Что такое ограничение понятий

Что такое ограничение понятий

Краткий курс логики: Искусство правильного мышления

Логика – один из обязательных предметов в высших учебных заведениях. В последнее время она также изучается в некоторых средних учебных заведениях. Практика показывает: тем, кто познакомился с логикой в школьные годы, намного легче осваивать эту науку в вузе. Книга состоит из четырёх основных глав, теста, ста занимательных задач. Первые три главы посвящены логическим формам: понятию, суждению и умозаключению, четвёртая – рассказывает о важнейших законах логики и распространённых нарушениях этих законов, которые делают наше мышление запутанным, речь – неясной, а значит, мешают полноценно общаться и понимать друг друга. Каждую тему завершают вопросы и задания для самопроверки и закрепления материала. Примеры, содержащиеся в книге, показывают практическую значимость логики для современного человека.

Тест состоит из ста заданий закрытого типа (при нескольких вариантах ответа на каждый вопрос, только один является правильным). Для выполнения теста обязательны теоретические знания по логике.

Сто занимательных логических задач, представленных в книге, различаются по типу построения и уровню сложности. Объединяет их то, что для правильного решения задач требуется нестандартный подход и творческая работа мысли. Задачи направлены на развитие мышления, памяти, внимания и воображения; они могут развлечь в часы досуга. Для решения задач не обязательны теоретические знания по логике, достаточно жизненного опыта и смекалки, т. е. интуитивной логики, которой в большей или меньшей степени обладают все люди, независимо от пола, возраста и уровня образования. Ко всем задачам приведены ответы и комментарии.

Книгу завершает список литературы, рекомендуемый для дальнейшего, более широкого изучения предмета.

Надеемся, что книга вам понравится, а изучение логики станет интересным и увлекательным.

В словаре приведены определения наиболее важных логических терминов, его можно рассматривать как конспект курса логики, построенный по алфавитно-терминологическому принципу.

Логика – наука о формах и законах правильного мышления.

Эта наука появилась приблизительно в V в. до н. э. в Древней Греции. Её создателем считается знаменитый древнегреческий философ и учёный Аристотель. Логике 2,5 тысячи лет, однако она до сих пор сохраняет своё практическое значение. Многие науки и искусства Древнего мира навсегда ушли в прошлое и представляют для нас только «музейное» значение, интересны исключительно как памятники старины, но некоторые из них пережили века, и в настоящее время мы продолжаем ими пользоваться. К их числу относится геометрия Евклида (в школе мы изучаем именно её) и логика Аристотеля. В XIX в. появилась и стала быстро развиваться символическая (математическая, современная) логика, которая является разделом высшей математики. Однако наша книга посвящена исключительно аристотелевской логике.

Так зачем нам нужна логика, какую роль она играет в нашей жизни? Логика помогает нам правильно строить свои мысли и верно их выражать, убеждать других людей и лучше понимать собеседника, объяснять и отстаивать свою точку зрения, избегать ошибок в рассуждениях.

Каждый из нас хорошо знает, что по содержанию человеческое мышление бесконечно многообразно, ведь мыслить (думать) можно о чём угодно, например, об устройстве мира и происхождении жизни на Земле, о прошлом человечества и его будущем, о прочитанных книгах и просмотренных фильмах, о сегодняшних занятиях и завтрашнем отдыхе… Но самое главное заключается в том, что наши мысли возникают и строятся по одним и тем же законам, подчиняются одним и тем же принципам, укладываются в одни и те же схемы или формы. Причём если содержание нашего мышления чрезвычайно разнообразно, то форм, в которых выражается это разнообразие, совсем немного.

Приведём простой пример. Рассмотрим три совершенно различных по содержанию высказывания: «Все караси – это рыбы», «Все треугольники – это геометрические фигуры», «Все стулья – это предметы мебели». Несмотря на различное содержание, у этих высказываний есть нечто общее, что-то их объединяющее. Что? Их объединяет форма. Отличаясь по содержанию, они сходны по форме – каждое из трёх высказываний строится по форме: «Все A – это B», где A и B – какие-либо предметы. Понятно, что само высказывание: «Все A – это B», – лишено всякого содержания. Это высказывание представляет собой чистую форму, которую можно наполнить любым содержанием, например: «Все сосны – это деревья», «Все города – это населённые пункты», «Все школы – это учебные заведения», «Все тигры – это хищники».

Другой пример: возьмём три различных по содержанию высказывания: «Если наступает осень, то опадают листья», «Если завтра пройдёт дождь, то на улице будут лужи», «Если вещество – металл, то оно электропроводно». Будучи непохожими друг на друга по содержанию, эти высказывания сходны между собой тем, что строятся по одной и той же форме: «Если A, то B». Понятно, что к этой форме можно подобрать огромное количество различных содержательных высказываний, например: «Если не подготовиться к контрольной работе, то можно получить двойку», «Если взлётная полоса покрыта льдом, то самолёты не могут взлетать», «Если слово стоит в начале предложения, то его надо писать с большой буквы».

Логика не интересуется содержанием мышления (им занимаются другие науки), она изучает только формы мышления; её интересует не то, что мы мыслим, а то, как мы мыслим, поэтому она часто называется формальной логикой. Аристотелевскую (формальную) логику также часто называют традиционной.

Если по содержанию высказывание: «Все комары – это насекомые», – является нормальным, а высказывание: «Все Чебурашки – это инопланетяне», – абсурдным, то для логики эти два высказывания равноценны, так как она занимается формами мышления, а форма у этих высказываний одна и та же: «Все A – это B».

Форма мышления – это способ выражения мыслей, или схема их построения.

Существует всего три формы мышления:

1. Понятие – это форма мышления, которая обозначает какой-либо объект или признак объекта. Примеры понятий: карандаш, растение, небесное тело, химический элемент, мужество, глупость, нерадивость.

2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой, и что-либо утверждает или отрицает. Примеры суждений: «Все планеты являются небесными телами», «Некоторые школьники – это двоечники», «Все треугольники не являются квадратами».

3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений (посылок) вытекает новое суждение (вывод).

В логике принято располагать посылки и вывод друг под другом и отделять посылки от вывода чертой.

Источник

Ограничение и обобщение понятий

Пример: «Министерство юстиции Российской Федерации» → «министерство юстиции» → «министерство» → «орган государственного управления». Каждое последующее понятие является родом по отношению к предыдущему.

Обычно уточнение мысли происходит одним актом: «лейтенант» → «офицер», но часто применяются и неоднократные акты: «четырехугольник» → «многоугольник» → «геометрическая фигура» → «пространство».

Пример: «Материя» → «вещество» → «железо» → «этот железный предмет».

Обычно уточнение мысли происходит одним актом: «атом химического элемента» → «атом водорода», но часто применяются и неоднократные акты: «студент Санкт-Петербургского университета» → «студент СПбГУ гуманитарного факультета» → «студент СПбГУ философского факультета» → «студент СПбГУ 1-го курса философского факультета».

В процессе ограничения необходимо соблюдать последовательность, избегать скачков, а это означает, что каждый акт должен быть переходом от родового понятия к виду именно этого рода. Ограничение может быть выполнено правильно и не правильно. Правильное ограничение, если переход от рода к ближайшему виду: «наука» → «биология». Неправильное, если переход от рода к виду только видимость, на самом деле это вид другого рода: «лес» → «дерево». (Правильно «хвойный лес» или «лиственный лес»).

Как известно, нулевые понятия своим объемом не отражают реально существующих материальных объектов, но, несмотря на это, как мысли они могут быть, и обобщены, и ограничены. Обобщим нулевое понятие «кентавр» → «мифологический образ», ограничим: «кентавр» → «кентавр Гилей» или «кентавр Хирон». Дело в том, что в подобных случаях имеем дело с мысленными формами, а мысли, независимо от того, отражают они реальность или нет, обладают собственными, отличными от предметов, свойствами. Они приобретают относительную самостоятельность и с ними можно производить определенные действия. Обобщение и ограничение пустых понятий дают, как правило, тоже пустые единичные или общие понятия. Обобщаются и ограничиваются, и абстрактные понятия, но обобщаются они, сразу философской категорией: «твердость» → «свойство» или «признак», «качество», а ограничение может быть доведено до единичности: «белизна» → «белизна скатерти».

Логические операции обобщения и ограничения понятий широко применяются в практике мышления: переходя от понятий одного объема к понятиям другого объема, мы уточняем предмет нашей мысли, делаем наше мышление более определенным и последовательным. Например, расследование преступления связано с установлением его признаков. Установив, что деяние является преступным, следователь обнаруживает у него признаки преступления против собственности. Дополнительное расследование выявляет новые признаки, позволяющие с помощью операции ограничения, квалифицировать это преступление как вымогательство. Мысль движется от понятия большего объема к понятию меньшего объема: «деяние» → «преступление» → «преступление против собственности» → «вымогательство». Или же наоборот, устанавливая, что конкретное деяние является «оскорблением», → мы относим его к «преступлениям против чести и достоинства личности», осуществляя операцию обобщения понятия.

Деление понятий

При изучении какого-либо понятия нередко встает задача раскрыть его объем, т.е. распределить предметы, которые мыслятся в понятии, на отдельные группы. В теоретической и в практической областях часто необходимо выявить многообразие некоторого рода предметов, их классификацию и типологию.

Пример: понятие «высшее учебное заведение» может быть разделено на понятия: «институт», «академия», «университет». Основанием деления здесь является статус вуза.

Структура деления представлена в виде формулы:

Деление по видоизменению признака

Дихотомическое деление не всегда заканчивается установлением двух противоречащих понятий. Отрицательное понятие вновь делится на два понятия, что помогает выделить из большого круга предметов группу предметов, интересующих нас в каком-либо отношении. При определении меры наказания важно установить возраст обвиняемых. Лица, совершавшие преступление, делятся на «совершеннолетних» и «несовершеннолетних». В отношении последних закон устанавливает дополнительные гарантии прав и законных интересов. «Несовершеннолетних» делятся на лиц, «достигших 16 лет» и «не достигших этого возраста». Важно установить достигли ли лица «младше 16 лет» 14-тилетнего возраста, так как известно, что лица, совершившие преступление в возрасте от 14 до 16 лет, привлекаются к уголовной ответственности лишь за некоторые виды преступлений, а лица, которым не исполнилось 14 лет, к уголовной ответственности не привлекаются.

Преимущество дихотомического деления в том, что не надо перечислять все виды делимого рода: а достаточно выделить один вид, и образовать противоречащее понятие, в которое включаются все другие виды и они исчерпывают весь объем делимого понятия и поэтому всегда соразмерны. Недоставки: во-первых, объем отрицательного понятия слишком широкий и неопределенный – «юристы» на «судей и не-судей». Во-вторых, строгим и последовательным является, лишь деление на два первых противоречащих понятия.

Вместе с тем всякая классификация относительна. Многие явления природы и общественной жизни не могут быть отнесены безоговорочно к какой-либо определенной группе явлений. Семью как общественно-историческое явление нельзя целиком отнести к какой-либо одной области социальной жизни, семья характеризуется как материальными, так и духовными процессами. С развитием знаний классификация изменяется, дополняется, заменяется новой, более точной, поэтому ни одна классификация не может быть завершенной.

Для того чтобы деление не приводило к ошибкам, чтобы оно действительно раскрывало объем интересующих нас понятий, при совершении деления нужно соблюдать простые правила.

ПРАВИЛА ЛОГИЧЕСКОГО ДЕЛЕНИЯ

Логическое деление, должно соответствовать двум условиям: условию полноты и условию разграничения. Деление объема понятия является полным, если все его десигнаты распределены между объемами членов деления. Логическое деление является разграниченным, если каждый из десигнатов делимого оказывается в объеме только одного члена деления, и ни один из них не может быть десигнатом двух или нескольких членов деления. Соответствие этим условиям достигается выполнением определенных требований, называемых правилами.

1. Деление должно быть адекватным(соразмерным), т.е. сумма членов деления должна быть в точности равна объему делимого понятия. (Условие полноты).

Нарушение этого правила приводит к ошибкам двух видов.

Пример: «Энергия делится на механическую и химическую», (не указана электрическая и атомная энергия).

б)Деление с лишними членами когда в результате деления к объему делимого понятия добавляются предметы, которых там первоначально не было.

Источник

Что такое ограничение понятий

Обобщение и ограничение; определение понятий

1. Обобщение и ограничение понятий

Обобщение понятия — это совершение перехода от понятия с меньшим объемом, но большим содержанием к понятию с большим объемом и меньшим содержанием. При обобщении осуществляется переход от видового понятия к родовому.

Например, обобщая понятие «хвойный лес», мы переходим к понятию «лес». Содержание этого нового понятия уже, зато объем значительно шире. Содержание уменьшилось, потому что мы изъяли (убрав слово «хвойный») ряд характерных видовых признаков, отражающих особенности хвойного леса. Лес — это род по отношению к понятию «хвойный лес», являющемуся видом. Исходное понятие может быть как общим, так и единичным. Например, можно осуществить обобщение понятия «Париж» (единичное понятие) путем перехода к понятию «европейская столица», следующим шагом будет переход к понятию «столица», потом «город», «селение». Таким образом, постепенно исключая характерные признаки, присущие предмету, мы движемся в сторону наибольшего расширения объема понятия, жертвуя содержанием в пользу абстракции.

Цель обобщения — максимальное отстранение от характерных признаков. При этом желательно, чтобы такое отстранение происходило как можно более постепенно, т. е. переход от рода должен происходить к самому близкому виду (с наиболее широким содержанием).

Обобщение понятий не безгранично, и пределом обобщения являются философские категории, например «бытие» и «сознание», «материя» и «идея». Поскольку категории лишены родового понятия, обобщение их невозможно.

Ограничение понятия — это логическая операция, противоположная обобщению. Если обобщение идет по пути постепенного отстранения от признаков предмета, ограничение, напротив, обогащает совокупность признаков понятия. Таким образом, осуществляется переход от общего к частному, от вида к роду, от единичных понятий к общим.

Эта логическая операция характеризуется уменьшением объема за счет расширения содержания.

Операция ограничения не может продолжаться дальше, когда в его процессе достигается единичное понятие. Оно характеризуется максимально полным содержанием и объемом, в котором мыслится лишь один объект.

Таким образом, операции ограничения и обобщения — это процесс конкретизации и абстракции в рамках от единичного понятия до философских категорий. Эти операции учат человека мыслить более правильно, способствуют познанию предметов, явлений, процессов окружающего мира, их взаимосвязей. Благодаря обобщению и ограничению мышление становится более ясным, четким и последовательным. Однако не следует путать обобщение и ограничение с выделением из целого части и рассмотрением этой части отдельно. Например, двигатель автомобиля состоит из деталей (карбюратор, воздушный фильтр, стартер), детали состоят из более мелких, а те в свою очередь из еще более мелких. В этом примере понятие, следующее за предыдущим, не является его видом, а есть лишь его составной частью.

Слово «определение» произошло от латинского слова definition. В процессе общения, работы, просто повседневной жизни у человека нередко возникают проблемы с уяснением информации и передачей этой информации другим людям. Это связано с отсутствием или незнанием определения предмета, данного в имеющейся информации. Проще говоря, человек зачастую не понимает значения того или иного понятия. Разъяснить сложное понятие, выявить его суть не обязательно должен сам человек, который столкнулся с проблемой, но это может сделать человек, к профессии которого относится рассматриваемая проблема. Для осуществления толкования призвана логическая операция определения понятия.

Определение понятия — это логическая операция, направленная на выявление правильного значения термина или содержания понятия.

Определить понятие — значит полно раскрыть его содержание и отличить объем данного понятия от объемов иных понятий (т. е. определить предметы, входящие в понятие, и отделить их от других предметов).

Необходимо сказать о соотношении определения и дефиниции. Часть ученых отождествляют их, однако некоторые исследователи отделяют определение от дефиниции и в качестве последнего называют суждение, раскрывающее содержание понятия. Таким образом, получается, что определение есть логическая операция, а дефиниция — суждение.

Понятие, содержание которого требуется раскрыть, называют определяемым понятием и обозначают Dfd (definiendum). Для раскрытия содержания этого понятия используется определяющее понятие, обозначаемое Dfn (definence). Целью человека, раскрывающего содержание Dfd, применяя Dfn, является достижение эквивалентности (равенства) обеих сторон определения, т. е. определяемого и определяющего понятия.

Определение понятия как логическая операция играет важнейшую роль в деятельности человека, чем бы он не занимался. На первый взгляд, знание содержания того или иного понятия не является необходимостью для людей, не занимающихся наукой. Однако это не так, ведь точное знание признаков понятия не только увеличивает массу знаний человека, но и помогает избежать недоразумений, казусов, ошибок. Логическая ошибка тем более опасна, что в настоящее время особую роль играет закон. Незнание признаков (содержания) тех или иных юридических понятий делает человека уязвимым в правовых отношениях.

Стоит ли говорить, что для науки определение понятий играет еще более значимую роль, ведь именно в рамках науки происходит появление новых понятий и толкование старых. И если мы говорим о юридической науке, то понимаем, что от того, насколько четкими и правильными будут определения, зависит жизнь государства, общества и отдельного человека.

Определение понятия может быть явным и неявным.

Явные определения содержат определяемое и определяющее понятие, при их равных объемах. В этом виде для определения используется ближайший род и вид (видовое отличие), содержащие характерные признаки определяемого понятия.

Разновидностью определения через род и видовое отличие является генетическое (от греч. genesis — «происхождение») определение. В нем указывается только способ образования данного предмета, его происхождение. Генетическое определение играет очень важную роль для наук, где, в силу их специфики, многие понятия могут быть определены лишь через способ образования или происхождения. К таким наукам относятся математика, химия, физика. Генетическое определение является видом определения через род и видовое отличие, поэтому подчиняется тем же правилам и имеет аналогичную логическую структуру. В качестве отдельного вида определения через род и вид можно назвать номинальные определения. Они определяют термин, обозначающий понятие, или вводят знаки, заменяющие его. Обычно в таком определении имеется слово «называется».

Определение через род и видовое отличие производится в два шага. Первый шаг такого определения — это отношение (подведение) определяемого понятия под родовое понятие, характеризующееся большей степенью обобщения. Вторым шагом определяемое понятие отделяется от других, входящих в тот же род, при помощи видовых отличий. Признаки и рода, и вида, на основании которых происходит определение понятия, содержатся в определяющем понятии. Например: «Квадрат — это прямоугольник с равными сторонами». Определяемое понятие здесь — это «квадрат»; родовое — «прямоугольник»; видовое отличие — «с равными сторонами».

Например: «Обычаем делового оборота считается сложившееся и широко применяемое в какой-либо области предпринимательской деятельности правило поведения, не предусмотренное законодательством, независимо от того, зафиксировано ли оно в каком-либо документе». В данном случае понятие «обычай делового оборота» является определяемым понятием. Родовым для него будет «правило поведения», содержащееся в самом начале определяющего понятия. Таким образом, мы подводим определяемое понятие под более общее. Так как «правило поведения» содержит в своем объеме не один только обычай делового оборота, а целый комплекс правил, возникает необходимость выделить последний из общей массы. Для этого мы добавляем признаков данного явления, тем самым расширяя содержание и уменьшая объем. Обычай делового оборота не закрепляется в законе, но может быть отражен или не отражен в каком-либо документе. Указывая на этот характерный признак, мы сокращаем количество предметов, содержащихся в объеме, до искомых. Признаки, при помощи которых мы отграничиваем определяемое понятие от других, соответствующих родовому понятию, называются видовым отличием (видом). В определении видовых отличий может быть одно или же несколько.

Определение через род и видовое отличие можно отразить в виде формулы А = Вс. Под А в данном случае подразумевается определяемое понятие, В — это род, а с — вид. В и с в совокупности являются определяющим понятием. Другой способ отражения такого определения выглядит так: Dfd = Dfn.

Определение через род и видовое отличие называют также классическим. Оно наиболее распространено и широко используется в различных отраслях научного знания.

Неявные определения. Определение через род и видовое отличие — это очень удобный и эффективный инструмент раскрытия содержания понятий. Однако, как и любое другое орудие, этот вид определения имеет ограничения. Так, нельзя определить при помощи обращения к роду и виду понятия, вообще не имеющие рода, какими являются общефилософские категории. Единичные понятия не имеют вида, и, соответственно, также не могут быть определены, ведь при использовании только рода для определения понятия мы получили бы слишком большое количество элементов в его объеме, куда при этом входило бы и само это понятие, что невозможно (например, понятие «Н. Г. Чернышевский» нельзя определить только как «русский писатель»).

Когда возникает подобная ситуация, исследователи применяют неявные определения и приемы, заменяющие определения.

В отличие от явных определений, где есть определяемое и определяющее понятия, равные между собой, в определениях неявных на место определяющего понятия подставляются контекст, аксиомы или описание способа возникновения определяемого объекта.

Можно выделить несколько видов неявных определений: контекстуальное, индуктивное, остенсивное, через аксиомы.

Контекстуальное (от лат. contextus — «соединение», «связь») определение характеризуется тем, что оно позволяет выяснить суть, значение слова, смысла которого мы не знаем, через контекст, т. е. через относительно законченный отрывок информации, которая сопровождает данное слово, относится к нему и содержит его признаки. Иногда в процессе разговора мы сталкиваемся с ситуацией, когда собеседник употребляет незнакомое для нас слово. Не переспрашивая, мы пытаемся определить смысл этого слова, опираясь на слова, сопутствующие ему. Это и есть определение через контекст. Примером такого определения может послужить следующее предложение: «…возьмешь там чек. Он будет именной — на твое имя. Получишь по нему деньги». Таким образом, даже не зная, что такое чек, можно из контекста понять, что это документ, по которому получают денежные средства. Проявив некоторую смекалку, можно догадаться о существовании также чеков на предъявителя.

Индуктивные определения раскрывают смысл термина при помощи самого этого термина, через понятия, в которых содержится его смысл. Примером этого служит определение натуральных чисел. Так, если 1 — натуральное число и n — натуральное число, то 1 + n тоже есть натуральное число.

Остенсивное определение устанавливает значение термина, прибегая к демонстрации предмета, обозначаемого этим термином. Такие определения применяются при раскрытии сущности предметов чувственного мира, другими словами, предметов, которые доступны для непосредственного восприятия. Такое определение зачастую акцентируется на простейших свойствах предметов, таких как вкус, цвет, запах, текстура, вес и т. д. Часто используется при изучении иностранного языка или разъяснении смысла непонятного слова.

Иногда для характеристики понятий используются приемы, заменяющие определения.

Аксиома — это положение, которое принимается без логического доказательства в силу непосредственной убедительности.

Определение через аксиомы основано на этом их качестве. Характеристика через аксиомы широко применяется в математике.

Сравнение — это прием, позволяющий достаточно четко охарактеризовать предмет за счет сопоставления его характерных признаков и черт с другим, однородным предметом. Такое сопоставление приводит к достаточно четкому отграничению сравниваемых предметов друг от друга путем выявления не только сходства, но и различия их признаков. При использовании сравнения для определения понятия оно будет определено тем более полно, чем с большим количеством однородных предметов будет сравнен объем данного понятия. Сравнение приводит к формированию мнимого образа предмета, обладающего характерными признаками.

Описание как прием более просто, чем сравнение. Задача исследователя, использующего описание, — закрепить как можно больше информации о предмете, содержащей указание на его характерные признаки. Другими словами, при описании образ предмета, непосредственно воспринимаемого исследователем, закрепляется в той или иной форме (рисунок, схема, текст и др.). При описании различного рода характерные черты (вес, форма, размер и т. д.) должны отражаться наиболее полно и достоверно.

Характеристика — это создание представления о предмете посредством указания на какую-либо его характерную черту. При этом раскрывается только один какой-либо важный признак. Пример характеристики может быть таким: «Джанфранко Педерзоли — лучший итальянский гравер современности»; «По словам К. Маркса, Аристотель — это „величайший мыслитель древности“».

Можно встретить и сочетания описания и характеристики. Часто используется как в науке, так и в художественной литературе.

Пример используется в случаях, когда затруднительно дать определение по роду и видовому отличию, но можно прибегнуть к описанию событий, процессов, явлений и прочее, иллюстрирующих данное понятие. Разъяснением при помощи примера является также отражение комплексного понятия через перечисление его элементов. Скажем, понятие «армия» можно объяснить через перечисление входящих в нее подразделений. Объяснение примером часто используется в учебном процессе младших классов.

3. Правила определения

Истинность определения зависит не только от правильности подачи его содержания, но и от того, насколько стройно и последовательно будет выстроена его форма. Если истинность определения зависит от того, точно ли отражает его содержание все необходимые признаки определяемого понятия, есть лишь один рациональный способ получить такое определение — при формулировке строго следовать требованиям логических правил образования определений.

Соразмерность. Определение должно быть соразмерным. Это значит, что определенное понятие должно быть равно определяемому, т. е. определяемое и определяющее понятия должны иметь равные объемы. При нарушении этого правила возникает логическая ошибка, связанная с неполным определением либо со слишком широким толкованием предмета.

Определение при совершении такой ошибки может быть либо слишком широким, либо слишком узким; иногда выделяют определения, являющиеся одновременно слишком узкими и широкими.

Более широкие определения. Характеризуются тем, что объем определенного ими понятия больше, чем определяемого. В виде формулы это можно отразить следующим образом: Dfd ‹ Dfn. Примером слишком широкого определения могут быть следующие: «телевизор — средство утоления информационного голода» и «люстра — источник света», а также «колесо — резиновый круг». В связи с данным вопросом можно вспомнить случай, произошедший с древнегреческим философом Платоном, когда он определил человека как «двуногое животное без перьев». Впоследствии ему пришлось признать ошибку и добавить фразу «и с широкими ногтями», так как Диоген, другой мыслитель древности, принес на лекцию в школу Платона ощипанную курицу со словами: «Вот человек Платона».

Слишком узкое определение. Это определение, в котором объем определяемого понятия шире, чем объем определяющего (Dfd › Dfn). Такая ошибка содержится в следующем определении: «недвижимая вещь — это дом или другое строение». Ошибка тут заключается в том, что строение (в том числе дом) не исчерпывает объема понятия «недвижимая вещь», так как к последней относятся также земельные участки, участки недр, обособленные водные объекты и т. д. Также слишком узким является определение «неделимая вещь — вещь, раздел которой в натуре невозможен». Здесь не была указана одна особенность, а именно, что раздел такой вещи невозможен, только если он изменяет ее функциональное назначение.

Определение, чересчур широкое и вместе с тем узкое. Характеризуются известной неоднозначностью. Одно и то же определение, в зависимости от того, в какую сторону направлено его исследование, становится либо слишком узким, либо более широким. Например, понятие «автомобиль — устройство для перевозки людей» является широким, ведь автомобиль далеко не единственное устройство для перевозки людей. Однако с другой стороны, приведенное понятие узко, ведь автомобиль может использоваться не только для перевозки людей (ведь можно также перевозить животных, стройматериалы, например, и другие вещи).

Отсутствие в определении круга. Круг в определении возникает в двух случаях. Первый называется тавтологией и характерен определением понятия через само же это понятие. Во втором случае круг образуется, если содержание определяемого понятия раскрывается через понятие, которое до этого (в предшествующем определении) было определено посредством понятия, определяемого в данный момент.

Тавтология — это более простое, с точки зрения структуры и построения, ошибочное определение. Оно характеризуется абсолютной бесполезностью, так как не выполняет главной функции определения — раскрытия содержания понятия. Другими словами, после определения-тавтологии понятие остается таким же непонятным, как было до него. Примеров тавтологии много. Часто можно слышать тавтологии в разговорной речи, где бы вы ни находились — в очереди, на рынке, в цирке и даже театре. Люди прибегают к тавтологии, зачастую просто этого не замечая. Тавтологией являются следующие определения: «машинное масло — это маслянистая жидкость с резким запахом»; «старый человек — это тот, кто в процессе жизни состарился»; «смешным называется то, что вызывает смех»; «идеалист — это человек с идеалистическими убеждениями»; «памятка — это напоминание о чем-либо» и т. д. Отсюда видно, что если нам было неизвестно значение какого-либо понятия и оно было определено через само себя, смысл этого понятия не станет ясен, следовательно, такое определение бесполезно.

С логической позиции некорректными являются выражения «заданная задача» или, например, «порученное поручение». Часто бывает, что один человек говорит другому: «Масло — маслянистое, сахар — сахаристый». Это также является тавтологией, но в данном контексте применяется для выделения тавтологии в речи другого человека.

Другой случай определения, содержащего круг, — это определение первого понятия вторым понятием, которое до этого было определено первым (понятие А определяется через понятие В, а далее В определяется через А). Возможна более длинная цепь определений, замыкающаяся в порочный круг. В качестве примера такого круга можно привести определение, выведенное из суждения «определение должно быть правильным». Вот оно: «правильное определение — это определение, которое не содержит признаков неправильного определения». Это определение будет верно, если раскрыть содержание понятия «неправильное определение» («это такое определение, которое противоречит правильному»). То, что здесь допущена логическая ошибка, приводит к тому, что данное определение раскрывает то, что не раскрывает ничего.

Недопустимость отрицательности. Это правило связано с тем, что отрицательное определение не раскрывает содержание определяемого понятия. Примером отрицательного определения может быть следующее суждение: «Автомобиль не является каретой». Это суждение не раскрывает признаков автомобиля, но указывает лишь на то, что «автомобиль» и «карета» — разные понятия. Естественно, что такого указания недостаточно для полноценного определения.

Данное правило не распространяется на определение отрицательных понятий, содержание которых раскрывается преимущественно посредством отрицательных определений: «бесподобное произведение — это произведение, не имеющее равных».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *