Что такое нейросети в интернет
19 отличных бесплатных нейросетей
К 2019 году искусственные нейронные сети стали чем-то большим, чем просто забавная технология, о которой слышали только гики. Да, среди обычных людей мало кто понимает что из себя представляют нейросети и как они работают, но проверить действие подобных систем на практике может каждый – и для этого не нужно становиться сотрудником Google или Facebook. Сегодня в Интернете существуют десятки бесплатных проектов, иллюстрирующих те или иные возможности современных ИНС, о самых интересных из них мы и поговорим.
Из 2D в 3D
На этом сервисе вы сможете вдохнуть новую жизнь в свои старые фотографии, сделав их объемными. Весь процесс занимает меньше минуты, необходимо загрузить изображение и через несколько секунд получить 3D-модель, которую можно покрутить и рассмотреть во всех деталях. Впрочем, есть два нюанса — во-первых, фотография, должна быть портретной (для лучшего понимания требований на главной странице сайта представлены наиболее удачные образцы снимков, которые ранее загружали другие пользователи; во-вторых, детализация получаемой модельки зачастую оставляет желать лучшего, особенно, если фотография в низком разрешении. Однако авторы разрешают не только ознакомиться с результатом в окне браузера, но и скачать получившийся файл в формате obj к себе на компьютер, чтобы затем самостоятельно его доработать.
Нейминг брендов
Придумали крутую идею для стартапа, но не можете определиться с именем для будущей компании? Достаточно вбить несколько ключевых слов, задать длину названия в символах и готово! В общем, больше не нужно искать на фрилансе людей, которые будут решать такой личный вопрос, как наименование дела всей вашей жизни.
Выбор досуга
Пересмотрели все интересные вам фильмы, прочли все достойные книги и не знаете чем занять вечер? Система рекомендаций от специалиста по искусственному интеллекту Марека Грибни расскажет как увлекательно и с пользой провести свободное время. Для корректной работы сервиса вас сперва попросят указать ваши любимые произведения в кинематографе, литературе, музыке или живописи.
Рай для искусствоведа
Google специально для поклонников современного (и не только) искусства запустила проект Google Arts & Culture, в котором можно подобрать произведения по вашему вкусу как от малоизвестных, так и от малоизвестных авторов. Большая часть контента здесь на английском, но если вы не дружите с языками, можно воспользоваться встроенным переводчиком.
Озвучивание картинок
Японская студия Qosmo разработала очень необычную нейросеть Imaginary Soundscape, которая воспроизводит звук, соответствующий тому или иному изображению. В качестве источника информации вы можете указать ссылку на любую картинку в Интернете, загрузить свой файл либо выбрать случайную локацию на Google Maps.
Не умеешь рисовать – тогда тебе к нам!
Если вы пробовали использовать рукописный ввод на своем смартфоне, эта нейросеть покажется вам до боли знакомой: она превращает любые каракули в аккуратные 2D-рисунки.
Генерация людей
Thispersondoesnotexist – это один самых известных AI-проектов. Нейросеть, созданная сотрудником Uber Филиппом Ваном, выдает случайное изображение несуществующего человека при каждом обновлении страницы.
Генерация… котов
Тот же автор разработал аналогичный сайт, генерирующий изображения несуществующих котов.
Быстрое удаление фона
Часто ли вам приходится тратить драгоценное время на удаление бэкграунда с фотографий? Даже если регулярно такой необходимости не возникает, следует на всякий случай знать о возможности быстрого удаления фона с помощью удобного онлайн-инструмента.
Написать стихотворение
Компания ‘Яндекс’, известная своей любовью к запуску необычных русскоязычных сервисов, имеет в своем портфолио сайт, где искусственный интеллект составляет рандомные стихотворения из заголовков новостей и поисковых запросов.
Окрашивание черно-белых фотографий
Colorize – это также российская нейросеть, возвращающая цвета старым черно-белым снимкам. В бесплатной версии доступно 50 фотографий, если вам нужно больше, можете приобрести платный аккаунт с лимитом в десять тысяч изображений.
Апскейлинг фото
Лет 10-15 назад камеры мобильных устройств не отличались высоким разрешением, и слабый сенсор в телефоне никак не мог справиться с детализированной картиной окружающего мира. Теперь же, если вы захотите повысить разрешение своих старых фотографий, это можно сделать на сервисах вроде Bigjpg и Let’s Enhance, которые позволяют увеличить размер изображения без потери в качестве.
Чтение текста голосом знаменитостей
Благодаря высоким технологиям, сегодня у вас есть возможность озвучить любую фразу голосом самых известных в мире людей. Все просто: пишите текст и выбираете человека (среди последних — Дональд Трамп, Тейлор Свифт, Марк Цукерберг, Канье Уэст, Морган Фриман, Сэмюель Л Джексон и другие).
Описание фотографий
Казалось бы, искусственный интеллект должен быть способен без труда описать любую, даже самую сложную картинку. Но это вовсе не так, обучить ИИ распознавать отдельные образы действительно относительно просто, а вот заставить компьютер понимать общую картину происходящего на изображении, очень сложная задача. У Microsoft получилось с ней справиться, и ее CaptionBot без труда скажет, что вы ему показываете.
Музыкальная шкатулка
Напоследок расскажем о целой пачке нейросетей от Google, первая из них – Infinite Drum Machine. Открыв страницу приложения, вы увидите своеобразную карту, на которой находятся самые разнообразные звуки. С помощью круглых манипуляторов можно изменять сочетание элементов, если получившийся набор покажется вам бессмысленным, нажмите кнопку Play в нижней части экрана и звуковая картина сложится сама собой.
Птичий хор
Если предыдущий сервис может оказаться полезным для, например, диджеев или обычных музыкантов, то польза от управления голосами десятков тысяч певчих птиц довольно сомнительна. Кстати, коллекция звуков для Bird Sounds собиралась орнитологами со всего мира на протяжении нескольких десятилетий.
Виртуальный пианист
В A. I. Duet пользователю предлагается сыграть какую-нибудь мелодию на пианино, а искусственный интеллект попробует самостоятельно закончить композицию, подобрав наиболее логичное и гармоничное продолжение.
Распознавание рисунков
Еще во время первых экспериментов с нейросетями в середине прошлого века основной задачей машинного обучения было распознавание визуальных образов. Спустя десятки лет эта технология выбралась из лабораторий и доступна всем желающим: на сайте quickdraw.withgoogle.com/ вам предложат быстро рисовать простые наброски определенных предметов, при этом ИИ будет все время комментировать происходящее на экране синтезированной речью.
Объяснение логики машинного обучения
Проект Visualizing High-Dimensional Space (“Визуализация многомерного пространства”) создавался для того, чтобы объяснить простым людям и начинающим разработчикам, как работают нейросети. Когда ИИ, оперируя большими базами данных, получает информацию (например, вашу фотографию, введенную фразу или только что нарисованное изображение), он сравнивает входящие данные с теми, что у него уже есть. VHDS наглядно демонстрирует корреляцию одного лишь выбранного вами слова с миллионами аналогичных понятий.
Что такое нейросети и как использовать их в интернет-торговле: инструкция, советы, примеры
Нейросети, или искусственный интеллект, активно применяется в маркетинге. Крупные корпорации уже используют их для своих нужд. Давайте узнаем, как нейросети могут помочь владельцу интернет-магазина уже сейчас.
Что такое нейронные сети и как они работают?
Страшно? Наверное, вспомнили фильмы про то, как искусственный интеллект завоевывает мир? Не надо бояться, антиутопиям свойственно нагнетать краски. На самом деле, по крайней мере сейчас, нейросети прекрасно управляются человеком и служат на благо общества. Приведем несколько примеров:
Чем хороши нейросети?
Во-вторых, будущее этих механизмов имеет огромные перспективы. Если сейчас, за прошедшие несколько лет, нейросети из предмета разработки программистов перешли в народ и стали использоваться повсеместно, трудно представить, что же ждет нас в будущем. В любом случае надо использовать открывающиеся возможности по полной программе.
Итак, давайте посмотрим, какую выгоду могут принести нейросети в сфере электронной коммерции уже сейчас.
2. Нейросети распознают изображения. Этот механизм работал и ранее: зайдите в Яндекс.Картинки и поищите любое изображение. Система отфильтрует самые подходящие запросу картинки и выдаст похожие изображения.
Как это использовать в электронной коммерции?
Что делать? Адаптируйте сайт интернет-магазина под это нововведение: во-первых, создайте удобную мобильную версию, которая не виснет и хорошо читается, а во-вторых, включитесь в систему голосового поиска. Следите за тем, чтобы в статьях, карточках товара, описании и надписями под фото фигурировала обычная человеческая речь. Представьте, что вы сами ищете те самые шторы. Что вы спросите? Вот эти выражения и вставляйте в контент.
5. Нейросети умеют общаться с клиентами. Чат-боты и системы автоматизации имитируют диалог с пользователем, причем делают это так хитро, что на первый взгляд и не разберешь, кто с тобой общается: живой человек или нейросеть.
Чат-боты умеют обрабатывать ответы пользователей и отвечать на них, развивать диалог, задавать клиенту наводящие вопросы и всячески мотивировать к совершению покупки. Чат-боты могут обучаться: если внести коррективы в их ответы, в следующий раз нейросеть учтет это и исправит предыдущие ошибки.
Пример: Google Inbox использует нейросети, чтобы общаться с пользователями. Система анализирует переписку и предлагает уже не один вариант ответа, а несколько.
Что делать? Устанавливать системы автоматизации на сайт интернет-магазина. Привлекать виртуальных помощников к общению. Этим вы оптимизируете время ваших реальных сотрудников и избавите их от ежедневной рутины общения с клиентами.
6. Нейросети умеют делать рассылки. Сколько времени уходит на создание и рассылку писем? Очень много, если делать это вручную, поручив какому-нибудь сотруднику. Время летит вперед, и теперь этим успешно занимаются нейросети. Они умеют делать рассылки и уведомлять пользователей о распродажах, акциях и скидках, поступлении нового товара или другом заманчивом предложении.
Что делать? Искать предложения и устанавливать систему на сайт. Экономить время для создания и рассылки писем. Ах да: нейросети еще и писать тексты умеют. Но все же, наверное, лучше пока делать это самостоятельно или поручить маркетологу. А в будущем станет видно.
Что делать? Искать подобные сервисы и пользоваться их услугами. Это не реклама, а один из примеров того, как нейросети служат на благо малого бизнеса.
8. Нейросети могут автоматизировать техподдержку. Мы уже писали, что гарантом отличного сервиса служит круглосуточная работа техподдержки, которая помогает клиенту в любое время дня и ночи и дает действительно полезные советы. Помогут те же чат-боты, которых можно научить отвечать на распространенные ответы пользователей.
Что ждет нас в будущем?
И это еще только цветочки, ягодки будут впереди. По прогнозам экспертов, нейросети продолжат завоевывать нишу электронной коммерции. Например, совсем не обязательно будет проходить по ссылке на сайт, чтобы купить товар. Это возможно будет сделать прямо из того места, где пользователь увидел эту ссылку. Допустим, читаете вы комментарии в соцсетях и видите ссылку на гаджет своей мечты. Даже сейчас купить его составит пару минут: достаточно пройти по ссылке, добавить в корзину или сразу же оплатить. В будущем процесс покупки еще более упростится: вы сможете оформить заказ прямо в той же соцсети.
И напоследок
Нейронные сети
Что такое нейронные сети?
Нейронные сети, известные также как искусственные нейронные сети (ANN) или смоделированные нейронные сети (SNN), являются подмножеством алгоритмов машинного обучения и служат основой для алгоритмов глубокого обучения. Понятие «нейронные сети» возникло при попытке смоделировать процессы, происходящие в человеческом мозге при передаче сигналов между биологическими нейронами.
Искусственные нейронные сети (ANN) состоят из образующих слои узлов: слой входных данных, один или несколько скрытых слоев и слой выходных данных. Каждый узел (искусственный нейрон) связан с другими узлами с определенным весом и пороговым значением. Если вывод какого-либо узла превышает пороговое значение, то этот узел активируется и отправляет данные на следующий уровень сети. В противном случае данные на следующий уровень сети не передаются.
Для обучения и постепенного повышения точности нейронных сетей применяются обучающие данные. При достижении требуемой точности алгоритмы обучения превращаются в мощные инструменты для вычислений и искусственного интеллекта, что позволяет использовать их для классификации и кластеризации данных с высокой скоростью. Задачи из области распознавания речи или изображений можно выполнить за несколько минут, а не за несколько часов, как при распознавании вручную. Одной из наиболее известных нейронных сетей является алгоритм поиска Google.
Принцип работы нейронных сетей
Представим каждый отдельный узел в виде модели линейной регрессии, состоящей из входных данных, весовых коэффициентов, смещения (или порогового значения) и выходных данных. Эту модель можно описать следующей формулой:
∑wixi + bias = w1x1 + w2x2 + w3x3 + bias
output = f(x) = 1 if ∑w1x1 + b> = 0; 0 if ∑w1x1 + b
После определения слоя входных данных необходимо назначить весовые коэффициенты. Они помогают определить важность той или иной переменной: чем выше весовой коэффициент, тем существеннее его вклад в выходные данные по сравнению с другими входными данными. Затем произведения входных данных и соответствующих им весовых коэффициентов суммируются. Наконец, выходные данные передаются через функцию активации, которая вычисляет результат. Если полученный результат превышает установленное пороговое значение, узел срабатывает (активируется), передавая данные на следующий слой сети. Выходные данные одного узла становятся входными данными для следующего узла. Такой последовательный процесс передачи данных между слоями характерен для нейронных сетей прямого распространения.
Попробуем представить отдельно взятый узел в виде двоичных чисел. Для более наглядной демонстрации этой концепции рассмотрим реальный пример: допустим, вам нужно принять решение, стоит ли идти на серфинг (Да: 1, Нет: 0). Решение «идти» или «не идти» — наш прогнозируемый результат или «y c крышечкой». Предположим, существует три фактора, которые влияют на принятие решения:
Предположим, у нас имеются следующие входные данные:
Теперь нам нужно присвоить весовые коэффициенты для определения важности. Чем выше значение весового коэффициента, тем большим будет влияние конкретной переменной на решение или результат.
Наконец, установим пороговое значение 3, т. е. величина смещения будет равна –3. Теперь, когда все входные данные готовы, можно подставить значения в формулу и получить желаемый результат.
Y-hat = (1*5) + (0*2) + (1*4) – 3 = 6
С помощью функции активации, о которой было сказано в начале раздела, можно вычислить выходные данные для этого узла: результат равен 1, так как 6 больше 0. Это означает, что нам стоит идти на серфинг; если же изменить весовые коэффициенты или пороговое значение, результат вычисления для данной модели может отличаться. Из примера, приведенного выше, следует, что нейронная сеть способна принимать решения с возрастающей степенью сложности, в зависимости от выходных данных предыдущих решений или слоев.
В предыдущем примере для иллюстрации математических понятий были использованы персептроны, в то время как в нейронных сетях применяются сигмоидальные нейроны, значения которых могут находиться в диапазоне от 0 до 1. По своему принципу работы нейронные сети схожи с деревьями принятия решений, поэтому в результате передачи данных от одного узла к другому, при x значений от 0 до 1, влияние того или иного изменения отдельной переменной на выходные данные любого узла и, следовательно, выходные данные нейронной сети уменьшается.
Когда речь заходит о более практических сценариях использования нейронных сетей, например распознавание или классификация изображений, то для обучения алгоритма используется контролируемое обучение или маркированные наборы данных. В ходе обучения модели нам потребуется оценить точность с помощью функции стоимости (или потерь). Это так называемая среднеквадратическая ошибка (MSE). В уравнении ниже используются следующие обозначения:
Конечная цель — минимизировать функцию стоимости, чтобы обеспечить корректность для каждого отдельно взятого наблюдения. В процессе корректировки весовых коэффициентов и смещения модель использует функцию стоимости и обучение с подкреплением для достижения точки сходимости или локального минимума. Корректировка весовых коэффициентов происходит с помощью алгоритма градиентного спуска, что позволяет определить стратегию уменьшения количества ошибок (или минимизации функции стоимости). С каждым шагом обучения параметры модели корректируются, пока не будет достигнут минимум.
Для более подробного изучения математических понятий, используемых в нейронных сетях, рекомендуем прочитать статью на сайте IBM Developer.
Большинство глубоких нейронных сетей относятся к алгоритмам прямого распространения, т. е. данные передаются только в одном направлении — от входа к выходу. Однако для обучения моделей может также применяться метод обратного распространения ошибки, когда данные передаются в противоположном направлении — от выхода к входу. Метод обратного распространения ошибки позволяет вычислить и объяснить ошибки, связанные с каждым нейроном, что позволяет скорректировать и адаптировать параметры модели соответствующим образом.
Виды нейронных сетей
Нейронные сети можно разделить на несколько видов, в зависимости от целевого назначения. Вот список наиболее распространенных видов нейронных сетей, имеющих практическое применение:
Персептрон — первая нейронная сеть, созданная Фрэнком Розентблаттом в 1958 году. Она содержит один нейрон и представляет собой простейшую форму нейронной сети:
Эта статья посвящена в основном нейронным сетям прямого распространения или многослойным персептронам (MLP). Они состоят из следующих слоев: входные данные, один или несколько скрытых слоев и выходные данные. Хотя такие нейронные сети формально относятся к категории MLP, фактически они состоят из сигмоидальных нейронов, а не персептронов, так как большинство реальных задач нелинейны. Данные, поступающие в эти модели, используются для обучения; они лежат в основе алгоритмов компьютерного зрения, обработки данных на естественном языке и других нейронных сетей.
Сверточные нейронные сети (CNN) похожи на сети прямого распространения, однако они, как правило, применяются для распознавания изображений, выявления закономерностей и/или компьютерного зрения. Для обнаружения закономерностей в изображениях с помощью таких сетей применяются законы линейной алгебры, в частности правила перемножения матриц.
Рекуррентные нейронные сети (RNN) имеют в своем составе обратные связи. Такие алгоритмы обучения используются в основном для временных рядов данных с целью прогнозирования будущих событий, например стоимости акций на фондовых биржах или объема продаж.
Сравнение нейронных сетей и глубокого обучения
В обычном разговоре термины «глубокое обучение» и «нейронные сети» могут использоваться как синонимы, загоняя собеседников в тупик. Поэтому стоит отметить, что понятие «глубина» в «глубоком обучении» характеризует лишь количество слоев нейронной сети. Нейронную сеть, в составе которой более трех слоев (включая слой входных данных и слой выходных данных), можно отнести к алгоритмам глубокого обучения. Нейронная сеть с двумя-тремя уровнями считается простой нейронной сетью.
Для лучшего понимания разницы между нейронными сетями и другими разновидностями искусственного интеллекта, например машинным обучением, рекомендуем прочитать публикацию в блоге «Сравнение искусственного интеллекта, машинного обучения, глубокого обучения и нейронных сетей».
История возникновения нейронных сетей
История нейронных сетей намного длиннее, чем принято считать. Сама идея «способной к мышлению системы» возникла еще в Древней Греции, и популярность нейронных сетей менялась с течением времени. Мы же сосредоточимся на ключевых событиях современной эволюции:
1943: Уоррен Маккалок и Уолтер Питтс опубликовали работу «Логическое исчисление идей, относящихся к нервной деятельности» (внешняя ссылка, PDF, 1 МБ). Целью данного исследования было изучение работы человеческого мозга, а именно: создание сложных моделей путем передачи сигналов клетками мозга или нейронами. Одной из главных идей, возникших в ходе данного исследования, стала аналогия между нейронами с двоичным пороговым значением и булевской логикой (значения 0/1 или утверждения истина/ложь).
1958: Фрэнк Розенблатт в своем исследовании «Персептрон: вероятностная модель хранения и организации информации в головном мозге» (внешняя ссылка, PDF, 1,6 МБ) описал модель персептрона. Он развил идеи Маккалока и Питтса, добавив в формулу весовые коэффициенты. На компьютере IBM 704 Розенблатт смог обучить систему распознавать карточки, маркированные слева и справа.
1974: первым ученым на территории США, описавшим в своей диссертации (внешняя ссылка, PDF, 8,1 МБ) использование алгоритма обратного распространения ошибки в нейронных сетях, стал Пол Вербос, хотя развитием этой идеи занимались многие исследователи.
1989: Янн Лекун опубликовал статью (внешняя ссылка, PDF, 5,7 МБ), в которой было описано практическое использование ограничений обратного распространения ошибки и интеграция в архитектуру нейронной сети для обучения алгоритмов. В данном исследовании нейронная сеть успешно обучилась распознавать рукописные символы почтового индекса, предоставленные Почтовой службой США.
Нейронные сети и IBM Cloud
Компания IBM стоит у истоков развития ИИ-технологий и нейронных сетей, о чем свидетельствуют появление и эволюция IBM Watson. Watson — надежное решение для крупных предприятий, которым требуется внедрить передовые технологии глубокого обучения и обработки данных на естественном языке в свои системы, опираясь на проверенный многоуровневый подход к разработке и реализации ИИ.
Архитектура UIMA (Apache Unstructured Information Management Architecture) и программное обеспечение IBM DeepQA, лежащие в основе Watson, позволяют интегрировать в приложения мощные функции глубокого обучения. С помощью таких инструментов, как IBM Watson Studio, ваше предприятие сможет эффективно перенести ИИ-проекты с открытым исходным кодом в рабочую среду с возможностью развертывания и выполнения моделей в любой облачной среде.
Более подробная информация о том, как приступить к использованию технологии глубокого обучения, приведена на страницах IBM Watson Studio и Deep Learning service.