Что такое мегагерц в видеокарте

На что влияет частота графического процессора в видеокарте и что это такое?

Привет, друзья! Как вы, вероятно, уже знаете, все видеокарты оборудованы GPU, то есть графическими процессорами. Одним из ключевых параметров при работе устройства, является частота графического процессора, на что влияет эта характеристика, я расскажу в сегодняшней публикации.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Зачем нужен графический процессор

Этот чип в видеокарте занят самым важным делом: он рендерит графику, просчитывая 2D и 3D объекты и их взаимодействие между собой и тем самым формируя изображение, передаваемое затем на дисплей монитора. Благодаря особенностям архитектуры, этот чип гораздо эффективнее обрабатывает графику по сравнению с центральным процессором, несмотря на меньшую мощность.

Такой чип может быть как составной частью видеокарты, так и быть интегрированным в северный мост материнской платы или как логический блок на ЦП. Как правило, последние два типа менее мощные и подходят для выполнения повседневных задач, но слабо справляются с рендерингом сложных объектов.

На что влияет его частота

Тактовая частота ядра – количество операций, которые графический процессор выполняет в секунду. На сегодняшний день у мощных видеокарт этот показатель уже перевалил за гигагерц.

Чем выше тактовая частота, тем больше данных может обработать графический ускоритель. Это влияет не только на количество FPS в играх, но и на количество примитивов в отрендеренных объектах, то есть на качество графики.

Таких показателей удалось добиться, благодаря уменьшению техпроцесса графического чипа, увеличив количество логических блоков на той же площади кристалла. Подробнее о техпроцессе видеокарты вы можете почитать здесь.

Даже в развитых странах не каждый геймер может позволить себе такое устройство.

Можно ли увеличить частоту и зачем это делать

Существует целый ряд программ, которые позволяют выполнить boost графического чипа, повысив его частотные характеристики (конечно, если компонент поддерживает такую опцию). Сюда можно отнести:

Кроме повышения частоты графического процессора, эти утилиты умеют увеличивать частоту памяти, регулировать скорость вращения кулеров и многое другое. «Что это дает в практическом плане?» — может спросить внимательный читатель.

Увеличение тактовой частоты, как можно догадаться, позволяет увеличить качество графики и количество ФПС в играх программными средствами, то есть не покупая новую видеокарту.

Такой «костыль» можно использовать как временное решение, когда юзер еще морально не созрел для покупки нового девайса, однако уже хочется поиграть в новинку, которую комп не вытягивает по системным требованиям.

При этом следует учитывать, что разгон видеокарты требует аккуратного и вдумчивого подхода – если переборщить с увеличением частоты и «дать копоти» больше, чем видеокарта реально сможет вытянуть физически, происходит перезапуск графического драйвера, что обычно ведет к крашу запущенной игры или видеоредактора.

Сломать девайс таким способом очень сложно, из-за предусмотренной программистами «защиты от дурака».Однако хочу также отметить, что особо настойчивые фанаты оверклокинга умудряются таки сжечь видеокарту, дав ей повышенную нагрузку и убрав количество оборотов кулера до минимума.Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокартеВ качестве рекомендации, советую обратить внимание на видеокарту Asus PCI-Ex GeForce GTX 1060 Dual 3GB (DUAL-GTX1060-O3G), которая потянет все современные игры на приемлемых настройках графики.

К сожалению, для майнинга такой продукт подходит хуже, чем аналогичная по цене видяха от AMD. Ну тут уже такое – или в игры гонять, или крипту майнить, не так ли?

До новых встреч на страницах моего блога, дорогие друзья! Не забудьте расшарить эту статью в социальных сетях и подписаться на новостную рассылку.

Источник

Чем отличаются поколения видеопамяти

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Содержание

Содержание

Память, будь то оперативная память или видеопамять, является неотъемлемой частью современного компьютера. Сегодня вкратце узнаем, как все начиналось, как работает, почему диагностические программы показывают неверные частоты, в чем измеряется производительность памяти, как рассчитывается пропускная способность памяти и почему «МГц» для памяти — некорректное выражение.

До 2000-ых годов использовалась оперативная память стандарта SDR.

Потом ей на смену пришел новый стандарт памяти — DDR, который имел удвоенную пропускную способность памяти за счет передачи данных как по восходящим, так и по нисходящим фронтам тактового сигнала. Первоначально память такого типа, как и SDR, применялась в видеоплатах, но позднее появилась поддержка со стороны чипсетов.

DDR (Double Data Rate) расшифровывается как «удвоенная скорость передачи данных».

Таким образом, за один такт передается вдвое больше информации. Увеличилось количество передаваемой информации, реальная частота памяти осталась неизменной. Вместе с этим появилось такие понятия как эффективная частота, которая стала в два раза больше реальной.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Именно с приходом стандарта DDR появилась путаница с реальной и эффективной частотой работы памяти.

Реальная частота — частота шины модуля памяти. Эффективная частота — удвоенная частота шины модуля.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Как можно видеть, реальная частота памяти составляет 1900 МГц, в то время как эффективная в 2 раза больше — 3800 МГц, потому что за один такт теперь поступает вдвое больше данных.

Для того чтобы информация передавалась с удвоенной скоростью, она должна поступать из массива памяти вдвое быстрее. Реализовали это с помощью удвоения внутренней ширины модуля памяти. Благодаря чему за одну команду чтения мы стали получать сразу 2n единицы данных. Для стандарта DDR n = 1. Такая архитектура была названа n-prefetch (предвыборка). У памяти стандарта DDR, одной командой, при чтении, передается от ядра к буферу ввода-вывода две единицы данных.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Вместе с ростом производительности уменьшилось рабочее напряжение с 3.3V у SDR до 2.5V у DDR. Это позволило снизить энергопотребление и температуру, что дало возможность повысить рабочие частоты. На самом деле, потребление и, как следствие, нагрев, — это одна из самых больших проблем оперативной памяти того времени. При полном чтении всего модуля объемом 2 Гбайта память потребляет до 25 Ватт.

Оперативная память стандарта DDR2 пришла на смену стандарту DDR в 2003 году, правда, поддерживающие ее чипсеты появились годом позже. Основное отличие DDR2 от DDR заключается в увеличенной вдвое частоте работы внутренней шины, по которой данные поступают в буфер «ввод-вывод». Передача на внутреннюю шину теперь осуществляется по технологии (4n-Prefetch), одной командой из массива памяти к буферу поступает 4 единицы данных.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Таким способом удалось поднять пропускную способность в два раза, не увеличивая частоту работы чипов памяти. Это выгодно с точки зрения энергоэффективности, да и количество годных чипов, способных работать на меньшей частоте, всегда больше. Однако у данного способа увеличения производительности есть и минусы: при одинаковой частоте работы DDR2 и DDR временные задержки у DDR2 будут значительно выше, компенсировать которые можно только на более высоких частотах работы.

Рабочее напряжение понизилось почти на 30% до 1.8V.

На основе стандарта DDR для видеокарт в 2000 году был разработан новый стандарт памяти GDDR.

Технически GDDR и DDR похожи, только GDDR разработан для видеокарт и предназначен для передачи очень больших объемов данных.

GDDR (Graphics Double Data Rate) расшифровывается как двойная скорость передачи графических данных.

Несмотря на то, что они используются в разных устройствах, принципы работы и технологии для них очень похожи.

Главным отличием GDDR от DDR является более высокая пропускная способность, а также другие требования к рабочему напряжению.

Разработкой стандарта видеопамяти GDDR2 занималась компания NVIDIA. Впервые она была опробована на видеокарте GeForce FX 5800 Ultra.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

GDDR2 это что-то среднее между DDR и DDR2. Память GDDR2 работает при напряжении 2.5V, как и DDR, однако обладает более высокими частотами, что вызывает достаточно сильный нагрев. Это и стало настоящей проблемой GDDR2. Долго данный стандарт на рынке не задержался.

Буквально чуть позже компания ATI представила GDDR3, в которой использовались все наработки DDR2. В GDDR3, как и DDR2, реализована технология 4n-Prefetch при операции записи данных. Память работала при напряжении 2V, что позволило решить проблему перегрева, и обладала примерно на 50% большей пропускной способностью, чем GDDR2. Несмотря на то, что разработкой стандарта занималась ATI, впервые его применила NVIDIA на обновленной видеокарте GeForce FX 5700 Ultra. Это дало возможность уменьшить общее энергопотребление видеокарты примерно на 15% по сравнению с GeForce FX 5700 Ultra с использованием памяти GDDR2.

Современные типы видеопамяти

На сегодняшний день наиболее распространенными типами видеопамяти являются GDDR5 и GDDR6, однако до сих пор в бюджетных решениях можно встретить память типа GDDR3-GDDR4 и даже DDR3.

GDDR3

GDDR4

Стандарт GDDR5 появился в 2008 году и пришел на смену стандарту GDDR4, который просуществовал совсем недолго, так и не получив широкое распространение вследствие не лучшего соотношения цена/производительность.

GDDR5 спроектирована с использованием наработок памяти DDR3, в ней используется 8-битовый Prefetch. Учитывая архитектурные особенности (используются две тактовые частоты CK и WCK), эффективная частота теперь в четыре раза выше реальной, а не в два, как было раньше. Таким способом удалось повысить эффективную частоту до 8 ГГц, а вместе с ней и пропускную способность в два раза. Рабочее напряжение составило 1.5V.

GDDR5X — улучшенная версия GDDR5, которая обеспечивает на 50% большую скорость передачи данных. Это было достигнуто за счет использования более высокой предварительной выборки. В отличие от GDDR5, GDDR5X использует архитектуру 16n Prefetch.

GDDR5X способна функционировать на эффективной частоте до 11 ГГц. Данная память использовалась только для топовых решений NVIDIA 10 серии GTX1080 и GTX1080Ti.

Что такое мегагерц в видеокарте. Смотреть фото Что такое мегагерц в видеокарте. Смотреть картинку Что такое мегагерц в видеокарте. Картинка про Что такое мегагерц в видеокарте. Фото Что такое мегагерц в видеокарте

Память стандарт GDDR6 появился в 2018 году. GDDR6, как и GDDR5X, имеет архитектуру 16n Prefetch, но она разделена на два канала. Хотя это не улучшает скорость передачи данных по сравнению GDDR5X, оно позволяет обеспечить большую универсальность.

Сейчас данная память активно используется обоими производителями видеокарт в новой линейке NVIDIA серий GeForce 20 и 16 (кроме некоторых решений: GTX 1660 и GTX 1650, так как в них используется память GDDR5). При покупке нужно внимательно изучить характеристики видеокарты, потому как разница в производительности от типа памяти в данном случаи достигает от 5 до 15%. В то время как разница в цене совершенно несущественна.

GDDR5

GDDR6

Также тип памяти GDDR6 активно используется компанией AMD в видеокартах RX 5000 серии.

На начальном этапе GDDR6 способна функционировать с эффективной частотой 14 ГГц. Это позволяет удвоить пропускную способность относительно GDDR5. В дальнейшем эффективная частота будет увеличена, как это происходило с другими типами памяти.

Источник

Руководство покупателя игровой видеокарты


Последнее обновление от 28.09.2012


Основные характеристики видеокарт

Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим лишь самые важные из них.

Тактовая частота видеочипа

Рабочая частота GPU обычно измеряется в мегагерцах, т. е. миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа — чем она выше, тем больший объем работы GPU может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате Radeon HD 6670 равна 840 МГц, а точно такой же чип в модели Radeon HD 6570 работает на частоте в 650 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа определяет производительность, на его скорость сильно влияет и сама графическая архитектура: устройство и количество исполнительных блоков, их характеристики и т. п.

В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Такими GPU комплектуется большинство видеокарт GeForce от NVIDIA. Из свежих примеров приведём видеочип в модели GTX 580, большая часть которого работает на частоте 772 МГц, а универсальные вычислительные блоки чипа имеют повышенную вдвое частоту — 1544 МГц.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиковый пиксельный филлрейт у GeForce GTX 560 Ti равен 822 (частота чипа) × 32 (количество блоков ROP) = 26304 мегапикселей в секунду, а текстурный — 822 × 64 (кол-во блоков текстурирования) = 52608 мегатекселей/с. Упрощённо дело обстоит так — чем больше первое число — тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе — тем быстрее производится выборка текстурных данных.

Хотя важность «чистого» филлрейта в последнее время заметно снизилась, уступив скорости вычислений, эти параметры всё ещё остаются весьма важными, особенно для игр с несложной геометрией и сравнительно простыми пиксельными и вершинными вычислениями. Так что оба параметра остаются важными и для современных игр, но они должны быть сбалансированы. Поэтому количество блоков ROP в современных видеочипах обычно меньше количества текстурных блоков.

Количество вычислительных (шейдерных) блоков или процессоров

Пожалуй, сейчас эти блоки — главные части видеочипа. Они выполняют специальные программы, известные как шейдеры. Причём, если раньше пиксельные шейдеры выполняли блоки пиксельных шейдеров, а вершинные — вершинные блоки, то с некоторого времени графические архитектуры были унифицированы, и эти универсальные вычислительные блоки стали заниматься различными расчётами: вершинными, пиксельными, геометрическими и даже универсальными вычислениями.

Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI (впоследствии купленной AMD). А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились ещё в плате NVIDIA GeForce 8800. И с тех пор все новые видеочипы основаны на унифицированной архитектуре, которая имеет универсальный код для разных шейдерных программ (вершинных, пиксельных, геометрических и пр.), и соответствующие унифицированные процессоры могут выполнить любые программы.

По числу вычислительных блоков и их частоте можно сравнивать математическую производительность разных видеокарт. Большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, поэтому количество этих блоков весьма важно. К примеру, если одна модель видеокарты основана на GPU с 384 вычислительными процессорами в его составе, а другая из той же линейки имеет GPU с 192 вычислительными блоками, то при равной частоте вторая будет вдвое медленнее обрабатывать любой тип шейдеров, и в целом будет настолько же производительнее.

Хотя, исключительно на основании одного лишь количества вычислительных блоков делать однозначные выводы о производительности нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам можно сравнивать чипы только в пределах одной линейки одного производителя: AMD или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх или приложениях.

Блоки текстурирования (TMU)

Эти блоки GPU работают совместно с вычислительными процессорами, ими осуществляется выборка и фильтрация текстурных и прочих данных, необходимых для построения сцены и универсальных вычислений. Число текстурных блоков в видеочипе определяет текстурную производительность — то есть скорость выборки текселей из текстур.

Хотя в последнее время больший упор делается на математические расчеты, а часть текстур заменяется процедурными, нагрузка на блоки TMU и сейчас довольно велика, так как кроме основных текстур, выборки необходимо делать и из карт нормалей и смещений, а также внеэкранных буферов рендеринга render target.

С учётом упора многих игр в том числе и в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность также являются одними из важнейших параметров для видеочипов. Особенное влияние этот параметр оказывает на скорость рендеринга картинки при использовании анизотропной фильтрации, требующие дополнительных текстурных выборок, а также при сложных алгоритмах мягких теней и новомодных алгоритмах вроде Screen Space Ambient Occlusion.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Ещё раз отметим, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Так, блоки ROP компании AMD в некоторых решениях могут выполнять за такт больше работы, чем блоки в решениях NVIDIA, и наоборот. То же самое касается и способностей текстурных блоков TMU — они разные в разных поколениях GPU разных производителей, и это нужно учитывать при сравнении.

Вплоть до последнего времени, количество блоков обработки геометрии было не особенно важным. Одного блока на GPU хватало для большинства задач, так как геометрия в играх была довольно простой и основным упором производительности были математические вычисления. Важность параллельной обработки геометрии и количества соответствующих блоков резко выросли при появлении в DirectX 11 поддержки тесселяции геометрии. Компания NVIDIA первой распараллелила обработку геометрических данных, когда в её чипах семейства GF1xx появилось по несколько соответстующих блоков. Затем, похожее решение выпустила и AMD (только в топовых решениях линейки Radeon HD 6700 на базе чипов Cayman).

В рамках этого материала мы не будем вдаваться в подробности, их можно прочитать в базовых материалах нашего сайта, посвященных DirectX 11-совместимым графическим процессорам. В данном случае для нас важно то, что количество блоков обработки геометрии очень сильно влияет на общую производительность в самых новых играх, использующих тесселяцию, вроде Metro 2033, HAWX 2 и Crysis 2 (с последними патчами). И при выборе современной игровой видеокарты очень важно обращать внимание и на геометрическую производительность.

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, данных буферов и т. п. Казалось бы, что чем её больше — тем всегда лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объёма видеопамяти неопытные пользователи переоценивают чаще всего, до сих пор используя именно его для сравнения разных моделей видеокарт. Оно и понятно — этот параметр указывается в списках характеристик готовых систем одним из первых, да и на коробках видеокарт его пишут крупным шрифтом. Поэтому неискушённому покупателю кажется, что раз памяти в два раза больше, то и скорость у такого решения должна быть в два раза выше. Реальность же от этого мифа отличается тем, что память бывает разных типов и характеристик, а рост производительности растёт лишь до определенного объёма, а после его достижения попросту останавливается.

Так, в каждой игре и при определённых настройках и игровых сценах есть некий объём видеопамяти, которого хватит для всех данных. И хоть ты 4 ГБ видеопамяти туда поставь — у неё не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки, о которых речь шла выше, а памяти просто будет достаточно. Именно поэтому во многих случаях видеокарта с 1,5 ГБ видеопамяти работает с той же скоростью, что и карта с 3 ГБ (при прочих равных условиях).

Ситуации, когда больший объём памяти приводит к видимому увеличению производительности, существуют — это очень требовательные игры, особенно в сверхвысоких разрешениях и при максимальных настройках качества. Но такие случаи встречаются не всегда и объём памяти учитывать нужно, не забывая о том, что выше определённого объема производительность просто уже не вырастет. Есть у чипов памяти и более важные параметры, такие как ширина шины памяти и её рабочая частота. Эта тема настолько обширна, что подробнее о выборе объёма видеопамяти мы ещё остановимся в шестой части нашего материала.

Ширина шины памяти

Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 256-битной шине можно передать в два раза больше данных за такт, чем по 128-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

Современные игровые видеокарты используют разную ширину шины: от 64 до 384 бит (ранее были чипы и с 512-битной шиной), в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых видеокарт уровня low-end чаще всего используется 64 и реже 128 бит, для среднего уровня от 128 до 256 бит, ну а видеокарты из верхнего ценового диапазона используют шины от 256 до 384 бит шириной. Ширина шины уже не может расти чисто из-за физических ограничений — размер кристалла GPU недостаточен для разводки более чем 512-битной шины, и это обходится слишком дорого. Поэтому наращивание ПСП сейчас осуществляется при помощи использования новых типов памяти (см. далее).

Ещё одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А повышение ПСП часто напрямую влияет на производительность видеокарты в 3D-приложениях. Частота шины памяти на современных видеокартах бывает от 533(1066, с учётом удвоения) МГц до 1375(5500, с учётом учетверения) МГц, то есть, может отличаться более чем в пять раз! И так как ПСП зависит и от частоты памяти, и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 800(3200) МГц, будет иметь бо́льшую пропускную способность по сравнению с памятью, работающей на 1000(4000) МГц со 128-битной шиной.

Особенное внимание на параметры ширины шины памяти, её типа и частоты работы следует уделять при покупке сравнительно недорогих видеокарт, на многие из которых ставят лишь 128-битные или даже 64-битные интерфейсы, что крайне негативно сказывается на их производительности. Вообще, покупка видеокарты с использованием 64-битной шины видеопамяти для игрового ПК нами не рекомендуется вовсе. Желательно отдать предпочтение хотя бы среднему уровню минимум со 128- или 192-битной шиной.

На современные видеокарты устанавливается сразу несколько различных типов памяти. Старую SDR-память с одинарной скоростью передачи уже нигде не встретишь, но и современные типы памяти DDR и GDDR имеют значительно отличающиеся характеристики. Различные типы DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, и поэтому цифру рабочей частоты зачастую указывают удвоенной или учетверённой, умножая на 2 или 4. Так, если для DDR-памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR-память, чтобы обеспечить такую же пропускную способность. То же самое с GDDR5, но частоту тут даже учетверяют.

Основное преимущество новых типов памяти заключается в возможности работы на больших тактовых частотах, а соответственно — в увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт. Первой платой, использующей память DDR2, стала NVIDIA GeForce FX 5800 Ultra. С тех пор технологии графической памяти значительно продвинулись, был разработан стандарт GDDR3, который близок к спецификациям DDR2, с некоторыми изменениями специально для видеокарт.

GDDR3 — это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшенными характеристиками потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. Несмотря на то, что стандарт был разработан в компании ATI, первой видеокартой, её использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.

GDDR4 — это дальнейшее развитие «графической» памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей. Первыми видеокартами с чипами GDDR4 на борту стали ATI Radeon X1950 XTX, а у компании NVIDIA продукты на базе этого типа памяти не выходили вовсе. Преимущества новых микросхем памяти перед GDDR3 в том, что энергопотребление модулей может быть примерно на треть ниже. Это достигается за счет более низкого номинального напряжения для GDDR4.

Впрочем, GDDR4 не получила широкого распространения даже в решениях AMD. Начиная с GPU семейства RV7x0, контроллерами памяти видеокарт поддерживается новый тип памяти GDDR5, работающий на эффективной учетверённой частоте до 5,5 ГГц и выше (теоретически возможны частоты до 7 ГГц), что даёт пропускную способность до 176 ГБ/с с применением 256-битного интерфейса. Если для повышения ПСП у памяти GDDR3/GDDR4 приходилось использовать 512-битную шину, то переход на использование GDDR5 позволил увеличить производительность вдвое при меньших размерах кристаллов и меньшем потреблении энергии.

Видеопамять самых современных типов — это GDDR3 и GDDR5, она отличается от DDR некоторыми деталями и также работает с удвоенной/учетверённой передачей данных. В этих типах памяти применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, память GDDR2 обычно работает на более высоких частотах по сравнению с DDR, GDDR3 — на еще более высоких, а GDDR5 обеспечивает максимальную частоту и пропускную способность на данный момент. Но на недорогие модели до сих пор ставят «неграфическую» память DDR3 со значительно меньшей частотой, поэтому нужно выбирать видеокарту внимательнее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *