Что такое мтз в электрике
Все потребители электроэнергии подключаются к генераторному концу силовым выключателем. Когда нагрузка соответствует номинальной величине или меньше ее, то причины для отключения отсутствуют, а токовые защиты сканируют схему в постоянном режиме.
Выключатель может отключаться от токовых защит, когда:
1. величина нагрузки в результате возникновения короткого замыкания резко превысила номинальное значение и создались токи КЗ, способные сжечь оборудование. Отключение такой аварии необходимо выполнять максимально быстро;
2. за счет подключения дополнительных потребителей (либо по другим причинам) в схеме возникла перегрузка — ток незначительно превысил уставку. В результате происходит постепенный нагрев оборудования и токоведущих частей, когда нарушается баланс между отводом тепла в атмосферу и тепловым действием тока. В этом случае целесообразно отключать выключатель через небольшой интервал времени, создающий задержку в питаниия схемы, в течение которой излишние нагрузки могут самоустраниться;
3. направление тока через силовой выключатель резко изменилось на противоположное — сдвинулась фаза тока.
Под эти три случая аварийных ситуаций созданы следующий виды токовых защит:
Для работы токовых защит создаются измерительные комплексы, состоящие из:
измерительных трансформаторов тока (ТТ), преобразующих первичный ток во вторичное значение с заданным классом метрологической погрешности;
реле тока, настраиваемые на уставку срабатывания;
схема коммутации, передающая вторичный ток от ТТ к реле с минимально допустимыми потерями.
Токовая отсечка (ТО)
Ее назначение: максимально быстрая ликвидация коротких замыканий, возникающих в начале (минимум порядка 20% протяженности) рабочей зоны, хотя она в отдельных случаях может применяться и для всей линии полностью.
В комплект токовой отсечки входят:
измерительный орган из реле тока, выставленного на срабатывание минимально возможной нагрузки при возникновении металлического замыкания в конце защищаемой зоны (или чувствительности);
промежуточное реле, на обмотку которого подается напряжение от сработавшего контакта измерительного органа. Выходной контакт промежуточного органа воздействует непосредственно на соленоид отключения силового выключателя, отключает его.
Как правило, этих двух реле бывает достаточно. В качестве исключения в состав токовой отсечки может быть введено реле времени, которое включается в логическую схему между измерительным и исполнительным органами для создания временно́й задержки срабатывания нескольких защит в целях их селективности.
Для обеспечения контроля действия цепей управления и отключения в схему вводятся цепи сигнализации на основе указательных блинкеров Кн, которые помогают оперативному персоналу анализировать состояние схемы и работу защит.
Технической характеристикой токовой отсечки является коэффициент чувствительности, определяющий отношение токов трёхфазного КЗ в начале линии к фактическому срабатыванию отсечки. Для токовой отсечки он выбирается ≥1,2.
Токовая максимальная защита (МТЗ)
Назначение: защита объектов от токов, превышающих номинальные величины с учетом коэффициентов:
надежности срабатывания и возврата реле;
Такая отстройка создается для устранения возможностей ложных срабатываний при номинальном режиме.
В комплект МТЗ входят те же компоненты, что и в токовую отсечку, но они обязательно дополняются реле времени, создающим задержку на срабатывание выключателя в целях обеспечения ступеней селективности.
Технической характеристикой МТЗ является коэффициент чувствительности, определяющий отношение токов междуфазного КЗ в конце линии к фактическому срабатыванию максимальной защиты. Для МТЗ он выбирается ≥1,5 для дальнего резервирования и ≥1,2 — внутри собственной зоны.
К токовым защитам в РЗиА также относится дифференциальная защита.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Максимальная токовая защита
МТЗ (расшифровка – максимальная токовая защита) – распространенная техника предохранения электросетей от последствий краткосрочных перегрузок и замыканий. Она может быть задействована в разветвленных сетях, асинхронных двигателях. Электрику нужно знать особенности механизма и его отличия от других предохранительных методов.
Принцип действия
МТЗ – это разновидность защитного механизма электросети с использованием реле, применяемая при угрозе короткого замыкания на некотором отрезке электроцепи.
Принцип действия максимальной токовой защиты достаточно схож с таковым у механизма отсечки. Если при использовании последней ток вырубается сразу же, то при применении МТЗ выключение происходит по истечении некоторого временного отрезка. Он называется выдержкой времени. То, какое значение он примет, определяется близостью места, где происходит инцидент, к поставщику питания. Чем дальше располагается отрезок, тем меньше число. Значение, на которое показатель близлежащего участка отличается от такового для удаленного (ступень селективности), описывает период, по истечении которого защита включается на ближнем участке (отключая и дальний), если она не активизировалась на дальнем, на котором случился инцидент КЗ.
Важно! Показатель ступени надо делать небольшим, чтобы система успела включиться до причинения инцидентом серьезных повреждений электросети.
Отличия от токовой отсечки
В МТЗ используются реле времени, позволяющие игнорировать скачки напряжения, что невозможно при отсечке (которая срабатывает не только при эпизоде короткого замыкания, но и при повышении тока любой другой природы и продолжительности). Кроме того, использование механизма отсечки требует задействования оператора для возобновления нормального функционирования системы. Реле сами приходят в первоначальное состояние, когда причина размыкания будет ликвидирована.
Разновидности максимально-токовых защит
Ориентируясь на условия работы в конкретной электросети, можно выбрать один из четырех типов системы.
МТЗ с независимой от тока выдержкой времени
Параметр задержки здесь неизменен, период активации зависит только от ступени селективности: на каждом последующем отрезке время увеличивается на эту величину.
МТЗ с зависимой от тока выдержкой времени
Используется расчет выдержки по нелинейной формуле. Параметр зависит от величины тока на обмотках. Используется в системах, где предохранение от избыточных нагрузок имеет особенную значимость для безопасности.
МТЗ с ограниченно-зависимой от тока выдержкой времени
Здесь совмещены две компоненты: не зависящая от тока часть и зависящая, причем у последней время-токовая характеристика имеет вид гиперболы. Чем больше перегрузка, тем более пологий вид имеет графическое представление. Такая установка используется в высокомощных электромоторах.
МТЗ с пуском (блокировкой) от реле минимального напряжения
Здесь инициатором размыкания контактов становится разность потенциалов. Уставка привязывается к падению напряжения ниже определенной границы.
Задание уставок
Защита МТЗ определяется тем, насколько правильно выбрана уставка – величина тока, при достижении которой включается функция. При определении ее значения учитывают назначение сети (например, при самостоятельном запуске электродвигателя после временного выключения питания показатель может превышать номинальный, тогда МТЗ не должна выключать его) и минимальный ток замыкания в ней. При зависимой (полностью или ограниченно) время-токовой характеристике ориентируются на значение, когда реле перегрузки вот-вот сработает, а время задают, ориентируясь на независимую часть.
Важно! Иногда блокировка в защитной системе ставится с ориентацией на напряжение, тогда параметром срабатывания, задаваемым в качестве уставки, становится оно.
Реализация
В основном, систему реализуют с применением устройств, совмещающих функции пуска и задержки времени, либо с помощью сочетания нескольких разных реле, каждое из которых выполняет одну из этих функций. Сейчас все чаще применяются микропроцессоры, реализующие, помимо обозреваемого, еще ряд процессов релейной защиты.
Схемы защиты МТЗ
Применяется несколько вариантов конструкций, различающихся устройством.
Трехфазная схема защиты МТЗ на постоянном оперативном токе
В главный блок входят два реле: времени и пуска. Используются также указательное реле и еще одно добавочное, ставящееся тогда, когда временное реле неспособно замкнуть цепочку катушки выключения.
Двухфазные схемы защиты МТЗ на постоянном оперативном токе
Они применяются, когда нужно, чтобы система включалась лишь при замыкании между фазами. Существуют схемы с одиночным реле и с парой.
Двухрелейная схема
Ее плюс – реагирование на любые межфазовые замыкания. Минус – меньшая восприимчивость при двухфазных замыканиях за трансформатором. Повысить ее вдвое можно, поставив третье реле. Схема в основном используется для конструкций с изолированной нейтралью – случающиеся в них замыкания происходят только между фазами. Возможно применение при глухом заземлении, но тогда для предотвращения однофазного замыкания ставится добавочная конструкция, срабатывающая при токе нулевой последовательности.
Одно-релейная схема МТЗ
Плюс схемы – легкость конструирования. Минусы – наименее высокая чувствительность, несрабатывание при некоторых типах замыканий с двумя фазами.
Выбор тока срабатывания защиты МТЗ
Выбор осуществляется с расчетом, чтобы установка уверенно срабатывала при повреждающих воздействиях, но не проявляла активности при недолгих толчках (к примеру, когда запускается электродвигатель) или высоком токе нагрузки. Дифференциация последнего от ситуации, когда должна активизироваться защита, является основной задачей. Также установка не должна быть излишне восприимчивой, иначе цепь будет отключаться, когда это не нужно.
Должны соблюдаться условия:
Чувствительность защиты МТЗ
Значение коэффициента, вариабельно в зависимости от вида защиты. В главной зоне коэффициент обычно равен 1,5, в резервной – его часто берут равным 1,2.
Выдержка времени защиты МТЗ
Для ее нахождения проводится следующий расчет. Узнается время работы первой из защит при замыкании:
Вторая защита не сработает при условии, что время выдержки для нее будет больше Т1, т.е. tв2>T1.
Таким образом, ступень будет равна Т=tв2-tв1=tп1+tо1+tп2+tз (для независимой время-токовой характеристики).
Выбор времени действия защит МТЗ
Используется формула:
На картинке выше разница между временем t2 и t1, t3 и t2 и любыми другими соседними идентична.
Примеры и описание схем МТЗ
Для защиты разных компонентов сетей с питанием, поступающим с одной стороны, используются схемы различных типов.
Однорелейная на оперативном токе
Применяется реле пуска, реагирующее на изменения разности фазовых потенциалов. Плюсами являются ее простота и малый расход ресурсов – нужны только одно реле и два кабеля. Минусы – невысокая восприимчивость и то, что, если отказал какой-то элемент, фрагмент линии теряет предохранение. Схема подойдет для сетей с напряжением до 10 кВ.
Двухрелейная на оперативном токе
Эта схема, как и предыдущая, защищает электролинии от последствий короткого замыкания между фазами. Цепи в ней формируют усеченную звезду. Она надежна, но, как и предыдущая, не очень чувствительна.
Трехрелейная
Это наиболее надежная и единственная подходящая для конструкций с заземленной наглухо нейтралью схема.
Хотя отсечка тока эффективнее предотвращает короткие замыкания, применение обозреваемого метода больше подходит для предохранения разветвленных электролиний. Для максимально эффективной работы необходимо правильно задать в схеме уставки.
Видео
Максимальная токовая защита: принцип действия, виды, примеры схем
В силу разных причин аварии в электросетях случаются довольно часто. При коротком замыкании губительно действует на все электроприборы сверхток. Если не предпринять защитных мер, то последствием от неуправляемого увеличения тока может стать не только повреждение электроустановок на участке от места аварии до источника питания, но и выведение из строя всей энергосистемы. Во избежание негативных последствий, вызванных авариями, применяются разные схемы электрозащиты:
Из перечисленных видов защиты самой распространённой является МТЗ. Этот простой и надёжный способ предотвращения опасных перегрузок линий нашёл широкое повсеместное применение благодаря обеспечению селективности, то есть, обладанию способностью избирательно реагировать на различные ситуации.
Устройство и принцип действия
Конструктивно МТЗ состоят из двух важных узлов: автоматического выключателя и реле времени. Они могут быть объединены в одной конструкции либо размещаться отдельными блоками.
Отличия от токовой отсечки
Из всех видов защиты по надёжности лидирует токовая отсечка. Примером может служить защита бытовой электросети устройствами с применением плавких предохранителей или пакетных автоматов. Метод токовых отсечек гарантирует обесточивания защищаемой цепи в аварийных ситуациях. Но для возобновления подачи электроэнергии необходимо устранить причину отсечения и заменить предохранитель, либо включить автомат.
Недостатком такой системы является то, что отключение может происходить не только вследствие КЗ, но и в результате даже кратковременного превышения параметров по току нагрузки. Кроме того, требуется участие человека для восстановления защиты. Эти недостатки не критичны в бытовой сети, но они неприемлемы при защите разветвлённых линий электропередач.
Благодаря тому, что в конструкциях МТЗ предусмотрены реле времени, задерживающие срабатывание механизмов отсечения, они кратковременно игнорируют перепады напряжений. Кроме того, токовые реле сконструированы таким образом, что они возвращаются в исходное положение после ликвидации причины, вызвавшей размыкание контактов.
Именно эти два фактора кардинально отличают МТЗ от простых токовых отсечек, со всеми их недостатками.
Принцип действия МТЗ
Между узлом задержки и токовым реле существует зависимая связь, благодаря которой отключение происходит не на начальной стадии возрастания тока, а спустя некоторое время после возникновения нештатной ситуации. Данный промежуток времени слишком короткий для того, чтобы величина тока достигла критического уровня, способного навредить защищаемой цепи. Но этого хватает для предотвращения возможных ложных срабатываний защитных устройств.
Принцип действия систем МТЗ напоминает защиту токовой отсечки. Но разница в том, что токовая отсечка мгновенно разрывает цепь, а МТЗ делает это спустя некоторое, наперёд заданное время. Этот промежуток, от момента аварийного возрастания тока до его отсечения, называется выдержкой времени. В зависимости от целей и характера защиты каждая отдельная ступень времени задаётся на основании расчётов.
Наименьшая выдержка времени задаётся на самых удалённых участках линий. По мере приближения МТЗ к источнику тока, временные задержки увеличиваются. Эти величины определяются временем, необходимым для срабатывания защиты и именуются ступенями селективности. Сети, построенные по указанному принципу, образуют зоны действия ступеней селективности.
Такой подход обеспечивает защиту поврежденного участка, но не отключает линию полностью, так как ступени селективности увеличиваются по мере удаления МТЗ от места аварии. Разница величин ступеней позволяет защитным устройствам, находящимся на смежных участках, оставаться в состоянии ожидания до момента восстановления параметров тока. Так как напряжение приходит в норму практически сразу после отсечения зоны с коротким замыканием, то авария не влияет на работу смежных участков.
Примеры использования защиты
Задержка времени очень полезна при пуске двигателей. Дело в том, что на старте в цепях обмоток наблюдается значительное увеличение пусковых токов, которое системы защиты могут воспринимать как аварийную ситуацию. Благодаря небольшой задержке времени МТЗ игнорирует изменение параметров сети, возникающие при пуске или самозапуске электродвигателей. За короткое время показатели тока приближаются к норме и причина для аварийного отключения устраняется. Таким образом, предотвращается ложное срабатывание.
Пример подключения МТЗ электродвигателя иллюстрирует схема на рисунке 1. На этой схеме реле времени обеспечивает уверенный пуск электромотора до момента реагирования токового реле.
Рисунок 1. МТЗ с выдержкой времени
Аналогично работает задержка времени при кратковременных перегрузках в защищаемой сети, которые не связаны с аварийными КЗ. Отсечка действует лишь в тех случаях, когда на защищаемой линии возникает значительное превышение номинальных значений, которое по времени превосходит величину выдержки.
Для надёжности защиты на практике часто используют схемы двухступенчатой и даже трёхступенчатой защиты участков цепей. Стандартная трёхступенчатая защитная характеристика выглядит следующим образом (Рис. 2):
Рис. 2. Карта селективности стандартной трёхступенчатой защиты
На абсциссе отмечено значения тока, а на оси ординат время задержки в секундах. Кривая в виде гиперболы отображает снижение времени защиты от возрастания перегрузок. При достижении тока отметки 170 А включается отсчёт времени МТЗ. Задержка времени составляет 0,2 с, после чего на отметке 200 А происходит отключение. То есть, разрыв цепи происходит в случае отказа защиты остальных устройств.
Расчет тока срабатывания МТЗ
Стабильность работы и надёжность функционирования максимально-токовой защиты зависит от настройки параметров по току срабатывания. Расчёты должны обеспечивать гарантированное срабатывание реле при авариях, однако на её работу не должны влиять параметры тока нагрузки, а также кратковременные всплески, возникающие в режиме запуска двигателей.
Следует помнить, что слишком чувствительные реле могут вызывать ложные срабатывания. С другой стороны, заниженные параметры срабатывания не могут гарантировать безопасности стабильной работы электроприборов. Поэтому при расчетах уставок необходимо выбирать золотую середину.
Существует формула для расчёта среднего значения тока, на который реагирует электромагнитное реле [ 1 ]:
где Iс.з. – минимальный первичный ток, на который должна реагировать защита, а Iн. макс. – предельное значение тока нагрузки.
Ток возврата реле подбирается таким образом, чтобы его хватило повторного замыкания контактов в отработавшем устройстве. Для его определения используем формулу:
Здесь Iвз– ток возврата, kн. – коэффициент надёжности, kз – коэффициент самозапуска, Iраб. макс. – величина максимального рабочего тока.
Для того чтобы токи возврата и срабатывания максимально приблизить, вводится коэффициент возврата, рассчитываемый по формуле:
kв = Iвз / Iс.з. с учётом которого Iс.з. = kн.×kз.×Iраб. макс. / kв
В идеальном случае kв = 1, но на практике этот коэффициент всегда меньший за единицу. Чувствительность защиты тем выше, чем выше значение kв.. Отсюда вывод: для повышения чувствительности необходимо подобрать kв в диапазоне, стремящимся к 1.
Виды максимально-токовых защит
В электрических сетях используют 4 разновидности МТЗ. Их применение диктуется условиями, которые требуется создать для уверенной работы электрооборудования.
МТЗ с независимой от тока выдержкой времени
В таких устройствах выдержка времени не меняется. Для задания уставок периода, достаточного для активации реле с независимыми характеристиками, учитывают ступени селективности. Каждая последующая выдержка (в сторону источника тока) увеличивается от предыдущей на промежуток времени, соответствующий ступени селективности. То есть, при расчётах необходимо соблюдать условия селективности.
МТЗ с зависимой от тока выдержкой времени
В данной защите процесс задания уставок МТЗ требует более сложных расчётов. Зависимые характеристики, в случаях с индукционными реле, выбирают по стандарту МЭК: tсз = A / (k n — 1), где A, n – коэффициенты чувствительности, k = Iраб / Iср — кратность тока.
Из формулы следует, что выдержка времени уже не является константой. Она зависит от нескольких параметров, в т. ч. и от силы тока, попадающего на обмотки реле, причём эта зависимость обратная. Однако выдержка не линейная, её характеристика приближается к гиперболе (рис. 3). Такие МТЗ используют для защиты от опасных перегрузок.
МТЗ с ограниченно-зависимой от тока выдержкой времени
В устройствах данного вида релейных защит совмещено две ступени защиты: зависимая часть с гиперболической характеристикой и независимая. Примечательно, что времятоковая характеристика независимой части является прямой, плавно сопряжённой с гиперболой. При малых кратностях критичных токов характеристика зависимого периода более крутая, а при больших – пологая кривая (применяется для защиты электромоторов большой мощности).
МТЗ с пуском (блокировкой) от реле минимального напряжения
В данном виде дифференциальной защиты применена комбинация МТЗ с использованием влияния минимального напряжения. В электромеханическом реле произойдёт размыкание контактов только тогда, когда возрастание тока в сети приведёт к падению разницы потенциалов. Если падение превысит нижнюю границу напряжения уставки – это вызовет отработку защиты. Поскольку уставка задана на падение напряжения, то реле не среагирует на резкие скачки тока в сети.
Примеры и описание схем МТЗ
С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.
МТЗ на постоянном оперативном токе.
Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.
Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.
Однорелейная на оперативном токе
В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.
Схема на 1 реле
Преимущества: одно токовое реле и всего два провода для подсоединения.
Недостатки:
Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.
Двухрелейная на оперативном токе
В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.
Схема на 2 реле
К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.
Трехрелейная
Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.
Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.
Рисунок 4. Схема трёхфазной трёхрелейной защиты
Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.
Рис. 5. Схема двухфазного трёхрелейного подключения МТЗ
На схема обозначены: