Что такое обратная трансформация

Большая Энциклопедия Нефти и Газа

Обратная трансформация

Обратная трансформация осуществляется при помощи таблиц трансформаций или приемами, рассмотренными в специальной математической литературе. [1]

Обратная трансформация может происходить не только через силовые трансформаторы, но и через трансформаторы напряжения. [2]

Во избежание обратной трансформации отключаются не только силовые, но и измерительные трансформаторы со стороны как низшего, так и высшего напряжения. [5]

Для предотвращения обратной трансформации фазные провода должны быть отсоединены от трансформатора, а выводы закорочены и заземлены. Для создания петли фазный провод присоединяют к корпусу проверяемого оборудования. [7]

Во избежание обратной трансформации напряжения силовыми или измерительными трансформаторами необходимо отключать их как со стороны первичных, так и со стороны вторичных обмоток. [8]

Во избежание обратной трансформации напряжения на трансформаторе напряжения должны быть сняты предохранители или он должен быть отключен с высшей и низшей сторон. [9]

Во избежание опасности обратной трансформации напряжения силовыми или измерительными трансформаторами необходимо отключать эти трансформаторы со стороны как высшего, так и низшего напряжения. [10]

Во избежание опасности обратной трансформации напряжения силовыми и измерительными трансформаторами необходимо отключать их со стороны как первичных обмоток высшего напряжения, так и низшего напряжения. В ряде случаев следует отсоединять от зажимов ремонтируемых электроприемников провода питающей линии. [11]

При этом во избежание обратной трансформации в силовом трансформаторе последний должен быть отсоединен от фазных проводов, его выводы закорочены и заземлены. [13]

Иначе говоря, благодаря обратной трансформации в фазе А появляется дополнительное напряжение. [15]

Источник

Формулы для расчета обратноходовых импульсных трансформаторов, особенности

Обратная трансформация

Это значит, что, в го время как большинство последовательностей прямых трансформаций ведут к правильным поверхностным структурам, многие последовательности обратных трансформаций не ведут к допустимым глубинным структурам, и много напрасных усилий тратится на тупики. Анализ Митре преодолевает недетерминированность обратного трансформационного процесса путем построения ad hoc для той или иной частной грамматики детерминированных множеств обратных трансформационных правил. Этот метод, однако, не гарантирует получения всех допустимых глубинных структур, и не существует формальной процедуры для построения необходимого множества обратных трансформаций. [24]

Наложения заземления не требуется при работе на оборудовании, если от него со всех сторон отсоединены шины, провода и кабели, по которым может быть подано напряжение путем обратной трансформации или от постороннего источника и при условии, что на этом оборудовании не наводится напряжение. Концы отсоединенного кабеля при этом должны быть замкнуты накоротко и заземлены. [28]

Обратная трансформация ТМ-6/10кВ

FRAER Просмотр профиля
Группа: Пользователи Сообщений: 2778 Регистрация: 11.7.2013 Из: Волгоград Пользователь №: 34281

Pantryk Просмотр профиля

Кое в чем специалист

Группа: Пользователи Сообщений: 2823 Регистрация: 23.6.2013 Из: Минск, Беларусь Пользователь №: 33972

Вопрос заключается в следующем. НЕ ПОГОРИМ? Селективности — нет, да и вообще! был случай обратки, нам в сеть подали с низкой стороны на высокую, так если у нас Uн-11 кВ, то при обратке получили 9кВ и это без нагрузки, а тут предлагают ещё и нагрузку нескольких РТП, ТП подключить.

Очень сильно напрягает распоряжение — Организовать проведение противоаварийных тренировок с условными действиями оперативного персонала на тему: «Организация временного электроснабжения с применением ДЭС» И практических занятий по обеспечению временного электроснабжения с применением метода обратной трансформации с напряжения 0,4 кВ на напряжение 6/10 кВ»

Pantryk Просмотр профиля

Кое в чем специалист

Группа: Пользователи Сообщений: 2823 Регистрация: 23.6.2013 Из: Минск, Беларусь Пользователь №: 33972

Pantryk Просмотр профиля

Кое в чем специалист

Группа: Пользователи Сообщений: 2823 Регистрация: 23.6.2013 Из: Минск, Беларусь Пользователь №: 33972

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Трансформаторы тока в переходных режимах

Измерительные трансформаторы являются неотъемлемой частью любой энергоустановки. С помощью измерительных трансформаторов осуществляется учет электроэнергии, измерения параметров сети, они являются первичными источниками сигнала для релейных защит, устройств телемеханики и автоматики. Мы уже затрагивали тему выбора трансформаторов тока в целях учета электрической энергии, сегодня уделим внимание общим принципам их классификации и конструкции, а также нормативно-технической базе в части обеспечения функционала релейных защит.

В первую очередь нужно отметить, что важным аспектом работы современных микропроцессорных релейных защит является их быстродействие, которое должно обеспечиваться не только собственными возможностями программно-технических комплексов устройств РЗА, но и возможностями первичных аналоговых преобразователей, таких как трансформаторы тока.

Токовые цепи релейных защит, как правило, питаются таким же образом, как приборы учета и устройства измерения — источником аналогового сигнала для них являются трансформаторы тока. Отличие состоит в условиях работы: измерительные приборы работают в классе точности при фактическом первичном токе, не превышающем номинального, тогда как устройства релейной защиты рассчитаны на работу в режимах короткого замыкания или перегрузки, когда фактический ток значительно превышает номинальный ток трансформатора. К тому же, такие режимы являются переходными — в составе первичного тока появляются свободные апериодические составляющие.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Как известно, работа трансформатора тока характеризуется уравнением намагничивающих сил: I1 • w1 + I2 • w2 = Iнам • w1

I1 — ток в первичной обмотке; w1—количество витков первичной обмотки; I2 — ток во вторичной обмотке; w2 — количество витков вторичной обмотки; Iнам — ток намагничивания.

Из приведенного выражения видно, что первичный ток трансформируется во вторичную обмотку не полностью — часть его уходит на формирование тока намагничивания, создающего рабочий магнитный поток в сердечнике ТТ (поток, формирующий ЭДС во вторичной обмотке, под воздествием которой там и протекает ток). Это происходит как в установившихся, так и в переходных режимах. В переходном процессе каждая составляющая, протекая по первичной обмотке трансформатора тока, делится на две части: одна трансформируется во вторичную обмотку, а вторая идет на намагничивание сердечника. В связи с тем, что скорость изменения апериодической составляющей гораздо меньше скорости изменения переменной составляющей, а периодическая составляющая плохо трансформируется во вторичную цепь и большая ее часть идет на насыщение сердечника. Это, в свою очередь, ухудшает трансформацию периодической составляющей во вторичную цепь и также повышает долю этого тока в токе намагничивания. Возникает так называемое, «подмагничивающее действие». Учитывая, что в сердечниках ТТ во многих случаях имеет место остаточная магнитная индукция, которая сохраняется в течение длительного времени (дни, недели и даже месяцы), наихудший режим работы возникает в случае, если остаточный магнитный поток в сердечнике совпадает по направлению с магнитным потоком, создаваемым апериодической составляющей тока намагничивания.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация
В результате трансформатор начинает работать в режиме насыщения, т.е. когда ток намагничивания растет значительно быстрее рабочего магнитного потока.

Все вышеописанное вносит искажения в величину и фазу вторичного тока, создавая тем самым погрешность (именно величина тока намагничивания определяет точность работы ТТ). И, несмотря на то, что в релейных защитах точность траснформации имеет гораздо меньшее значение, чем в измерительной технике, погрешности могут быть настолько велики, что могут вызвать существенную задержку срабатывания устройств РЗА, а также их ложное действие или отказ. Это особенно актуально для дифференциальных защит, т.к. вместе с токами намагничивания ТТ возрастают и токи небаланса в схеме защиты. Также ситуацию может ухудшить применение промежуточных быстронасыщающихся трансформаторов тока.

Существует несколько способов борьбы с остаточной намагниченностью сердечника, как с одной из основных причин возникновения насыщения. Один из методов — применение трансформаторов тока с сердечниками без стали, обладающих линейными свойствами. Но использование таких трансформаторов тока может быть весьма ограниченным, в связи с небольшой мощностью вторичных обмоток. Второй метод (наиболее распостраненный) — изготовление сердечников из электротехнической стали, имеющих немагнитные зазоры. Этот метод по сравнению с использованием сердечников без стали позволяет конструировать сердечники меньшего сечения. Однако в России трансформаторы тока с такими сердечниками не выпускались и не выпускаются. Нужно отметить, что европейские производители успешно производят такие изделия в вполне приемлемых габаритах, размещая в корпусе трансформатора как обмотки с привычными нам классами точности, так и специализированные обмотки для работы РЗА в переходных процессах. Почему же сложилась такая ситуация? Наверное, отнюдь не потому, что российские конструкторы гораздо хуже европейских знают свое дело и не потому, что эксплуатирующие организации не желают располагать таким оборудованием.

Рассмотрим действующую нормативную базу, регламентирующую производство трансформаторов тока. Действующий сегодня ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» включает в себя два класса точности релейных защит — 5Р и 10Р (пределы допускаемых погрешностей — см. Таблицу 1). Ни в одном из этих классов не нормируется работа ТТ в переходных режимах — указанные в ГОСТ погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).

Таблица 1. Пределы допускаемых погрешностей вторичных обмоток для защиты в установившемся режиме при номинальной вторичной нагрузке

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

Сохраните в закладки или поделитесь с друзьями

Обратная трансформация

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Сопротивление приборов и устройств, подключенных параллельно к трансформатору напряжения, большое, их ток нагрузки небольшой. Из этого можно сделать вывод, что режим работы трансформатора, по сути, близок к режиму холостого хода.

Существует общепринятое диспетчерское наименование аппарата в электроустановках – ТН, в зависимости от рабочего напряжения: ТН-10кВ, ТН-35кВ, ТН-110кВ и т.п. Первичная обмотка ТН-6кВ и ТН-35кВ подключаются в сеть через высоковольтные предохранители. ТН-110кВ, как правило, подключается к сети без предохранителей, так как повреждение данных аппаратов происходит достаточно редко.

Для защиты вторичной обмотки ТН всех классов напряжения от короткого замыкания устанавливают предохранитель или автоматический выключатель. Последний применяют в том случае, если цепи напряжения ТН подключены к быстродействующим защитам электрооборудования.

У трансформатора тока может быть обратная трансформация

Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Что это такое?

Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!

Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.

ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.

Основные соотношения

Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:

Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:

К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке ( да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.

Применения

Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.

Запаздывание по фазе

Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.

Запаздывание сигнала может произойти из-за таких факторов

Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.

Для предыдущего примера с трансформатором Тесла, возьмем сердечник R25.3 из материала N87 фирмы Epcos. В качестве паразитной емкости, возьмем 1нФ. Не спрашивайте, откуда такая емкость. Мне она кажется значительно большей, чем может возникнуть в любой реальной ситуации. Модель выглядит так:

Результаты симуляции при к. связи = 1

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Как видно, отличаются только амплитуды. Сигнала. Никакого запаздывания нет в обоих случаях. Такое поведение сохраняется вплоть до очень высоких частот и до очень маленьких коэффициентов связи. Таким образом, можно сделать вывод, что фаза сигнала практически не зависит от паразитных параметров.

Каскадирование токовых трансформаторов

Люди всегда были ленивыми. Некоторым лениво встать из-за компа, а некоторым – мотать тысячи витков в ТТ. Поэтому придумали соединять трансформаторы последовательно. Решение спорное, и поэтому попробуем его проанализировать при помощи того-же симулятора. Включим последовательно два трансформатора на том-же сердечнике с обмоткой по 33 витка на каждом. Замечу, что паразитная емкость в каждом из трансформаторов сильно уменьшилась, что не удивительно.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.

Прямоугольный выходной сигнал

Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.

Далее идет диодная “вилка” которая защищает вход последующей микросхемы от пробоя отрицательным напряжением.

Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.

Конструкция

Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.

Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.

Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о GDT.

Чем больше проницаемость сердечника, тем больше к. связи и точнее показания, однако больше становится и паразитная индуктивность, добавляемая в измеряемые цепи. Это часто нежелательно. На практике, в качестве сердечника для ТТ может использоваться практически любой феррит, работающий на необходимой частоте. Для низкочастотных применений используют обычное трансформаторное железо.

В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.

Промышленные ТТ

Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений. Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”

Еще почитать

К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.

Привенение ТТ в электросчетчиках. Там-же описывается немного теории.

Основные меры безопасности при обслуживании трансформатора напряжения

Для обеспечения безопасности обслуживающего персонала от попадания высокого напряжения первичной обмотки на вторичную, одна из вторичных обмоток заземляется.

Для проведения плановых или аварийных ремонтов трансформатора напряжения необходимо вывести в его в ремонт, то есть отключить и заземлить. При выводе ТН в ремонт следует создать видимый разрыв по стороне высшего напряжения – отключением разъединителя или снятием высоковольтных предохранителей, а также по стороне низкого напряжения снятием низковольтных предохранителей или испытательных блоков, а при их отсутствии отсоединением и закорачиванием выводов вторичных обмоток. Создание видимого разрыва по стороне низкого напряжения необходимо для предотвращения обратной трансформации, то есть появления напряжения на первичной обмотке от напряжения на вторичной обмотки при ошибочном объединении вторичных цепей от другого ТН, находящегося в работе.

Стабилизация без контура обратной связи

Не все DC/DC-преобразователи, обладающие в той или иной степени стабилизацией выходного напряжения, применяют обратную связь, выполненную в виде отдельной схемы. Здесь она все равно имеется, но косвенная, как свойство топологии. Так, базовый автогенератор Ройера (англ. Royer relaxation oscillator), используемый в примере, показанном на рис. 1, не имеет регулирующей петли обратной связи.

Что такое обратная трансформация. Смотреть фото Что такое обратная трансформация. Смотреть картинку Что такое обратная трансформация. Картинка про Что такое обратная трансформация. Фото Что такое обратная трансформация

Рис. 1. Двухтактный преобразователь Ройера без петли регулирования

Автоколебательная схема действует на частоте, которая определяется физическими характеристиками трансформатора и зависит только от входного напряжения, в соответствии со следующим соотношением:

Здесь NP — это число витков первичной обмотки; В — представляет собой магнитный поток насыщения; а AE — площадь поперечного сечения трансформатора. Формула может быть преобразована для вычисления частоты авто­колебаний f:

Использованный в формуле коэффициент 4 отличается от стандартного уравнения трансформатора, в котором используется коэффициент 4,44. Это связано с тем, что автогенератор Ройера выдает меандр, а не синусоидальный сигнал. Само выходное напряжение непосредственно зависит от соотношения числа витков на первичной обмотке NP по отношению к числу витков на вторичной обмотке NS:

Из приведенных соотношений мы можем видеть, что и выходное напряжение, и рабочая частота не являются в данном случае фиксированными и зависят от входного напряжения. Поэтому в идеале нерегулируемые DC/DC-преобразователи могут быть использованы только при стабильном входном напряжении.

Однако на практике есть еще и скрытые механизмы обратной связи, обеспечивающие характеристики автогенератора Ройера выше, чем в теории. Первичные, вторичные обмотки, а также обмотки обратной связи, так или иначе, взаимодействуют между собой из-за наличия индуктивностей рассеяния и емкостной связи. Обмотки могут быть расположены на сердечнике для увеличения или уменьшения этих взаимо­действий или экранирования одной обмотки от влияния другой. Например, нерегулируемые преобразователи могут быть выполнены таким образом, чтобы быть устойчивыми к короткому замыканию. Это достигается путем намотки их вторичных обмоток между первичными обмотками и обмотками обратной связи. Такая намотка приводит к тому, что в случае короткого замыкания на выходе в трансформаторе образуется своеобразный защитный экран, который уменьшает связь между первичной и вторичной обмотками. Когда выход замкнут накоротко, то преобразователь продолжает генерировать колебания, но уже при сильно сниженной мощности, так что его ключи могут спокойно выдержать работу в этом режиме. В случае полного короткого замыкания рассматриваемый преобразователь будет функционировать с нагревом, но выдержит данный режим и не выйдет из строя. Как только короткое замыкание будет устранено — преобразователь вернется к своему нормальному режиму работы с полной выходной мощностью.

Введение в несимметричность

Несбалансированные токи являются важнейшей причиной несимметричного напряжения, а поскольку оно относится к важным параметрам качества энергоснабжения, в данной статье будут рассматриваться несимметричные синусоидальные напряжения.

Ключевые слова: дисбаланс

Johan Driesen, Katholieke Universiteit Leuven

Thierry Van Craenenbroeck, Katholieke Universiteit Leuven

Несбалансированные токи являются важнейшей причиной несимметричного напряжения, а поскольку оно относится к важным параметрам качества энергоснабжения, в данной статье будут рассматриваться несимметричные синусоидальные напряжения.

Что такое дисбаланс?

Определение

Трехфазная система считается сбалансированной или симметричной, когда напряжения и токи каждой из фаз имеют одинаковую амплитуду, а сдвиг амплитуды по фазе равен 1200. Если не выполняется хотя бы одно из этих условий, то система считается асимметричной, или разбалансированной.

В статье условно полагается, что гармоники отсутствуют, т. е. форма кривых напряжения синусоидальная.

Количественные параметры

Для того чтобы количественно описать дисбаланс напряжения или тока в трехфазной системе, применяются так называемые компоненты Фортескью, или симметричные компоненты. Трехфазную систему условно разбивают на прямую или положительную, обратную или отрицательную, и униполярную или нуль-последовательности, обозначаемые индексами d, i, h (в некоторых источниках – 1, 2, 0). Их используют для расчетов при помощи трансформации матрицы трехфазного напряжения или тока. Индексы u, v, w (иногда a, b, c) означают разные фазы. Приведенное ниже выражение для напряжения U равноприменимо и для тока I с соответствующими значениями переменных величин

Данная трансформация с точки зрения количества энергии инвариантна, т. е. количество энергии, подсчитанное с исходными значениями, всегда одинаково и после трансформации.

Пример обратной трансформации:

Прямая система (система прямой последовательности) ассоциируется с положительным вращением поля, в то время как обратная – имеет отрицательное вращение поля (рис. 1). Так, например, электропривод трехфазного переменного тока служит наглядным примером вращающегося магнитного поля.

Графическое представление симметричных компонентов (прямого, обратного и униполярного)

Униполярные компоненты имеют одинаковые углы векторов фаз и лишь колеблются (без вращения поля). В системах без нейтрального проводника униполярные токи, очевидно, не имеют возможности течения, но между нейтральными точками Y-соединений с нулевым напряжением в питающей системе и нагрузке может возникнуть значительная ЭДС.

Разложение несимметричной системы на составляющие изображено на рис. 2.

Графическое разложение несимметричной системы с использованием компонентов рис. 1

На практике их измерение не столь очевидная процедура, особенно по положительной и отрицательной последовательностям. Использование цифрового измерительного инструмента является более простым способом подсчета по сравнению с классическими аналоговыми.

Значения отношения uU (напряжение) и uI (ток) между величинами амплитуды отрицательной и положительной последовательностей являются количественной величиной дисбаланса (%)

Эти отношения используются, например, в стандартах, связанных с вопросами качества энергии, таких как европейский стандарт EN-50160 или стандарты серии МЭК 1000-3x.

Более простой, хотя и приблизительный, способ определения коэффициента дисбаланса напряжений

В данном случае используются только величины кажущейся мощности нагрузки Sl и мощности короткого замыкания SSC питающей цепи.

Полностью процедуры измерения и определения этих параметров изложены в стандартах. Там же приводятся методики статистического усреднения значений (3, 4) в течение определенного периода времени.

Ограничения

Международные стандарты (например, EN-50160 или стандарты серии МЭК 1000-3x) устанавливают предел коэффициента дисбаланса (3) не более 2 % для систем низкого и среднего напряжения и менее 1 % для высоковольтных на основании измерений в течение 10 минут, допуская отдельные мгновенные значения коэффициента дисбаланса не более 4 %. Однако в отдельных регионах эти величины могут быть уменьшены до уровня 0,25 %, например, на британской части железной дороги, проходящей в тоннеле под Ла-Маншем, поскольку эта часть линии представляет собой гигантскую однофазную нагрузку. Причиной жестких местных ограничений на асимметрию высоковольтных сетей является то, что они предназначены для использования с максимальной загрузкой с симметричными трехфазными нагрузками. Любой дисбаланс приводит к низкой эффективности работы и без того до предела загруженных сетей. При проектировании распределительных систем (низковольтных) питание однофазной нагрузки является одной из важных задач, поэтому и сама система, и присоединенные нагрузки должны разрабатываться и исполняться как можно более устойчивыми к дисбалансу.

Для примера определим величину требуемой мощности короткого замыкания устройств питания тяги для двухколейной скоростной железнодорожной линии с величиной номинальной мощности 2•15 МВ•А (французская TGV). Используя (4), видим, что при коэффициенте дисбаланса фазного напряжения в 1 % мощность короткого замыкания составит около 3 ГВ•А, что объясняет необходимость присоединения к сети сверхвысокого напряжения.

Что представляет собой устройство: составляющие части и принципиальная схема

Одноходовые трансформаторы импульсного типа представляют собой довольно распространенное оборудование. Дело в том, что при относительно малых показателях мощности они обеспечивают оптимально питание устройств.

Главным звеном принципиальной составляющей считают дроссель, выступающий или получателем энергии от первички или передатчиком энергии во вторичку. Именно от функционала дросселя зависит этап работы — первичный или вторичный цикл. Если дроссель подсоединяется к первичной обмотке, то появляется напряжение и ток нарастает равномерно. Энергия поступает в магнитопровод, а ключом считается транзистор. Диод ограничивает вторичная обмотка.

Если задействовать ключ, то ток пропадет на первичке, но дроссельный поток мгновенно изменения не покажет, следовательно, на вторичке образуется уменьшающийся последовательно ток. Именно он питает трансформатор или дроссель устройства. Понятно, что питание за счет энергии от конденсатора происходит на первом этапе. На втором же происходит ее преобразование и падение, которое можно рассчитать. Обычно этапы подачи и спада повторяются интервале от 20 КГц до 1 МГц.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *