Что такое нефтяной флюид
Большая Энциклопедия Нефти и Газа
Пластовые флюид
Пластовые флюиды должны рассматриваться как комплексное минеральное сырье. Запасы каждого компонента должны оцениваться отдельно, и по каждому из них необходимо вести баланс в процессе разработки месторождения. [4]
Пластовые флюиды поступают в скважину при недостаточной плотности буровых растворов, снижении ее уровня при поглощениях, уменьшении противодавления на устье, подъеме бурильной колонны без долива скважины и с поршневанием вследствие сальникообразований, высоких значениях статического напряжения сдвига и малой площади сечения кольцевого пространства. [6]
Со временем пластовые флюиды будут проникать и во внутреннюю полость бурильной колонны, искажая действительные характеристики проявления, что следует учитывать при регистрации давлений. [8]
Анализ пластовых флюидов показывает, : что в промысловых условиях возможно образование стойких водонефтяных эмульсий. Так, большинство нефтей в своем химическом составе имеют силикагелевые смолы, парафины, асфальтены, серу и др., процентное соотношение которых может значительно изменяться. В химическом составе пластовых вод содержатся ионы С1, SO4, Na, Mg, Ca, HCO3, / и других элементов и соединений. Таким образом, видно, что присутствующие в пластовых жидкостях компоненты при определенных условиях их сосуществования склонны к образованию эмульсий. [9]
Движение пластовых флюидов через негерметичность элементов конструкции скважин и скважинного оборудования приводит к возникновению межколонных давлений ( МКД) и ограничивает возможность нормальной эксплуатации скважины. [11]
Миграция пластовых флюидов вызывается многочисленными взаимосвязанными факторами. [12]
Приток пластовых флюидов после перфорации скважин получают путем снижения забойного давления. Для этой цели в отрасли широко используют компрессоры. [13]
Перетоки пластовых флюидов по первичным каналам могут возникнуть как в период ОЗЦ, так и при вызове притока из пласта. [14]
Флюид
Смотреть что такое «Флюид» в других словарях:
Флюид — (от лат. fluidis текучий). Флюид в физике, состояние вещества с параметрами выше критических; также гипотетическая жидкость, которой до XVIII в. объясняли явления тепла, магнетизма, электричества. Флюид жидкие и… … Википедия
ФЛЮИД — (лат.). Непринужденность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФЛЮИД [лат. fluidus текучий] 1) физ. гипотетическая (предполагаемая) тончайшая жидкость, с помощью которой до XVIII в. объясняли явления… … Словарь иностранных слов русского языка
флюид — а, м. fluide m. <лат. fluidus текучий. 1. Газообразные или жидкие вещества, выделяющиеся из магматического очага. БАС 1. Вместе с мышьяком и сурьмой, своими друзьями и спутниками в этих летучих горячих флюидах, она <сера> образует те… … Исторический словарь галлицизмов русского языка
Флюид — (от лат. fluidus текучий * a. fluid; н. Fluid; ф. fluide; и. fluido) любое вещество, поведение к рого при деформации может быть описано законами механики жидкостей. Tермин Ф. был введён в науку в 17 в. для обозначения гипотетич. жидкостей … Геологическая энциклопедия
ФЛЮИД — ФЛЮИД, флюида, муж. (от лат. fluidus текучий) (книжн.). Нервный, психический ток, будто бы излучающийся, по воззрениям спиритов, из человеческого тела. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
флюид — сущ., кол во синонимов: 1 • течение (53) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
флюид — жидкость текучая среда — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы жидкостьтекучая среда EN fluid … Справочник технического переводчика
Флюид — (текущий) – жидкие и газообразные легкоподвижные компоненты. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Рубрика термина: Общие термины Рубрики… … Энциклопедия терминов, определений и пояснений строительных материалов
ФЛЮИД — (проф., от лат. fluidus текучий, струящийся), старин. собирател. название жидких смесей различного состава для растирания мышц, сухожилий и суставов л. в профилактич. и лечебных целях … Справочник по коневодству
флюид — (от лат. fluidus текучий), 1) жидкие и газообразные легкоподвижные компоненты магмы или циркулирующие в земных глубинах насыщенные газами растворы. Предполагается, что в составе флюидов преобладают перегретые пары воды, присутствуют фтор, хлор,… … Энциклопедический словарь
пластовые флюиды
9 пластовые флюиды: Смесь углеводородных и неуглеводородных компонентов, находящихся в пластовых условиях в газовой или жидкой фазе.
Смотреть что такое «пластовые флюиды» в других словарях:
нефть, содержащая газообразные пластовые флюиды — газированная нефть — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы газированная нефть EN live crude oil … Справочник технического переводчика
ГОСТ Р 54910-2012: Залежи газоконденсатные и нефтегазоконденсатные. Характеристики углеводородов газоконденсатные. Термины и определения — Терминология ГОСТ Р 54910 2012: Залежи газоконденсатные и нефтегазоконденсатные. Характеристики углеводородов газоконденсатные. Термины и определения оригинал документа: 14 выпавший в пласте конденсат: Пластовый флюид в жидком состоянии,… … Словарь-справочник терминов нормативно-технической документации
Пластовое давление — (a. reservoir pressure; н. Lagerdruck; ф. pression de couche; и. presion de capa, presion de roca, presion de yacimiento) давление, к poe пластовые флюиды оказывают на вмещающие их породы. П. д. важнейший параметр, характеризующий энергию … Геологическая энциклопедия
Призабойная зона — (a. borehole zone; н. Bohrungsbereich; ф. zone de forage, zone entourant un trou; и. zona de pozo, zona de sondeo) участок пласта, примыкающий к стволу скважины, в пределах к рого изменяются фильтрационные характеристики продуктивного… … Геологическая энциклопедия
Призабойная зона — ► bottomhole formation zone, well bottom zone Участок пласта, примыкающий к стволу скважины, в пределах которого изменяются фильтрационные характеристики продуктивного пласта в период строительства, эксплуатации или ремонта скважины. Причины,… … Нефтегазовая микроэнциклопедия
Методы разработки месторождений — совокупность геотехнологий извлечения природного газа и сопутствующих углеводородов из месторождения. Определяют характер и эффективность геотехнологического воздействия на процесс извлечения. Характер может быть пассивным, при котором извлечение … Нефтегазовая микроэнциклопедия
Аномальное пластовое давление — (a. abnormal seam pressure; н. anomaler Flozdruck; ф. pression anomale des couches; и. presion anomal en capas) давление, действующее на флюиды (воду, нефть, газ), содержащиеся в поровом пространстве породы, величина к рого отличается от… … Геологическая энциклопедия
НЕФТЬ И ГАЗ — См. также ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ; НЕФТЕХИМИЧЕСКИЕ ПРОДУКТЫ. НЕФТЬ Сырая нефть природная легко воспламеняющаяся жидкость, которая находится в глубоких осадочных отложениях и хорошо известна благодаря ее использованию в качестве топлива и … Энциклопедия Кольера
Литология — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (25 мая 2011) … Википедия
Аномальное пластовое давление — ► anomalous seam (strata) pressure Давление, действующее на флюиды (воду, нефть, газ), содержащиеся в поровом пространстве породы, величина которого отличается от нормального (гидростатического). Пластовые давления, превышающие гидростатическое… … Нефтегазовая микроэнциклопедия
Особенности флюидных систем зон нефтегазонакопления и геодинамические типы месторождений нефти и газа
Многолетние геолого-геофизические и геохимические наблюдения, а также изучение современной геодинамики нефтегазоносных территорий на специальных геодинамических полигонах, локализованных в разных по геологическому строению районах (древних и молодых платформах, краевых прогибах и др.), позволили убедиться в единстве флюидных систем, формирующих месторождения флюидогенных полезных ископаемых, и их тесной связи с глубинными разломами и процессами дегазации глубинных сфер Земли.
Установлена сопряженность скоплений УВ с наиболее активно развивающимися глубинными разломами, динамика которых проявляется в высокоградиентных современных вертикальных и горизонтальных движениях земной поверхности и изменениях во времени геофизических полей. Последние отражают происходящие в настоящее время геологические процессы в глубоких горизонтах осадочного чехла и фундаменте. Установленная геохимическими исследованиями миграция флюидных систем, как в глубоких горизонтах осадочного чехла, так и вблизи его поверхности, вероятно, наряду с деформациями земной коры, определяет и нестабильность во времени геофизических полей [5]. Работы велись в Припятской впадине, Терско-Каспийском прогибе и других нефтегазоносных районах.
Многократным нивелированием по региональным профилям в Припятской впадине установлены относительный подъем ее северной части, а также значительные вертикальные перемещения блоков в пределах локальных структур. Динамика вертикальных смещений сопряжена с изменением во времени гравитационного поля, замеренного при повторных высокоточных гравиметрических работах (Сидоров В.А., Кузьмин Ю.О., 1989; [5]). Интересно, что северная часть впадины характеризуется более напряженным температурным полем. По данным Г.В. Богомолова и А.П. Пинчука (1978), на глубине 2500 м и других срезах в северной части впадины отмечено значительное повышение температуры. Совокупность этих данных позволяет считать, что в северной структурной зоне происходят наиболее интенсивные геологические процессы в глубоких горизонтах осадочного чехла и фундаменте, в том числе миграция нефти и формирование ее скоплений, что и определяет здесь размещение основных промышленных месторождений (Багдасарова М.В., 2000).
Таким образом, в Прилятской впадине наиболее активный в настоящее время Речицкий разлом, контролирующий основные промышленные месторождения нефти, характеризуется вертикальной зоной разуплотнения земной коры и верхней мантии и повышенным тепловым потоком, который отражает процессы вертикальной миграции флюидных систем. Последняя определяет вариации геофизических полей в отдельных звеньях Речицкого разлома. Эти геодинамические параметры могут быть использованы в поисковых целях.
Известные крупные месторождения нефти в Терско-Каспийском прогибе также контролируются глубинными разломами. Региональными исследованиями методом отраженных волн по Терскому профилю установлены разломы глубинного заложения. По этому же профилю выполнены многократное нивелирование и светодальномерные измерения, а также повторные высокоточные магнитометрические наблюдения [5]. В результате этих комплексных исследований установлено, что основные зоны нефтегазонакопления здесь также контролируются глубинными разломами, уходящими в мантию. Зоны разуплотнения в их пределах выявлены расчетным путем по значениям измерений гравитационного поля и современным вертикальным перемещениям земной поверхности.
Результаты режимных наблюдений, геохимических съемок и анализа геофизических материалов нефтегазоносных территорий показали, что разрывные нарушения и зоны трещиноватости обладают повышенной проницаемостью не везде, а лишь в отдельных звеньях и главным образом в местах пересечения разрывов разных простираний. При этом проницаемость, как и другие физические свойства геологической среды в зоне разломов, изменчива во времени, что отражается и на интенсивности миграции флюидных систем, в том числе и УВ.
На геодинамических полигонах (Припятская впадина, Терско-Каспийский прогиб и др.) в верхней части земной коры установлены напряжения сжатия и растяжения, обычно сменяющие друг друга. При этом сохраняется определенная динамическая тенденция, присущая данному региону, которая формирует геологическую структуру. Так, в условиях древних платформ (Припятская впадина) преобладают напряжения растяжения, сопровождающиеся рифтообразованием и развитием сбросов в основании фундамента и базальных горизонтах осадочного чехла. В предгорных прогибах и межгорных впадинах (например, в Терско-Каспийском прогибе) преобладают напряжения сжатия, что отражено в складчатости и общей структуре осадочного чехла.
Известно, что формирование скоплений нефти и газа происходит всегда после образования и консолидации осадочных толщ. Убедительные материалы о наложенном характере процессов формирования месторождений УВ приводятся многими авторами при анализе коллекторов, содержащих залежи нефти и газа. Особенно ярко это проявляется в залежах, вскрытых на больших глубинах. Основная емкость таких коллекторов представляет собой вторичные поры, каверны и трещины, образованные в результате взаимодействия агрессивных флюидных систем и пород. Такие коллекторы тяготеют к проводящий разрывным нарушениям. К этим же зонам обычно приурочены геотермические и геохимические аномалии в пластовых водах и нефтях. На периферии залежей в зоне ВНК и за его пределами обычно присутствуют зоны вторичной цементации и переотложения минерального вещества (окремнения, вторичной кальцитизации, анкеритизации, сидеритизации, ангидритизации и др.), часто экранирующие залежь.
Изучение месторождений с позиций флюидодинамики наметилось давно. Первую флюидодинамическую модель нефтегазового месторождения предложил К.А. Аникиев (1963), затем П.Н. Кропоткин и Б.М. Валяев (1965), [2]. Основу модели составляет явление флюидного диапиризма, отмечаемое в проницаемых участках глубинных разломов. Участки разломов («стволы месторождений», по К.А. Аникиеву [1], или «трубы дегазации», по П.Н. Кропоткину [2]) представлены этажами крупных массивно-пластовых диапирообразных залежей, увенчанных ореолами вторжения и рассеяния УВ. Эта геодинамическая модель отражает механические, физические и химические воздействия флюидного диапира на фундамент и массивы осадочных пород в зоне разлома, вызывающие аномалии геофизических и геохимических полей. Модель подтверждается эмпирическими и теоретическими разработками по флюидодинамике, наблюдениями на геодинамических полигонах и результатами изучения дегазации Земли. Эта модель стала основой при определении нефтепоисковых признаков месторождений нефти и газа (Павлов Н.Д. и др., 1988; Нелюбин В.В., 1991). Огромный фактический материал, отражающий роль флюидодинамических процессов, накоплен и в ходе разработки залежей УВ (Корценштейн В.Н., 1980; Сапрыгин СМ., 1989).
Как известно, эти месторождения контролируются глубинными разломами, способствующими развитию трещиноватости и сильной раздробленности фундамента и мезозойского карбонатного комплекса. Последний содержит узкие протяженные залежи нефти массивного типа высотой более 1200 м. Трещиноватость коллектора неравномерная и на участках, где имеются поперечные нарушения (выраженные в структуре поверхности верхнемеловых известняков), она увеличивается, что определяет и более высокие дебиты скважин. Мезозойский комплекс является зоной внедрения флюидов снизу, которые способствовали гидроразрыву пород, формированию трещинного коллектора и высоконапорной нефтяной залежи под мощной глинистой покрышкой (майкопской толщей) на глубине 2,5-4,0 км. Залежи подпираются слабоминерализованной водой, режим упруговодонапорный, температура залежей до 180 °С, давление до 90 МПа. Признаки внедрения легко обнаруживаются по характеру температурного поля, УВ-составу нефти и др.
Мезозойский комплекс перекрыт мощной майкопской глинистой толщей, для которой типичны внедрение снизу глыб и обломков карбонатных пород мела, диапировый характер залегания и небольшие по размерам, но с высоким давлением залежи нефти («сателлитные», по К.А. Аникиеву). Эта зона названа переходной с залежами-сателлитами, свидетельствующими о процессе внедрения снизу по системе нарушений. Последние пропитаны высоконапорными флюидами, размачивающими глинистую толщу Майкопа и способствующими вязкому перемещению пород в виде глиняного диапира.
Верхний этаж этой флюидодинамической системы сложен высокопроницаемыми пластами песчаников неогена (чокрака и карагана), в которые по разрывам периодически разгружаются напорные флюиды. Они также содержат залежи нефти и иногда газа. Неогеновые отложения смяты в складки, осложнены надвигом и поперечными разрывными нарушениями, местами проницаемыми до поверхности и являющимися путями миграции горячих вод (иногда с нефтью), которые в виде источников выходят на поверхность на Терском и Сунженском хребтах.
Динамика разгрузки флюидных систем для этого типа месторождений очень высока, часто до явлений грязевого вулканизма, следы которого находят в четвертичных отложениях Предгорного Дагестана.
Верхний продуктивный этаж месторождений этого типа характеризуется многочисленными пластовыми залежами, контролируемыми проводящими разрывными нарушениями. Распределение залежей в разрезе обусловливается давлением флюидов в основном проводнике (зоне разлома) и подчиняется законам гидравлики. В этой зоне есть связь с поверхностью, и колебание давления ведет к перераспределению флюидов. Связь с нижним мезозойским этажом происходит периодически через вязкую майкопскую толщу.
Внешний контур такого многопластового месторождения представляется в виде пирамиды. Основные флюидодинамические характеристики проявляются в динамике геофизических полей. Наиболее отчетливо это наблюдалось после проведения здесь повторных высокоточных магнитометрических исследований по Терскому профилю (Кузнецова В.Г., Максимчук В.Е., 1998). Максимальная изменчивость во времени магнитного поля была установлена в пределах Терского хребта. Известно, что в этой зоне разгрузка флюидов проявляется наиболее ярко в виде источников горячих минеральных вод. Напоры вод по оценкам гидрогеологов здесь намного превышают таковые артезианских бассейнов.
Флюидодинамика Терского хребта сопровождается интенсивной динамикой литосферы в целом. Помимо землетрясений, очаги которых часто располагаются под Терским хребтом на глубине до 50 км (Эльдаровское землетрясение 1913 г.), для этой зоны характерны высокоградиентные современные вертикальные движения земной поверхности и общий подъем хребта, отражающий, видимо, основную тенденцию развития надвига и диапиризма майкопской толщи под влиянием напорных флюидов. Светодальномерные измерения показали, что некоторые линии через Терский хребет сократились за 1 год до 66 мм, что подтверждает здесь напряжения сжатия (Багдасарова М.В., Сидоров В.А., 2000).
В целом первый тип флюидодинамики характерен для районов, в которых осадочные толщи содержат большие запасы пластовых вод. Минерализация пластовых вод в зоне нефтегазонакопления такого типа небольшая, обычно 15-50 г/л. В процессе вертикальной миграции вод происходит их вскипание (при снятии давления в результате трещинообразования), и в верхние горизонты поступает пар, конденсация которого приводит к опреснению пластовых вод. Особенно отчетливо это видно по подошвенным водам нефтяных и газовых залежей во флюидодинамической системе такого типа.
Таким образом, представленный флюидодинамический тип месторождения характеризуется следующими определяющими его чертами: высокой обводненностью осадочного разреза в целом; высокой активностью флюидной системы и разгрузкой флюидов по зонам трещиноватости до поверхности; относительно низкой минерализацией пластовых вод; многоэтажностью УВ-скоплений разного фазового состояния со сложноэкранированными залежами; развитием зон АВПД в нижнем этаже и переходной зоне; развитием трещиноватости компетентных пород в результате гидроразрыва; проявлением глиняного диапиризма и грязевого вулканизма.
Особенно важное значение при этом типе флюидной системы приобретает соляной диапиризм. Он также развивается по наиболее проницаемым зонам разреза. Соль заполняет трещины пород и замещает породы, растворяя их (соляной метасоматоз). Возникновение соляных толщ в разрезе осадочных пород до сих пор является предметом дискуссий. Идея глубинного генезиса солей и рассолов [3] находит повсеместное подтверждение, снимает многие противоречия и заставляет более целенаправленно анализировать глубинное строение этих территорий, проявления основного вулканизма и весьма специфический комплекс полезных ископаемых (соль, нефть, медистые песчаники, рудоносные рассолы и т.д.).
Второй флюидодинамический тип месторождений характеризуется не только спецификой флюидов, но и существенно меньшим масштабом их проявления. Рассматриваемая территория отличается отсутствием обильных термальных источников и водоносных комплексов в глубоких горизонтах. В пределах Припятской впадины во многих скважинах, пробуренных с целью оконтуривания нефтяных залежей, не было обнаружено предполагаемых водоносных комплексов в подсолевых и межсолевых отложениях девона
Таким образом, второй флюидодинамический тип месторождений характеризуется следующими чертами, наличием высокоминерализованных рассолов, содержащих нефть и небольшое количество газа; преобладанием скрытой разгрузки флюидных систем, агрессивным характером рассолов, определяющим сильное локальное преобразование пород, а приразломных зонах, изменение карбонатных толщ и образование вторичных коллекторов, а также экранирующих зон; разгрузкой флюидов, сопровождающейся явлениями соляного диапиризма.
Специфические особенности самих флюидных систем и их взаимодействия с вмещающими породами определяют и своеобразие подхода к зональному и локальному прогнозу при поисках приразломных залежей нефти.
Основные различия флюидодинамических типов месторождений тесно связаны с особенностями вулканизма рассматриваемых территорий, который определил не только типы флюидных систем, но и осадочное выполнение этих бассейнов. Так, в Припятской впадине в девонской эпохе известны проявления основного и ультраосновного вулканизма, а поствулканические эманации в последующие периоды характеризовались восстановленными флюидными системами с низкой фугитивностью кислорода, что определило небольшое количество воды и высокое содержание растворимых солей. Это привело к накоплению солей и проявлениям соляного диапиризма. В Терско-Каспийском прогибе так же, как и в большинстве районов Альпийского складчатого пояса и предгорных прогибах, преобладал вулканизм андезитового типа, для которого характерна более высокая фугитивность кислорода и соответственно преобладание воды во флюидной фазе при поствулканических процессах, что и определило низкую минерализацию флюидов, преимущественно терригенный состав осадочного выполнения этих бассейнов (особенно в неогеновую эпоху) и высокую флюидодинамическую активность, что, вероятно, связано и с повышенной сейсмичностью этих регионов. Установленные связи еще раз подчеркивают глубинную природу скоплений УВ и позволяют использовать при их поисках геодинамические параметры.
Рис. 1. ГЕОДИНАМИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЙ УВ С АКТИВНОЙ ФАЮИДОДИНАМИЧЕСКОЙ СИСТЕМОЙ (на примере Эльдаровского месторождения)
Рис. 2. ГЕОДИНАМИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЙ УВ С МАЛОАКТИВНОЙ ФЛЮИДОДИНЛМИЧЕСКОЙ СИСТЕМОЙ (на примере Речицкого месторождения)
Флюид
1. Любое вещество, поведение которого при деформации может быть объяснено законами механики жидкостей и газов;
2. Обобщающий термин, применяющийся для обозначения перемещающихся в земной коре углеводородных и других газов, воды.
3. любое вещество, поведение которого при деформации может быть описано законами механики жидкостей. Термин «флюид» был введён в науку в 17 веке для обозначения гипотетических жидкостей, с помощью которых объясняли некоторые физические явления и образование горных пород. Примеры таких флюидов: теплород Р. Бойля (1673), флогистон Г. Э. Шталя (1697), первичный раствор Т. У. Бергмана (1769) и др. С развитием науки содержание понятия флюида изменилось. Реологическими и геологическими исследованиями доказано, что все реальные тела, какими бы твёрдыми они не казались, под действием длительных тангенциальных нагрузок ведут себя как жидкости. Если время t действия внешней силы, вызывающей в теле касательные напряжения, значительно меньше времени релаксации (tr), то тело ведёт себя упруго. При t>tr тело ведёт себя как жидкость, т. е. течёт. В геологических процессах, длительность которых нередко измеряется миллионами лет, в качестве флюида могут выступать не только газы, водные растворы, нефть, илы, магма, но и глины, соли, гипсы, ангидриды, известняки и другие «твёрдые» вещества.
2021 © OilGasInform Независимый портал для профессионалов нефтяной и газовой отрасли
Предложения товаров не являются публичной офертой. Администрация не несет ответственность за достоверность информации, размещенной пользователями портала.