС ДЙБЖТБЗНБ, ПРТЕДЕМСАЭБС ЗТБОЙГЩ РПМС ЪТЕОЙС. оЙЦОСС МЙОЪБ ЖПЛХУЙТХЕФ ЙЪПВТБЦЕОЙЕ ПВЯЕЛФБ, РПУФТПЕООПЕ ПВЯЕЛФЙЧПН Ч РМПУЛПУФЙ ДЙБЖТБЗНЩ, Б ЧЕТИОСС УМХЦЙФ ОЕРПУТЕДУФЧЕООП ДМС ОБВМАДЕОЙС. хЧЕМЙЮЕОЙЕ ПЛХМСТПЧ ПВПЪОБЮЕОП ОБ ОЙИ ГЙЖТБНЙ: И7, И10, И15. пЛХМСТЩ ОЕ ЧЩСЧМСАФ ОПЧЩИ ДЕФБМЕК УФТПЕОЙС, Й Ч ЬФПН ПФОПЫЕОЙЙ ЙИ ХЧЕМЙЮЕОЙЕ ВЕУРПМЕЪОП. фБЛЙН ПВТБЪПН, ПЛХМСТ, РПДПВОП МХРЕ, ДБЕФ РТСНПЕ, НОЙНПЕ, ХЧЕМЙЮЕООПЕ ЙЪПВТБЦЕОЙЕ ОБВМАДБЕНПЗП ПВЯЕЛФБ, РПУФТПЕООПЕ ПВЯЕЛФЙЧПН.
дМС ПРТЕДЕМЕОЙС ПВЭЕЗП ХЧЕМЙЮЕОЙС НЙЛТПУЛПРБ УМЕДХЕФ ХНОПЦЙФШ ХЧЕМЙЮЕОЙЕ ПВЯЕЛФЙЧБ ОБ ХЧЕМЙЮЕОЙЕ ПЛХМСТБ.
пУЧЕФЙФЕМШОПЕ ХУФТПКУФЧП УПУФПЙФ ЙЪ ЪЕТЛБМБ ЙМЙ ЬМЕЛФТППУЧЕФЙФЕМС, ЛПОДЕОУПТБ У ЙТЙУПЧПК ДЙБЖТБЗНПК Й УЧЕФПЖЙМШФТПН, ТБУРПМПЦЕООЩИ РПД РТЕДНЕФОЩН УФПМЙЛПН. пОЙ РТЕДОБЪОБЮЕОЩ ДМС ПУЧЕЭЕОЙС ПВЯЕЛФБ РХЮЛПН УЧЕФБ.
ъЕТЛБМП УМХЦЙФ ДМС ОБРТБЧМЕОЙС УЧЕФБ ЮЕТЕЪ ЛПОДЕОУПТ Й ПФЧЕТУФЙЕ РТЕДНЕФОПЗП УФПМЙЛБ ОБ ПВЯЕЛФ. пОП ЙНЕЕФ ДЧЕ РПЧЕТИОПУФЙ: РМПУЛХА Й ЧПЗОХФХА. ч МБВПТБФПТЙСИ У ТБУУЕСООЩН УЧЕФПН ЙУРПМШЪХАФ ЧПЗОХФПЕ ЪЕТЛБМП.
ьМЕЛФТППУЧЕФЙФЕМШ ХУФБОБЧМЙЧБЕФУС РПД ЛПОДЕОУПТПН Ч ЗОЕЪДП РПДУФБЧЛЙ.
лПОДЕОУПТ УПУФПЙФ ЙЪ 2-3 МЙОЪ, ЧУФБЧМЕООЩИ Ч НЕФБММЙЮЕУЛЙК ГЙМЙОДТ. рТЙ РПДЯЕНЕ ЙМЙ ПРХУЛБОЙЙ ЕЗП У РПНПЭША УРЕГЙБМШОПЗП ЧЙОФБ УППФЧЕФУФЧЕООП ЛПОДЕОУЙТХЕФУС ЙМЙ ТБУУЕЙЧБЕФУС УЧЕФ, РБДБАЭЙК ПФ ЪЕТЛБМБ ОБ ПВЯЕЛФ.
йТЙУПЧБС ДЙБЖТБЗНБ ТБУРПМПЦЕОБ НЕЦДХ ЪЕТЛБМПН Й ЛПОДЕОУПТПН. пОБ УМХЦЙФ ДМС ЙЪНЕОЕОЙС ДЙБНЕФТБ УЧЕФПЧПЗП РПФПЛБ, ОБРТБЧМСЕНПЗП ЪЕТЛБМПН ЮЕТЕЪ ЛПОДЕОУПТ ОБ ПВЯЕЛФ, Ч УППФЧЕФУФЧЙЙ У ДЙБНЕФТПН ЖТПОФБМШОПК МЙОЪЩ ПВЯЕЛФЙЧБ Й УПУФПЙФ ЙЪ ФПОЛЙИ НЕФБММЙЮЕУЛЙИ РМБУФЙОПЛ. у РПНПЭША ТЩЮБЦЛБ ЙИ НПЦОП ФП УПЕДЙОЙФШ, РПМОПУФША ЪБЛТЩЧБС ОЙЦОАА МЙОЪХ ЛПОДЕОУПТБ, ФП ТБЪЧЕУФЙ, ХЧЕМЙЮЙЧБС РПФПЛ УЧЕФБ.
лПМШГП У НБФПЧЩН УФЕЛМПН ЙМЙ УЧЕФПЖЙМШФТПН ХНЕОШЫБЕФ ПУЧЕЭЕООПУФШ ПВЯЕЛФБ. пОП ТБУРПМПЦЕОП РПД ДЙБЖТБЗНПК Й РЕТЕДЧЙЗБЕФУС Ч ЗПТЙЪПОФБМШОПК РМПУЛПУФЙ.
нЕИБОЙЮЕУЛБС УЙУФЕНБ НЙЛТПУЛПРБ УПУФПЙФ ЙЪ РПДУФБЧЛЙ, ЛПТПВЛЙ У НЙЛТПНЕФТЕООЩН НЕИБОЙЪНПН Й НЙЛТПНЕФТЕООЩН ЧЙОФПН, ФХВХУБ, ФХВХУПДЕТЦБФЕМС, ЧЙОФБ ЗТХВПК ОБЧПДЛЙ, ЛТПОЫФЕКОБ ЛПОДЕОУПТБ, ЧЙОФБ РЕТЕНЕЭЕОЙС ЛПОДЕОУПТБ, ТЕЧПМШЧЕТБ, РТЕДНЕФОПЗП УФПМЙЛБ.
лПТПВЛБ У НЙЛТПНЕФТЕООЩН НЕИБОЙЪНПН, РПУФТПЕООПН ОБ РТЙОГЙРЕ ЧЪБЙНПДЕКУФЧХАЭЙИ ЫЕУФЕТЕО, РТЙЛТЕРМЕОБ Л РПДУФБЧЛЕ ОЕРПДЧЙЦОП. нЙЛТПНЕФТЕООЩК ЧЙОФ УМХЦЙФ ДМС ОЕЪОБЮЙФЕМШОПЗП РЕТЕНЕЭЕОЙС ФХВХУПДЕТЦБФЕМС, Б, УМЕДПЧБФЕМШОП, Й ПВЯЕЛФЙЧБ ОБ ТБУУФПСОЙС, ЙЪНЕТСЕНЩЕ НЙЛТПНЕФТБНЙ. рПМОЩК ПВПТПФ НЙЛТПНЕФТЕООПЗП ЧЙОФБ РЕТЕДЧЙЗБЕФ ФХВХУПДЕТЦБФЕМШ ОБ 100 НЛН, Б РПЧПТПФ ОБ ПДОП ДЕМЕОЙЕ ПРХУЛБЕФ ЙМЙ РПДОЙНБЕФ ФХВХУПДЕТЦБФЕМШ ОБ 2 НЛН. чП ЙЪВЕЦБОЙЕ РПТЮЙ НЙЛТПНЕФТЕООПЗП НЕИБОЙЪНБ ТБЪТЕЫБЕФУС ЛТХФЙФШ НЙЛТПНЕФТЕООЩК ЧЙОФ Ч ПДОХ УФПТПОХ ОЕ ВПМЕЕ ЮЕН ОБ РПМПЧЙОХ ПВПТПФБ.
тЕЧПМШЧЕТ РТЕДОБЪОБЮЕО ДМС ВЩУФТПК УНЕОЩ ПВЯЕЛФЙЧПЧ, ЛПФПТЩЕ ЧЧЙОЮЙЧБАФУС Ч ЕЗП ЗОЕЪДБ. гЕОФТЙТПЧБООПЕ РПМПЦЕОЙЕ ПВЯЕЛФЙЧБ ПВЕУРЕЮЙЧБЕФ ЪБЭЕМЛБ, ТБУРПМПЦЕООБС ЧОХФТЙ ТЕЧПМШЧЕТБ.
фХВХУПДЕТЦБФЕМШ ОЕУЕФ ФХВХУ Й ТЕЧПМШЧЕТ.
чЙОФ ЗТХВПК ОБЧПДЛЙ ЙУРПМШЪХАФ ДМС ЪОБЮЙФЕМШОПЗП РЕТЕНЕЭЕОЙС ФХВХУПДЕТЦБФЕМС, Б, УМЕДПЧБФЕМШОП, Й ПВЯЕЛФЙЧБ У ГЕМША ЖПЛХУЙТПЧЛЙ ПВЯЕЛФБ РТЙ НБМПН ХЧЕМЙЮЕОЙЙ.
лТПОЫФЕКО ЛПОДЕОУПТБ РПДЧЙЦОП РТЙУПЕДЙОЕО Л ЛПТПВЛЕ НЙЛТПНЕФТЕООПЗП НЕИБОЙЪНБ. еЗП НПЦОП РПДОСФШ ЙМЙ ПРХУФЙФШ РТЙ РПНПЭЙ ЧЙОФБ, ЧТБЭБАЭЕЗП ЪХВЮБФПЕ ЛПМЕУП, ЧИПДСЭЕЕ Ч РБЪЩ ТЕКЛЙ У ЗТЕВЕОЮБФПК ОБТЕЪЛПК.
рТБЧЙМБ ТБВПФЩ У НЙЛТПУЛПРПН
рТЙ ТБВПФЕ У НЙЛТПУЛПРПН ОЕПВИПДЙНП УПВМАДБФШ ПРЕТБГЙЙ Ч УМЕДХАЭЕН РПТСДЛЕ:
1. тБВПФБФШ У НЙЛТПУЛПРПН УМЕДХЕФ УЙДС;
2. нЙЛТПУЛПР ПУНПФТЕФШ, ЧЩФЕТЕФШ ПФ РЩМЙ НСЗЛПК УБМЖЕФЛПК ПВЯЕЛФЙЧЩ, ПЛХМСТ, ЪЕТЛБМП ЙМЙ ЬМЕЛФТППУЧЕФЙФЕМШ;
3. нЙЛТПУЛПР ХУФБОПЧЙФШ РЕТЕД УПВПК, ОЕНОПЗП УМЕЧБ ОБ 2-3 УН ПФ ЛТБС УФПМБ. чП ЧТЕНС ТБВПФЩ ЕЗП ОЕ УДЧЙЗБФШ;
4. пФЛТЩФШ РПМОПУФША ДЙБЖТБЗНХ, РПДОСФШ ЛПОДЕОУПТ Ч ЛТБКОЕЕ ЧЕТИОЕЕ РПМПЦЕОЙЕ;
5. тБВПФХ У НЙЛТПУЛПРПН ЧУЕЗДБ ОБЮЙОБФШ У НБМПЗП ХЧЕМЙЮЕОЙС;
7. хУФБОПЧЙФШ ПУЧЕЭЕОЙЕ Ч РПМЕ ЪТЕОЙС НЙЛТПУЛПРБ, ЙУРПМШЪХС ЬМЕЛФТППУЧЕФЙФЕМШ ЙМЙ ЪЕТЛБМП. зМСДС ПДОЙН ЗМБЪПН Ч ПЛХМСТ Й РПМШЪХСУШ ЪЕТЛБМПН У ЧПЗОХФПК УФПТПОПК, ОБРТБЧЙФШ УЧЕФ ПФ ПЛОБ Ч ПВЯЕЛФЙЧ, Б ЪБФЕН НБЛУЙНБМШОП Й ТБЧОПНЕТОП ПУЧЕФЙФШ РПМЕ ЪТЕОЙС. еУМЙ НЙЛТПУЛПР УОБВЦЕО ПУЧЕФЙФЕМЕН, ФП РПДУПЕДЙОЙФШ НЙЛТПУЛПР Л ЙУФПЮОЙЛХ РЙФБОЙС, ЧЛМАЮЙФШ МБНРХ Й ХУФБОПЧЙФШ ОЕПВИПДЙНХА СТЛПУФШ ЗПТЕОЙС;
8. рПМПЦЙФШ НЙЛТПРТЕРБТБФ ОБ РТЕДНЕФОЩК УФПМЙЛ ФБЛ, ЮФПВЩ ЙЪХЮБЕНЩК ПВЯЕЛФ ОБИПДЙМУС РПД ПВЯЕЛФЙЧПН. зМСДС УВПЛХ, ПРХУЛБФШ ПВЯЕЛФЙЧ РТЙ РПНПЭЙ НБЛТПЧЙОФБ ДП ФЕИ РПТ, РПЛБ ТБУУФПСОЙЕ НЕЦДХ ОЙЦОЕК МЙОЪПК ПВЯЕЛФЙЧБ Й НЙЛТПРТЕРБТБФПН ОЕ УФБОЕФ 4-5 НН;
9. уНПФТЕФШ ПДОЙН ЗМБЪПН Ч ПЛХМСТ Й ЧТБЭБФШ ЧЙОФ ЗТХВПК ОБЧПДЛЙ ОБ УЕВС, РМБЧОП РПДОЙНБС ПВЯЕЛФЙЧ ДП РПМПЦЕОЙС, РТЙ ЛПФПТПН ИПТПЫП ВХДЕФ ЧЙДОП ЙЪПВТБЦЕОЙЕ ПВЯЕЛФБ. оЕМШЪС УНПФТЕФШ Ч ПЛХМСТ Й ПРХУЛБФШ ПВЯЕЛФЙЧ. жТПОФБМШОБС МЙОЪБ НПЦЕФ ТБЪДБЧЙФШ РПЛТПЧОПЕ УФЕЛМП, Й ОБ ОЕК РПСЧСФУС ГБТБРЙОЩ;
10. рЕТЕДЧЙЗБС РТЕРБТБФ ТХЛПК, ОБКФЙ ОХЦОПЕ НЕУФП, ТБУРПМПЦЙФШ ЕЗП Ч ГЕОФТЕ РПМС ЪТЕОЙС НЙЛТПУЛПРБ;
11. еУМЙ ЙЪПВТБЦЕОЙЕ ОЕ РПСЧЙМПУШ, ФП ОБДП РПЧФПТЙФШ ЧУЕ ПРЕТБГЙЙ РХОЛФПЧ 6, 7, 8, 9;
13. рП ПЛПОЮБОЙЙ ТБВПФЩ У ВПМШЫЙН ХЧЕМЙЮЕОЙЕН, ХУФБОПЧЙФШ НБМПЕ ХЧЕМЙЮЕОЙЕ, РПДОСФШ ПВЯЕЛФЙЧ, УОСФШ У ТБВПЮЕЗП УФПМЙЛБ РТЕРБТБФ, РТПФЕТЕФШ ЮЙУФПК УБМЖЕФЛПК ЧУЕ ЮБУФЙ НЙЛТПУЛПРБ, ОБЛТЩФШ ЕЗП РПМЙЬФЙМЕОПЧЩН РБЛЕФПН Й РПУФБЧЙФШ Ч ЫЛБЖ.
нЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК УФЕТЕПУЛПРЙЮЕУЛЙК нву-1 (ТЙУ. 2) ДБЕФ РТСНПЕ Й ПВЯЕНОПЕ ЙЪПВТБЦЕОЙЕ ПВЯЕЛФБ Ч РТПИПДСЭЕН ЙМЙ ПФТБЦЕООПН УЧЕФЕ. пО РТЕДОБЪОБЮЕО ДМС ЙЪХЮЕОЙС НЕМЛЙИ ПВЯЕЛФПЧ Й РТЕРБТЙТПЧБОЙС ЙИ, ФБЛ ЛБЛ ЙНЕЕФ ВПМШЫПЕ ТБВПЮЕЕ ТБУУФПСОЙЕ (ТБУУФПСОЙЕ ПФ РПЛТПЧОПЗП УФЕЛМБ ДП ЖТПОФБМШОПК МЙОЪЩ).
тЙУ. 2. хУФТПКУФЧП НЙЛТПУЛПРБ нву-1:
оБ ЧЕТИОАА ЮБУФШ ЗПМПЧЛЙ ХУФБОПЧМЕОБ ВЙОПЛХМСТОБС ОБУБДЛБ. пЛХМСТЩ ЙНЕАФ ХЧЕМЙЮЕОЙС И6, И8, И12,5. дМС ХУФБОПЧЛЙ ХДПВОПЗП ДМС ЗМБЪ ТБУУФПСОЙС НЕЦДХ ПЛХМСТБНЙ ОБДП ТБЪДЧЙОХФШ ЙМЙ УДЧЙОХФШ ФХВХУЩ.
л ЪБДОЕК УФЕОЛЕ ЛПТРХУБ ЗПМПЧЛЙ РТЙЛТЕРМЕО ЛТПОЫФЕКО У ТЕЕЮОЩН НЕИБОЙЪНПН РЕТЕДЧЙЦЕОЙС. рПДЯЕН Й ПРХУЛБОЙЕ ЛПТРХУБ ЗПМПЧЛЙ ПУХЭЕУФЧМСЕФУС ЧТБЭЕОЙЕН ЧЙОФБ. лТПОЫФЕКО ОБДЕФ ОБ УФПКЛХ, РТЙЛТЕРМЕООХА Л РПДУФБЧЛЕ.
дМС ТБВПФЩ Ч РТПИПДСЭЕН УЧЕФЕ, Ч ЛПТРХУ РПДУФБЧЛЙ ЧНПОФЙТПЧБО ПФТБЦБФЕМШ УЧЕФБ, У ЪЕТЛБМШОПК Й НБФПЧПК РПЧЕТИОПУФСНЙ. у РЕТЕДОЕК УФПТПОЩ ЛПТРХУБ ЙНЕЕФУС ПЛОП ДМС ДПУФХРБ ДОЕЧОПЗП УЧЕФБ. дМС ЙУЛХУУФЧЕООПЗП ПУЧЕЭЕОЙС РТЕДОБЪОБЮЕОБ МБНРБ, ЛПФПТХА ЧУФБЧМСАФ ЙМЙ Ч ПФЧЕТУФЙЕ У ЪБДОЕК УФПТПОЩ ЛПТРХУБ (ДМС РТПИПДСЭЕЗП УЧЕФБ), ЙМЙ Ч ЛТПОЫФЕКО, ХЛТЕРМЕООЩК ОБ ПВЯЕЛФЙЧЕ (ДМС ПФТБЦЕООПЗП УЧЕФБ).
уФПМЙЛ ХУФБОПЧМЕО Ч ЛТХЗМПН ПЛОЕ ОБ ЧЕТИОЕК РПЧЕТИОПУФЙ ЛПТРХУБ РПДУФБЧЛЙ. пО НПЦЕФ ВЩФШ МЙВП УФЕЛМСООЩН (РТЙ РТПИПДСЭЕН УЧЕФЕ), МЙВП НЕФБММЙЮЕУЛЙН, У ВЕМПК Й ЮЕТОПК РПЧЕТИОПУФСНЙ (РТЙ ПФТБЦЕООПН УЧЕФЕ).
ьМЕЛФТПООЩК НЙЛТПУЛПР (ТЙУ. 3) РПЪЧПМСЕФ ТБУУНПФТЕФШ УФТПЕОЙЕ ПЮЕОШ НЕМЛЙИ УФТХЛФХТ, ОЕЧЙДЙНЩИ Ч УЧЕФПЧПН НЙЛТПУЛПРЕ, ОБРТЙНЕТ, ФЙМБЛПЙД Ч ИМПТПРМБУФБИ. еЗП ТБЪТЕЫБАЭБС УРПУПВОПУФШ Ч 400 ТБЪ ВПМШЫЕ, ЮЕН Х УЧЕФПЧПЗП НЙЛТПУЛПРБ. ьФП ДПУФЙЗБЕФУС ЪБ УЮЕФ РПФПЛБ ЬМЕЛФТПОПЧ, ЧНЕУФП ЧЙДЙНПЗП УЧЕФБ. тБЪМЙЮБАФ ДЧБ ФЙРБ ЬМЕЛФТПООЩИ НЙЛТПУЛПРПЧ: ФТБОУНЙУУЙПООЩК (РТПУЧЕЮЙЧБАЭЙК) Й УЛБОЙТХАЭЙК (ДБАЭЙК ПВЯЕНОПЕ ЙЪПВТБЦЕОЙЕ НЙЛТПРТЕРБТБФПЧ) (ТЙУ. 4).
тЙУ. 3. ьМЕЛФТПООЩК НЙЛТПУЛПР.
тЙУ. 4. уОЙНЛЙ, УДЕМБООЩЕ ОБ ЬМЕЛФТПООЩИ НЙЛТПУЛПРБИ:
ъБДБОЙЕ 1. йУРПМШЪХС НЙЛТПУЛПРЩ, ФБВМЙГЩ Й РТБЛФЙЛХНЩ, ЙЪХЮЙФШ ХУФТПКУФЧП УЧЕФПЧЩИ НЙЛТПУЛПРПЧ (нйлнед-1, вйпмбн Й нву-1) (ТЙУ. 1, 2). ъБРПНОЙФШ ОБЪЧБОЙС Й ОБЪОБЮЕОЙЕ ЙИ ЮБУФЕК.
ъБДБОЙЕ 2. рТЙ НБМПН Й ВПМШЫПН ХЧЕМЙЮЕОЙСИ НЙЛТПУЛПРБ ОБХЮЙФШУС ВЩУФТП ОБИПДЙФШ ПВЯЕЛФЩ ОБ РПУФПСООЩИ НЙЛТПРТЕРБТБФБИ.
1. юФП ФБЛПЕ ТБЪТЕЫБАЭБС УРПУПВОПУФШ НЙЛТПУЛПРБ?
2. лБЛ НПЦОП ПРТЕДЕМЙФШ ХЧЕМЙЮЕОЙЕ ТБУУНБФТЙЧБЕНПЗП РПД НЙЛТПУЛПРПН ПВЯЕЛФБ?
3. ч ЮЕН ПФМЙЮЙЕ НЙЛТПУЛПРПЧ вйпмбн Й нву-1?
4. рЕТЕЮЙУМЙФШ ЗМБЧОЩЕ ЮБУФЙ НЙЛТПУЛПРБ вйпмбн Й нйлнед-1. ч ЮЕН ЙИ ОБЪОБЮЕОЙЕ?
Из чего состоит микроскоп?
Поговорим об осветительной системе: зеркало для микроскопа или светодиод?
Для наблюдений микромира хорошее освещение настолько же важно, как и качество оптики микроскопа. Светодиоды, галогенные лампы, зеркало – для микроскопа могут использоваться разные источники освещения. У каждого есть свои плюсы и минусы. Зеркало выбирают для микроскопа, когда не планируют вести наблюдения при слабой освещенности. Или когда важна безопасность. Например, для ребенка лучше выбирать зеркало, так как для работы такой подсветки не требуется подключение к сети, а значит, нет контакта с электричеством. Для лабораторных исследований чаще всего выбирают светодиод – он обеспечивает наиболее равномерное и яркое освещение. Галогенные лампы хороши в случаях, когда важна правильность цветопередачи или требуется бюджетный вариант осветителя. Светодиод и галогенная лампа могут работать от сети, от батареек или от аккумуляторов – это зависит от модели микроскопа.
Подсветка может быть верхней, нижней или комбинированной. Ее расположение влияет на то, какие микропрепараты можно изучать при помощи микроскопа. С нижней подсветкой изучают прозрачные образцы, с верхней – непрозрачные, комбинированная (и верхняя, и нижняя) подсветка дает возможность изучать и прозрачные, и непрозрачные, и полупрозрачные образцы.
Что такое «диафрагма микроскопа»
Под предметным столиком, на который кладется образец для исследований, располагается диафрагма микроскопа. Она может быть дисковой или ирисовой. Диафрагма предназначена для регулировки интенсивности освещения: с ее помощью можно отрегулировать толщину светового пучка, идущего от осветителя. Дисковая диафрагма – это небольшая пластина с отверстиями разного диаметра. Ее обычно устанавливают на любительские микроскопы. Ирисовая диафрагма состоит из множества лепестков, с помощью которых можно плавно изменять диаметр светопропускающего отверстия. Она чаще встречается в микроскопах профессионального уровня.
Оптическая часть: окуляры и объективы
Объективы и окуляры – наиболее популярные запчасти для микроскопа. Хотя далеко не все микроскопы поддерживают смену этих аксессуаров. Оптическая система отвечает за формирование увеличенного изображения. Чем она лучше и совершеннее, тем картинка получается четче и подробнее. Но высочайший уровень качества оптики нужен только в профессиональных микроскопах. Для любительских исследований достаточно стандартной стеклянной оптики, обеспечивающей увеличение до 500–1000 крат. А вот пластиковых линз мы рекомендуем избегать – качество картинки в таких микроскопах обычно расстраивает.
Механические элементы
В любом микроскопе присутствуют элементы, которые позволяют исследователю управлять фокусом, регулировать положение исследуемого образца, настраивать рабочее расстояние оптического прибора. Все это часть механики микроскопа: коаксиальные механизмы фокусировки, препаратоводитель и препаратодержатель, ручки регулировки резкости, предметный столик и многое другое.
В этой статье мы постарались ответить на вопрос, из чего состоит микроскоп, и вкратце рассказали об устройстве классического оптического микроскопа. Раздел с микроскопами представлен по ссылке – приглашаем вас за покупками!
4glaza.ru
Февраль 2018
Статья обновлена в апреле 2020 года.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Устройство микроскопа и правила работы с ним
Устройство микроскопа и правила работы с ним
Устройство микроскопа и правила работы с ним
Тема: Устройство микроскопа и правила работы с ним
Материалы и оборудование. Микроскопы: МБР-1, БИОЛАМ, МИКМЕД-1, МБС-1; комплект постоянных микропрепаратов «Анатомия растений».
Микроскоп — это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности глаза|глаза.
Разрешающая способность микроскопа даёт раздельное изображение двух близких друг другу линий. Невооружённый человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза|глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.
Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.
Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное — это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить ещё во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.
В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объёмное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.
В микроскопе выделяют две системы: оптическую и механическую (рис. 1). К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).
Рис. 1. Устройство световых микроскопов:
А — МИКМЕД-1; Б — БИОЛАМ.
Объектив — одна из важнейших частей микроскопа, поскольку он определяет полезное увеличение объекта. Объектив состоит из металлического цилиндра с вмонтированными в него линзами, число которых может быть различным. Увеличение объектива обозначено на нем цифрами. В учебных целях используют обычно объективы х8 и х40. Качество объектива определяет его разрешающая способность.
Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля|поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно. Таким образом, окуляр, подобно лупе, даёт прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.
Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.
Осветительное устройство состоит из зеркала|зеркала или электроосветителя, конденсора с ирисовой|ирисовой диафрагмой и светофильтром, расположенных под предметным столиком|столиком. Они предназначены для освещения объекта пучком света.
Зеркало служит для направления света через конденсор и отверстие предметного столика|столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.
Электроосветитель устанавливается под конденсором в гнездо подставки.
Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъёме или опускании его с помощью специального винта|винта соответственно конденсируется или рассеивается свет, падающий от зеркала|зеркала на объект.
Ирисовая|Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.
Кольцо с матовым стеклом или светофильтром уменьшает освещённость объекта. Оно расположено под диафрагмой и передвигается|передвигается в горизонтальной плоскости.
Механическая система микроскопа состоит из подставки, коробки|коробки с микрометренным механизмом и микрометренным винтом|винтом, тубуса, тубусодержателя, винта|винта грубой наводки, кронштейна конденсора, винта|винта перемещения конденсора, револьвера, предметного столика|столика.
Подставка — это основание микроскопа.
Коробка|Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерён, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта|винта передвигает|передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.
Тубус или трубка — цилиндр, в который сверху вставляют окуляры. Тубус подвижно соединён с головкой тубусодержателя, его фиксируют стопорным винтом|винтом в определённом положении. Ослабив стопорный винт, тубус можно снять.
Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда|гнёзда. Центрированное положение объектива обеспечивает защёлка, расположенная внутри револьвера.
Тубусодержатель несёт тубус и револьвер.
Винт грубой наводки используют для значительного переме
ения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.
Предметный столик предназначен для расположения на нем препарата. В середине столика|столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы — зажимы, закрепляющие препарат.
Кронштейн конденсора подвижно присоединён к коробке|коробке микрометренного механизма. Его можно поднять или опустить при помощи винта|винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.
Правила работы с микроскопом
При работе с микроскопом необходимо соблюдать операции в следующем порядке:
1. Работать с микроскопом следует сидя|сидя;
2. Микроскоп осмотреть, вытереть от пыли|пыли мягкой салфеткой объективы, окуляр, зеркало или электроосветитель;
3. Микроскоп установить перед собой, немного слева на 2-3 см от края|края стола. Во время работы его не сдвигать;
4. Открыть полностью диафрагму, поднять конденсор в крайнее верхнее положение;
5. Работу с микроскопом всегда начинать с малого увеличения;
6. Опустить объектив 8 — в рабочее положение, т.е. на расстояние 1 см от предметного стекла|стёкла;
7. Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна|окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжён осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;
10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля|поля зрения микроскопа;
11. Если изображение не появилось, то надо повторить всё|все операции пунктов 6, 7, 8, 9;
12. Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля|поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта|винта добиться хорошего изображения объекта. На коробке|коробке микрометренного механизма имеются две риски, а на микрометренном винте|винте — точка, которая должна всё время находиться между рисками. Если она выходит за их пределы, её необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;
13. По окончании работы с большим|большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика|столика препарат, протереть чистой салфеткой всё|все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.
Микроскоп биологический стереоскопический МБС-1 (рис. 2) даёт прямое и объёмное изображение объекта в проходящем или отражённом свете. Он предназначен для изучения мелких объектов и препарирования их, так как имеет большое рабочее расстояние (расстояние от покровного стекла|стёкла до фронтальной линзы).
Рис. 2. Устройство микроскопа МБС-1:
1 — окуляр, 2 — винт грубой наводки, 3 — подставка, 4 — зеркало, 5 — предметный столик, 6 — стойка, 7 — оптическая головка, 8 — объектив, 9 — рукоятка переключения увеличения, 10 — бинокулярная насадка, 11 — лампа.
Основная часть микроскопа — оптическая головка. В нижнюю часть её вмонтирован объектив, состоящий из системы линз, которые можно переключать при помощи рукоятки и этим менять увеличение. Увеличения объектива обозначены цифрами на рукоятке — х0,6, х1, х2, х4, х7. На корпусе головки имеется точка. Для установки нужного увеличения объектива надо цифру на рукоятке совместить с точкой на корпусе головки.
На верхнюю часть головки установлена бинокулярная насадка. Окуляры имеют увеличения х6, х8, х12,5. Для установки удобного для глаз расстояния между окулярами надо раздвинуть или сдвинуть тубусы.
К задней стенке корпуса|корпуса головки прикреплён кронштейн с реечным механизмом передвижения. Подъем|Подъём и опускание корпуса|корпуса головки осуществляется вращением винта|винта. Кронштейн надет на стойку, прикреплённую к подставке.
Для работы в проходящем свете, в корпус подставки вмонтирован отражатель света, с зеркальной и матовой поверхностями. С передней стороны|стороны корпуса|корпуса имеется окно для доступа дневного света. Для искусственного освещения предназначена лампа, которую вставляют или в отверстие с задней стороны|стороны корпуса|корпуса (для проходящего света), или в кронштейн, укреплённый на объективе (для отражённого света).
Столик установлен в круглом окне на верхней поверхности корпуса|корпуса подставки. Он может быть либо стеклянным (при проходящем свете), либо металлическим, с белой и чёрной поверхностями (при отражённом свете).
Электронный микроскоп (рис. 3) позволяет рассмотреть строение очень мелких структур, невидимых в световом микроскопе, например, тилакоид в хлоропластах. Его разрешающая способность в 400 раз больше, чем у светового микроскопа. Это достигается за счёт потока электронов, вместо видимого света. Различают два типа электронных микроскопов: трансмиссионный (просвечивающий) и сканирующий (дающий объёмное изображение микропрепаратов) (рис. 4).
Рис. 3. Электронный микроскоп.
Рис. 4. Снимки, сделанные на электронных микроскопах:
А — тилакоиды в клетках листа кукурузы (трансмиссионный электронный микроскоп); Б — амилопласты в клетках клубня картофеля (сканирующий микроскоп).
Задание 1. Используя микроскопы, таблицы и практикумы, изучить устройство световых микроскопов (МИКМЕД-1, БИОЛАМ и МБС-1) (рис. 1, 2). Запомнить названия и назначение их частей.
Задание 2. При малом и большом увеличениях микроскопа научиться быстро находить объекты на постоянных микропрепаратах.
1. Что такое разрешающая способность микроскопа?
2. Как можно определить увеличение рассматриваемого под микроскопом объекта?
3. В чём отличие микроскопов БИОЛАМ и МБС-1?
4. Перечислить главные части микроскопа БИОЛАМ и МИКМЕД-1. В чём их назначение?
5. Назвать правила работы с микроскопом.
Видео по теме : Устройство микроскопа и правила работы с ним
Устройство микроскопа и правила работы с ним
Разрешающая способность микроскопа даёт раздельное изображение двух близких друг другу линий. Невооружённый человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза|глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.
Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.
Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное — это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить ещё во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.
В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объёмное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.
В микроскопе выделяют две системы: оптическую и механическую (рис. 12). К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).
Рис. 12. Устройство световых микроскопов: А — МИКМЕД-1; Б — БИОЛАМ.
Объектив — одна из важнейших частей микроскопа, поскольку он определяет полезное увеличение объекта. Объектив состоит из металлического цилиндра с вмонтированными в него линзами, число которых может быть различным. Увеличение объектива обозначено на нем цифрами. В учебных целях используют обычно объективы х8 и х40. Качество объектива определяет его разрешающая способность.
Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля|поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно. Таким образом, окуляр, подобно лупе, даёт прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.
Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.
Осветительное устройство состоит из зеркала|зеркала или электроосветителя, конденсора с ирисовой|ирисовой диафрагмой и светофильтром, расположенных под предметным столиком|столиком. Они предназначены для освещения объекта пучком света.
Зеркало служит для направления света через конденсор и отверстие предметного столика|столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.
Электроосветитель устанавливается под конденсором в гнездо подставки.
Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъёме или опускании его с помощью специального винта|винта соответственно конденсируется или рассеивается свет, падающий от зеркала|зеркала на объект.
Ирисовая|Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.
Кольцо с матовым стеклом или светофильтром уменьшает освещённость объекта. Оно расположено под диафрагмой и передвигается|передвигается в горизонтальной плоскости.
Механическая система микроскопа состоит из подставки, коробки|коробки с микрометренным механизмом и микрометренным винтом|винтом, тубуса, тубусодержателя, винта|винта грубой наводки, кронштейна конденсора, винта|винта перемещения конденсора, револьвера, предметного столика|столика.
Подставка — это основание микроскопа.
Коробка|Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерён, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта|винта передвигает|передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.
Тубус или трубка — цилиндр, в который сверху вставляют окуляры. Тубус подвижно соединён с головкой тубусодержателя, его фиксируют стопорным винтом|винтом в определённом положении. Ослабив стопорный винт, тубус можно снять.
Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда|гнёзда. Центрированное положение объектива обеспечивает защёлка, расположенная внутри револьвера.
Тубусодержатель несёт тубус и револьвер.
Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.
Предметный столик предназначен для расположения на нем препарата. В середине столика|столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы — зажимы, закрепляющие препарат.
Кронштейн конденсора подвижно присоединён к коробке|коробке микрометренного механизма. Его можно поднять или опустить при помощи винта|винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.