Что такое натуральный алгоритм
Что такое натуральный алгоритм
4.4. Натуральные алгоритмы. Порождение первичных алгоритмов
В § 2.5 дано общее определение операции. Однако из всех операций нам пока известны только натуральные, которые являются операциями только над словами и квазисловами. Язык L2 построен нами из конечного числа морфем при помощи последовательно выполняемых операций сцепления слов.
Теперь нетрудно определить формальный язык, предложениями которого будут всевозможные слова и квазислова в алфавите А1. Чтобы не говорить только об одном конкретном алфавите, считаем метасимвол заданным. Формальная грамматика нового языка в этом случае имеет вид.
Правая часть первой метаформулы опущена. Скобки в правой части четвертой метаформулы служат для указания границ аргументов. Наличие среди синтаксических правил четвертой метаформулы не позволяет считать формальную грамматику заданной с помощью нотации Бекуса. Пользуясь операциями линеаризации и делинеаризации, можно было бы задать еще более сложные языки.
Вернемся к изучению первичных алгоритмов. Семейство первичных алгоритмов, в котором используются только операции из числа натуральных, принадлежит подклассу первичных алгоритмов, называемых натуральными алгоритмами.
Между знаками операций и самими операциями установим следующее соответствие (табл. 4.1.).
Таблица 4.1. Соответствие между знаками операций и операциями
В качестве упражнения построим алгоритм нахождения конца слова в определенном нами семействе натуральных алгоритмов. Его запись может иметь вид:
В этой записи (исключительно для наглядности) мы расположили приказы в виде столбца. Можно было бы их написать в виде одной строки и это не уменьшило бы понятности алгоритма для того, кто знает правило выполнения (см. с. 63). Первый приказ гласит: если преобразуемое слово непусто, то перейти к приказу 2, а иначе снова к приказу 1. Значит, если слово пусто, то сдвинуться с приказа 1 невозможно. Это значит, что к пустому слову наш алгоритм неприменим. Это естественно, так как пустое слово не имеет конца.
Составив такой алгоритм, мы можем выполняемое им преобразование объявить операцией. Обозначим ее «**».
Составим еще натуральный алгоритм, который проверял бы, является ли рассматриваемое слово однобуквенным? Его запись может иметь вид
Искомый натуральный алгоритм может иметь запись:
Последний алгоритм позволяет объявить еще одну логическую операцию, что мы и сделаем. Обозначим ее s.
Расширив набор операций, мы можем построить новое семейство первичных алгоритмов, добавив к грамматике алгоритмического языка метафор-мулы:
При этом нужно изменить и правило выполнения так, чтобы оно обеспечивало выполнение новых операций. У нас это правило сформулировано в общем виде и потому его изменение будет неявным.
Новые алгоритмы уже не будут натуральными (так как используют три новые операции, не являющиеся натуральными).
Кто же ты такой, алгоритм?
Сегодня довольно легко столкнуться с недобросовестными школьными учебниками, в частности с учебниками по информатике. В главах, посвященных алгоритмам, вы можете найти непосредственно определение алгоритма. Не пояснение, о чем идет речь, не рассказ о предмете, а именно определение. Причем выделенное жирным шрифтом, старательно обведенное в рамку и помеченное какой-нибудь заметной пиктограммой в виде восклицательного знака. Обычно приправлено всё это соусом из кучи обязательных и необязательных свойств, образуя в итоге феерический кавардак. Давайте попытаемся понять, что же такое алгоритм, почему мы не может дать ему конкретного определения и выясним, какие свойства являются обязательными, а какие нет.
Составителей учебников легко понять, ведь на самом деле строгого определения алгоритма не существует, и более того, такого определения быть не может. Но вместо попыток объяснить, что к чему, авторы подсовывают бедным ученикам еще одно задание по зубрежке бесполезных и неправильных терминов. Чтобы не быть голословным, приведу выдержку из одного весьма распространенного учебника:
В университетах дела обстоят получше, однако автору этих строк на курсе по математической логике и теории алгоритмов пришлось столкнуться все с тем же винегретом из определения алгоритма и его свойств. Разберемся, что тут не так.
Бесконечность не предел
Такой же трюк с нумерацией не пройдет для бесконечных непериодических дробей (иррациональных чисел). Допустим такое множество счетное, то есть элементы этого множества можно пронумеровать натуральными числами. Тогда рассмотрим бесконечную десятичную дробь с нулевой целой частью, у которой первая цифра после запятой не равняется цифре на той же позиции у дроби с номером 1, вторая цифра не равняется цифре на второй позиции у дроби с номером 2 и т.д. Тогда полученная дробь будет заведомо отличаться от всех дробей хотя бы одной цифрой. Получается для нее не нашлось номера в нашей бесконечной нумерации! Примененная схема доказательства называется канторовским диагональным методом в честь придумавшего ее математика Георга Кантора.
Про бесконечные дроби
Не стоит делать ошибку, записывая в иррациональные числа все бесконечные дроби. Иррациональными являются только те числа, которые нельзя представить в виде несократимой дроби вида m/n. В десятичной системе счисления дроби 1/3 и 2/7 тоже окажутся бесконечными, однако их «бесконечность« обусловлена выбранной системой счисления. В системе счисления по основанию 21 эти дроби будут иметь конечное представление, а вот, например, дробь 1/2 окажется бесконечной (периодической).
Говорят, что множество бесконечных десятичных дробей имеет мощность континуум, которая обозначается символом ℵ1 (алеф-один). В дальнейшем нам понадобится следующее множество. Рассмотрим некоторый алфавит (конечное множество символов). Теперь представим множество всех конечных цепочек символов алфавита A*. Коль скоро алфавит конечен, и каждая цепочка конечна, то множество таких цепочек счетно (их можно пронумеровать натуральными числами).
На сколько велика бесконечность?
Допустим в наш алфавит вошли все придуманные на земле символы: русский алфавит, японские иероглифы, шумерская клинопись и т.д. Тогда в наше множество войдут все написанные когда-либо книги, все книги, которые будут написаны и все книги, которые никто не стал бы писать (например, хаотичные последовательности символов). Кроме того, представим книгу, толщиной в Солнечную систему и диагональю листа равной диаметру Млечного Пути, набранную 12-м шрифтом. В наше придуманное множество войдут все такие книги, отличающиеся хотя бы одним символов, и не только они, ведь вселенная бесконечна! Кто мешает представить себе книгу, размером в миллиарды световых лет? А все такие книги? Уже на этом этапе воображение может давать сбои, а ведь наше множество всего лишь счетное. Чтобы дополнить множество до континуума, нужно рассмотреть бесконечную книгу, по сравнению с которой, предыдущие книги — детские игрушки. Но и одной бесконечной книги нам не хватит, нужно рассмотреть все бесконечные книги.
Конструктивно оперировать континуальными бесконечностями невозможно. Даже работая со счетными множествами, мы не рассматриваем сами множества, а только говорим, что какой бы не был элемент N, всегда найдется элемент N+1. Если мы ставим себе прикладную задачу, появление в наших рассуждениях континуальной бесконечности должно служить нам «тревожной лампочкой»: осторожно, выход за пределы конструктивного.
Алгоритмы и вычислимость
Компьютер проводит свои вычисления, подчиняясь некоторой программе, которая воплощает собой конструктивную процедуру, или алгоритм. Не сложно догадаться, что алгоритм как раз и есть то правило, по которому вычисляется функция. Можно сказать, функция считается вычислимой, если для нее существует некоторый алгоритм.
Понятия алгоритм и вычислимая функция оказываются настолько заковыристыми, что некоторые составители учебной литературы не утруждают себя попытками разъяснить их суть. Дело в том, что определения алгоритма не существует, и кроме того, существовать не может, иначе пришлось бы выбросить на свалку целый раздел математики — теорию вычислимости. Попробуем разобраться более подробнее.
Частично-рекурсивные функции и тезис Черча
Все началось с того, что математик Давид Гильберт в 1900 году предложил список нерешенных на тот момент математических проблем. Позже выяснилось, что десятая проблема (проблема решения произвольного диофантового уравнения) оказалось неразрешимой, но для доказательства этого факта пришлось составить целую новую математическую теорию. Вопросами того, какие задачи можно конструктивно решить, и что такое конструктивное решение, занялись математики Курт Гедель, Стивен Клини, Алонсо Черч и Алан Тьюринг.
Курт Гедель наиболее известен тем, что сформулировал и доказал 2 теоремы о неполноте. Между прочим, сделал он это в возрасте всего лишь 24 лет.
Как выяснилось выше, континуальные бесконечности не всегда подходят под конструктивные рассуждения, поэтому Гедель и Клини предложили рассматривать только функции натурального аргумента (при необходимости любые функции над счетными множествами можно привести к «натуральным функция» путем замены элементов множеств их номерами). Изучая вычислимость таких функций, Гедель, Клини, Аккерман и другие математики пришли к так называемому классу частично-рекурсивных функций. В качестве определения этого класса рассматривается набор базовых, очень простых функций (константа, увеличение на единицу и проекция, которая сопоставляет функции многих аргументов один из ее аргументов) и операторов, позволяющих из функций строить новые функции (операторы композиции, примитивной рекурсии и минимизации). Слово «частичные» показывает, что эти функции определены лишь на некоторых числах. На остальных они не могут быть вычислены. Попытки расширить класс частично-рекурсивных функций ни к чему не привели, так как введение новых операций приводило к тому, что получалось множество функций, совпадающее с классом частично-рекурсивных. В дальнейшем Алонсо Черч отказался от попыток расширения этого класса, заявив, что, видимо:
Частично-рекурсивные функции соответствуют вычислимым функциям в любом разумном понимании вычислимости.
Это утверждение называют тезисом Черча. Стоит отметить, что тезис Черча не является теоремой или доказанным утверждением. Во-первых, не понятно, что такое «разумное понимание», во-вторых, превратив тезис Черча в доказанный факт, мы лишаем себя перспектив дальнейшего исследования вычислимости и механизмов вычислений. Никто, впрочем, не мешает попробовать определить такой набор операций, который был бы мощнее базиса для частично-рекурсивных функций. Только вот, до сих пор это никому не удавалось сделать.
Ученые долго не могли привести пример частично-рекурсивной функции, не являющейся примитивно-рекурсивной (без оператора минимизации). Наконец это удалось Вильгельму Аккерману. Предложенная функция Аккермана растет так быстро, что количество цифр в десятичной записи числа A(4,4) превосходит количество атомов во Вселенной.
Формальная теория алгоритмов во многом построена аналогично теории вычислимости. Считается, что алгоритм есть некое конструктивное преобразование входного слова (цепочки символов некоторого алфавита) в некоторое выходное слово. Опять же, здесь мы имеем с функциями вида A*->A*. Конечно, предложенное описание не подходит под определение алгоритма, так как неясно, что же такое «конструктивное преобразование». Хоть понятия алгоритма и вычислимой функции близки, не стоит их смешивать. Для одного и того же алгоритма может быть предъявлено сколько угодно его записей на каком-нибудь формальном языке, но соответствующая вычислимая функция всегда одна. Один из основателей формальной теории алгоритмов, Алан Тьюринг, предложил формальную модель автомата, известного как машина Тьюринга. Тезис Тьюринга гласит:
Каково бы не было разумное понимание алгоритма, любой алгоритм, соответствующий такому пониманию, может быть реализован на машине Тьюринга.
Любые попытки построить более мощные автомат заканчивались неудачей: для каждого такого автомата (машина Поста, нормальные алгоритмы Маркова, автоматы с регистрами и несколькими лентами) удавалось построить аналогичную машину Тьюринга. Некоторые ученые объединяют тезис Черча и тезис Тьюринга в тезис Черча-Тьюринга, так как они весьма близки по духу.
С помощью такого незамысловатого автомата можно формализовать любой алгоритм.
Таким образом, определив понятие алгоритма, мы будем вынуждены забыть о тезисе Черча-Тьюринга, и отказаться от целой математической теории, богатой содержанием и подарившую нам множество практических результатов.
Свойства алгоритмов
Мы выяснили, почему у алгоритма не может быть конкретного определения. Однако можно определить свойства, которыми должен обладать каждый алгоритм. К сожалению, в литературе часто смешивают обязательные и необязательный свойств. Разберемся подробнее.
Обязательные свойства
Начнем с обязательных свойств. Алгоритм можно записать в виде конечного текста из символов конечного алфавита. Действительно, бесконечный текст мы не можем записать чисто технически, а раз алгоритмы имеют отношение к конструктивной деятельности, бесконечными они быть не могут. Возможность представить алгоритм в виде конечного текста можно назвать свойством объективности и конечности.
Еще одно достаточно очевидное свойство любого алгоритма — его дискретность. Независимо от исполнителя, исполнение алгоритма представляет собой дискретный процесс, при рассмотрение распадающийся на элементарные действия. Понимать дискретность можно и в том смысле, что любая информация, над которой работает алгоритм может быть представлена в виде текста.
Третье фундаментальное свойство алгоритмов называется детерминированностью. Оно заключается в том, что следовать предписанной процедуре можно только одним способом. Единственное, что может повлиять на ход выполнения — это исходные данные, однако при одних и тех же исходных данных, алгоритм всегда выдает один и тот же результат.
Эти три свойства присущи всем алгоритмам. Если нарушено хотя бы одно из них, перед нами уже не алгоритм. С натяжкой к обязательным свойствам можно добавить понятность для исполнителя, хотя это уже на грани фола. По большей части. это относится не к самому алгоритму, а к его записи.
«Винегрет» из свойств из того же учебника по информатике.
Необязательные свойства
Наряду с обязательными свойствами, алгоритм может обладать некоторыми частными свойствами, которые вовсе не обязательны. Начнем с массовости. Конечно, хочется, чтобы алгоритмы решали классы задач в зависимости от входных данных. Однако существуют алгоритмы, которые вообще не зависят от входных данных, например всем известный вывод на экран «Hello world». Как среди вычислимых функций существуют константные, так и среди алгоритмов существуют генераторы единственного результата.
Теперь рассмотрим широко распространенное убеждение, что алгоритмы должны обладать свойством правильности и завершаемости. Начнем с правильности. Такое свойство попросту невозможно формализовать, так как отсутствуют критерии этой правильности. Наверняка, многие из вас сталкивались с ситуацией, когда программист считает программу правильной, а заказчик нет. С завершаемостью дела обстоят интереснее. Рассмотрим термин «применимость« — алгоритм называется применимым к слову, если, получив на вход это слово, он завершается за конечное число шагов. Самое интересное то, что проблема применимости является алгоритмически неразрешимой, то есть невозможно составить алгоритм, которые определял бы по записи алгоритма и входному слову, завершится ли он за конечное число шагов. Никто не мешает вам составить программу, состоящую только из одного бесконечного цикла. И эта программа все еще будет алгоритмом.
Про зависающие программы
Программы, которые не могут зациклиться, на самом деле входят в класс примитивно-рекурсивных — подмножество частично-рекурсивного класса. Отличает их отсутствия оператора минимизации. Он то и вносит пикантности. Если вы используете «неарифметический цикл» while или рекурсию, для которых нельзя заранее определить, сколько раз они выполняться, то ваша программа сразу переходит из класса примитивно-рекурсивных в класс частично-рекурсивных.
Теперь перейдем к пресловутой последовательности шагов. Дело в том, что алгоритм может быть представлен в любой из имеющихся формальных систем (частично-рекурсивные функции, машина Тьюринга, лямбда-исчисление и т.д.). Воплощение алгоритма в виде компьютерной программы далеко не всегда будет описанием последовательности шагов. Здесь все зависит от парадигмы программирования. В императивной парадигме программисты действительно оперируют последовательностью действий. Однако существуют и другие парадигмы, такие как функциональная (привет Haskell программистам), где нету никаких действий, а лишь функции в сугубо математическом смысле, или чистая объектно-ориентированная, которая основана не на «последовательности действий», а на обмене сообщениями между абстрактными объектами.
Заключение
Иногда мир устроен несколько сложнее, чем хотелось бы. Существующие формализмы в теории алгоритмов не более чем абстрактные математические системы, наподобие геометрии Евклида или теории вероятности, тогда как понятие вычислимости, возможно, находится вне математики и является свойством нашей Вселенной наряду со скоростью света и законом всемирного тяготения. И хотя, скорее всего, нам так и не удастся ответить на вопрос, что такое алгоритмы и вычислимость, попытки найти ответ на этот вопрос оказались более ценными, чем возможный однозначный ответ.
Материал данной статьи во многом опирается на 1-ый том «Программирование: введение в профессию» А. В. Столярова. Тем, кто хочет подробнее изучить вопросы, связанные с алгоритмами и теорией вычислимости, кроме этой книги, советую Босс В «От Диофанта до Тьюринга» и трехтомник А. Шеня по математической логике и теории алгоритмов.
Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. За последние годы UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.
Алгоритмы
Алгоритмы. Разработка алгоритма решения задачи
Исключительно важно использовать язык блок-схем при разработке алгоритма решения задачи. Решение одной и той же задачи может быть реализовано с помощью различных алгоритмов, отличающихся друг от друга как по времени счета и объему вычислений, так и по своей сложности. Запись этих алгоритмов с помощью блок-схем позволяет сравнивать их, выбирать наилучший алгоритм, упрощать, находить и устранять ошибки.
Отказ от языка блок-схем при разработке алгоритма и разработка алгоритма сразу на языке программирования приводит к значительным потерям времени, к выбору неоптимального алгоритма. Поэтому необходимо изначально разработать алгоритм решения задачи на языке блок-схем, после чего алгоритм перевести на язык программирования.
При разработке алгоритма сложной задачи используется метод пошаговой детализации. На первом шаге продумывается общая структура алгоритма без детальной проработки отдельных его частей. Блоки, требующие детализации, обводятся пунктирной линией и на последующих шагах разработки алгоритма продумываются и детализируются.
В процессе разработки алгоритма решения задачи можно выделить следующие этапы:
Базовые алгоритмические конструкции
В теории программирования доказано, что для записи любого, сколь угодно сложного алгоритма достаточно трех базовых структур:
Линейные алгоритмы
Линейный алгоритм образуется из последовательности действий, следующих одно за другим. Например, для определения площади прямоугольника необходимо сначала задать длину первой стороны, затем задать длину второй стороны, а уже затем по формуле вычислить его площадь.
Пример
ЗАДАЧА. Разработать алгоритм вычисления гипотенузы прямоугольного треугольника по известным значениям длин его катетов a и b.
На примере данной задачи рассмотрим все три этапа разработки алгоритма решения задачи:
Этап 1. Математическое описание решения задачи.
Математическим решением задачи является известная формула:
,
где с-длина гипотенузы, a, b – длины катетов.
Этап 2. Определение входных и выходных данных.
Входными данными являются значения катетов a и b. Выходными данными является длина гипотенузы – c.
Этап 3. Разработка алгоритма решения задачи.
На данной схеме цифрами указаны номера элементов алгоритма, которые соответствуют номерам пунктов словесного описания алгоритма.
Разветвляющиеся алгоритмы
Алгоритм ветвления содержит условие, в зависимости от которого выполняется та или иная последовательность действий.
Пример
ЗАДАЧА. Разработать алгоритм вычисления наибольшего числа из двух чисел x и y.
Этап 1. Математическое описание решения задачи.
В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма, которые соответствуют номерам шагов словесного описания алгоритма
В рассматриваемом алгоритме (рис.3) имеются три ветви решения задачи:
Выбор ветви определяется значениями x и y в элементах 3 и 5, которые являются условиями, определяющими порядок выполнения элементов алгоритма. Если условие (равенство), записанное внутри символа «решение», выполняется при введенных значениях x и y, то следующими выполняется элементы 4 и 8. Это следует из того, что они соединены линией с надписью «да» и направление (последовательность) вычислений обозначена стрелочкой.
Если условие в элементе 3 не выполняется, то следующим выполняется элемент 5. Он соединен с элементом 3 линией с надписью «нет». Если условие, записанное в элементе 5, выполняется, то выполняется элементы 6 и 8, в противном случае выполняются элементы 7 и 8.
Циклические алгоритмы
Циклический алгоритм – определяет повторение некоторой части действий (операций), пока не будет нарушено условие, выполнение которого проверяется в начале цикла. Совокупность операций, выполняемых многократно, называется телом цикла.
Алгоритмы, отдельные действия в которых многократно повторяются, называются циклическими алгоритмами, Совокупность действий, связанную с повторениями, называют циклом.
При разработке алгоритма циклической структуры выделяют следующие понятия:
Цикл организован по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла и условия продолжения цикла.
В подготовку цикла входят действия, связанные с заданием исходных значений для параметров цикла:
В тело цикла входят:
В условии продолжения цикла определяется допустимость выполнения повторяющихся действий. Если параметр цикла равен или превысил конечное значение цикла, то выполнение цикла должно быть прекращено.
Пример
ЗАДАЧА. Разработать алгоритм вычисления суммы натуральных чисел от 1 до 100.
Этап 1. Математическое описание решения задачи.
Обозначим сумму натуральных чисел через S. Тогда формула вычисления суммы натуральных чисел от 1 до 100 может быть записана так:
где Xi – натуральное число X c номером i, который изменяется от 1 до n, n=100 – количество натуральных чисел.
Этап 2. Определение входных и выходных данных.
Входными данными являются натуральные числа: 1, 2, 3, 4, 5, …, 98, 99, 100.
Выходные данные – значение суммы членов последовательности натуральных чисел.
Параметр цикла – величина, определяющая количество повторений цикла. В нашем случае i – номер натурального числа.
Подготовка цикла заключается в задании начального и конечного значений параметра цикла.
Для корректного суммирования необходимо предварительно задать начальное значение суммы, равное 0.
Тело цикла. В теле цикла будет выполняться накопление значения суммы чисел, а также вычисляться следующее значение параметра цикла по формулам:
Условие продолжения цикла: цикл должен повторяться до тех пор, пока не будет добавлен последний член последовательности натуральных чисел, т.е. пока параметр цикла будет меньше или равен конечному значению параметра цикла.
Этап 3. Разработка алгоритма решения задачи.
Введем обозначения: S – сумма последовательности, i – значение натурального числа.
Начальное значение цикла i=1, конечное значение цикла i =100, шаг цикла 1.
© 2015-2021 Университетский центр компьютерного обучения «Турбо»
г. Майкоп, ул. Ветеранов, 228, тел.: 8 (8772) 57-11-00, 8(918)213-95-94