Что такое наибольшее натуральное число

Натуральные числа

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

What is the highest natural number?

There is no largest natural number. The next natural number can be found by adding 1 to the current natural number, producing numbers that go on “forever”. There is no natural number that is infinite in size. Any natural number can be reached by adding 1 enough times to the smallest natural number.

Why is 0 a natural number?

Is 0 a Natural Number? Zero does not have a positive or negative value. Since all the natural numbers are positive integers, hence we cannot say zero is a natural number. Although zero is called a whole number.

Which is smallest natural No?

The smallest natural number is 1. It is not possible to write the greatest natural number because natural numbers go up to infinity.

What is the largest whole number?

What are Whole Numbers?

Is 0 smallest natural number?

(a) Zero is the smallest natural number.

It is a whole number.

What is the first number 0 or 1?

In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by 2, although by other definitions 1 is the second natural number, following 0.

Is zero a number Yes or no?

0 (zero) is a number, and the numerical digit used to represent that number in numerals. It fulfills a central role in mathematics as the additive identity of the integers, real numbers, and many other algebraic structures. As a digit, 0 is used as a placeholder in place value systems.

What is the smallest number?

0 is the smallest whole number.

What’s the smallest whole number?

The smallest whole number is “0” (ZERO).

What is the smallest prime number?

The first 1000 prime numbers

What is a greatest number?

The greatest number that is a factor of two (or more) other numbers. When we find all the factors of two or more numbers, and some factors are the same (“common”), then the largest of those common factors is the Greatest Common Factor.

What are the first 5 whole numbers?

As the first five whole numbers are 0, 1, 2, 3, and 4.

What are all the whole numbers from 1 to 100?

The first 100 whole numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, …

Is 21 a natural number?

21 (twenty-one) is the natural number following 20 and preceding 22.

21 (number)

← 20 21 22 →
Roman numeralXXI
Binary101012
Ternary2103
Octal258

Which is the smallest one digit number 0 or 1?

So zero (0) is the smallest one-digit whole number and one(1) is the smallest one-digit natural number.

Is 0 a real number?

Источник

Числа. Натуральные числа.

Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.

Всякое натуральное число легко записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000. – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Обозначение натуральных чисел: Множество натуральных чисел обозначают символом N.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Сравнение натуральных чисел.

Таблица разрядов и классов чисел.

1-й разряд единицы тысяч

2-й разряд десятки тысяч

3-й разряд сотни тысяч

1-й разряд единицы миллионов

2-й разряд десятки миллионов

3-й разряд сотни миллионов

4-й класс миллиарды

1-й разряд единицы миллиардов

2-й разряд десятки миллиардов

3-й разряд сотни миллиардов

Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.

Основные свойства натуральных чисел.

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Действия над натуральными числами.

1. Сложение натуральных чисел результат: сумма натуральных чисел.

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Формулы для сложения:

В основном, сложение натуральных чисел выполняется « столбиком ».

2. Вычитание натуральных чисел – операция, обратная сложению: разница натуральных чисел.

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Формулы для вычитания:

Вычитание натуральных чисел удобно производить « столбиком ».

3. Умножение натуральных чисел : произведение натуральных чисел.

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Формулы для умножения:

(а + b) ∙ с= а ∙ с + b ∙ с

(а – b) ∙ с = а ∙ с – b ∙ с

4. Деление натуральных чисел – операция, обратная операции умножения.

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Что такое наибольшее натуральное число. Смотреть фото Что такое наибольшее натуральное число. Смотреть картинку Что такое наибольшее натуральное число. Картинка про Что такое наибольшее натуральное число. Фото Что такое наибольшее натуральное число

Формулы для деления:

Числовые выражения и числовые равенства.

Запись, где числа соединяются знаками действий, является числовым выражением.

Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами. У равенства есть левая и правая части.

Порядок выполнения арифметических действий.

Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.

Когда в выражении есть скобки – сначала выполняют действия в скобках.

Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

Источник

Натуральные числа

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
783502197048
Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
783502197048

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Любое натуральное число можно записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Источник

Математика для блондинок

Страницы

вторник, 16 февраля 2010 г.

Самое большое натуральное число

Самого большого натурального числа нет и быть не может. Математики в таком случае говорят, что натуральный ряд чисел бесконечен. Так даже в Википедии написано.

Да-да, не удивляйтесь, самая крутая поисковая машина Интернета Google названа в честь числа Googol! Оно и не удивительно, ведь создали поисковую машину в далеком-предалеком 1998 году два студента Лэрри Пейдж и Сергей Брин. Представляете, 12 (двенадцать!) лет назад не было Гугла! Как люди Интернетом пользовались?! Но мы немного отвлеклись.

И так, мы считаем, что самым большим натуральным числом является число Гугол. Что нам мешает дописать к этому самому большому числу ещё один, сто первый, нолик? Берем в руки ручку, оглядываемся по сторонам, чтоб никто не видел, и дописываем нолик. Наше самое большое натуральное число увеличилось в десять раз и стало еще больше! Круто! Дописываем еще нолик, а потом еще, и еще. Через время нолики писать уже некуда, а они (нолики) все никак не кончаются. Достаем следующий рулон обоев, приготовленных для ремонта прихожей, и продолжаем писать. На середине рулона заканчивается паста, а самого большого натурального числа мы так и не написали. Если скупить все шариковые ручки в киоске и все обои в строительном магазине, это сколько же ноликов можно дописать? Это будет самое большое натуральное число? Нет, строительных магизинов с обоями очень много, можно еще писать и писать. Забавно, конечно, потратить всю свою жизнь и все папикины деньги на писанину одного числа, но есть развлечения гораздо интереснее.

Давайте теперь посмотрим на проблему самого большого натурального числа с другой стороны. Если ребенок умеет считать только до пяти, то для такого ребенка число «пять» будет самым большим в мире числом. Но мы то хорошо знаем, что есть еще очень много чисел, которые больше числа «пять». Просто мы математику знаем гораздо лучше ребенка. Со временем ребенок сам будет смеяться над своим «самым большим в мире числом».

Нет никаких оснований не верить математикам, утверждающим, что ряд натуральных чисел бесконечен и самого большого натурального числа быть не может.

Пытался найти конструкцию самого большого числа, но даже всезнающая Википедия молчит на этот счет, а поиск по Интернету выдает разный мусор. Поэтому представляю свой собственный вариант САМОГО БОЛЬШОГО ЧИСЛА В МИРЕ. Это будет выглядеть как бесконечность в степени бесконечность, в степени бесконечность, в степени бесконечность. и так до бесконечности. Вместо значка бесконечности можете подставлять любое натуральное число, кроме единицы. Чем большее число вы подставите, тем круче будет взлет к недостижимому. Эта математическая конструкция называется бесконечная тетрация бесконечности:

Вот это и есть САМОЕ БОЛЬШОЕ ЧИСЛО В МАТЕМАТИКЕ, точнее, его математическая конструкция. Подобный принцип поиска самого большого числа гораздо эффективнее тупого дописывания ноликов.

Кстати, маленькие числята, у которых выросло совсем мало ноликов, имеют довольно громкие имена собственные. Загляните на страничку «Единица и двадцать один ноль», если хотите познакомиться с ними поближе. Каждая блондинка обязана знать, чем миллионер отличается от миллиардера. Иначе как вы будете выбирать себе мужа?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *