Что такое максимальное значение функции
Нахождение наибольшего и наименьшего значения функции на отрезке
Наибольшее и наименьшее значение функции — ключевые понятия
Понятие самого большого и самого малого значения производной функции используется для определения оптимального показателя некоторого параметра.
Допустим, X — это некоторое множество, включенное в область определения функции y=f(x).
Наибольшее значение функции y=f(x) на заданном интервале x — это такое максимальное значение y=f(x0) при x∈X, когда неравенство f(x)≤f(x0) справедливо при всех значениях x, принадлежащих X и не равных нулю.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Наименьшее значение функции y=f(x) на заданном интервале x — это такое минимальное значение y=f(x0) при x∈X, когда неравенство f(x)≥f(x0) верно при всех значениях x, принадлежащих X и не равных нулю.
Если упростить данные определения, то получим следующее: максимальное значение функции представляет собой наибольшее значение на известном промежутке при x0, а минимальное — это наименьшее значение, которое принимает функция на известном промежутке при x0.
При обращении производной функции в ноль значения аргумента именуются стационарными точками.
Согласно теореме Ферма, данное понятие представляет собой такую точку, где расположены локальный минимум и максимум дифференцируемой функции или ее экстремум. Отсюда следует, что наименьшее и наибольшее значения y=f(x) будут достигнуты в одной из стационарных точек.
Самое большое и самое маленькое значение функция может принимать в точках, где функция определена, а первой производной данной функции нет.
Наименьшее и наибольшее значения не всегда можно вычислить. К примеру, это невозможно при совпадении рубежей заданного интервала с рубежами области определения. Также максимальные и минимальные значения не получится определить, когда речь идет о бесконечном промежутке.
Кроме того, функция неизвестном отрезке или на бесконечном интервале будет принимать бесконечно малые либо бесконечно большие значения. Это значит, что наименьшее и наибольшее значения в этом случае невозможно рассчитать.
Как найти для отрезка, алгоритм вычисления
Отрезок представляет собой часть прямой, которая ограничена двумя точками. Возьмем точки a и b за концы заданного отрезка. Тогда необходимо найти max y=f(x0) и min y=f(x0) на промежутке [a,b].
Примеры решения задач
Задача 1
Дано: функция, заданная уравнением
Найти max y=f(x0) и min y=f(x0) на промежутке [0,4].
Решение
1. Функция представляет собой кубический многочлен. Точки разрыва отсутствуют, следовательно, функция непрерывна на заданном промежутке [0, 4].
2. Найдем производную:
3. Приравниваем найденную производную к нулю:
4. Решим полученное уравнение и определим критические точки:
5. Проверяем, принадлежат ли данные точки отрезку [0,4]:
6. Поскольку обе критические точки находятся на заданном отрезке, то выполним расчет f(x) для этих точек и для границ промежутка [0,4]:
Среди найденных чисел наибольшее значение равно 170, наименьшее значение \(-7\frac<17><108>\)
Задача 2
Вычислить максимальное и минимальное значение функции на интервале [−4,4]. Функция задана уравнением:
Решение
1. Проверяем функцию на прерывность: f(x) является непрерывной, поскольку при любых x знаменатель не равен нулю.
2. Находим производную:
3. Приравняем образовавшуюся производную к 0 и вычислим крайние точки:
4. Единственная критическая точка лежит в пределах [−4,4].
5. Определим значения функции для x=−4, x=0 и x=4:
Максимумы, минимумы и экстремумы функций
Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.
Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.
Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.
Минимумы и максимумы вместе именуют экстремумами функции.
Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.
В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.
Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.
Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. \(y\). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, \(-5\) точка минимума (или точка экстремума), а \(1\) – минимум (или экстремум).
Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?
Давайте вместе найдем количество точек экстремума функции по графику производной на примере:
Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось \(x\)).
Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:
— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.
С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.
Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди \(-13\), \(-11\), \(-9\),\(-7\) и \(3\).
Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.
\(-11\): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что \(-11\) – это минимум.
\(- 9\): функция возрастает, а потом убывает – максимум.
Все вышесказанное можно обобщить следующими выводами:
— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.
Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:
Всё! Точки максимумов и минимумов найдены.
Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.
Пример(ЕГЭ). Найдите точку максимума функции \(y=3x^5-20x^3-54\).
Решение:
1. Найдем производную функции: \(y’=15x^4-60x^2\).
2. Приравняем её к нулю и решим уравнение:
3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:
Теперь очевидно, что точкой максимума является \(-2\).
Наибольшее и наименьшее значения функции на отрезке
Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции.
Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:
1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева.
Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:
Функция непрерывна в точке справа, если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева, если определена в данной точке и её левосторонний предел равен значению в этой точке:
Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:
Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём. В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)
Согласно второй теореме Вейерштрасса, непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .
Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .
В нашем случае:
Примечание: в теории распространены записи .
Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.
Важно! Как уже заострялось внимание в статье об экстремумах функции, наибольшее значение функции и наименьшее значение функции – НЕ ТО ЖЕ САМОЕ, что максимум функции и минимум функции. Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.
Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!
Более того, решение чисто аналитическое, следовательно, чертежа делать не надо!
Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:
1) Находим значения функции в критических точках, которые принадлежат данному отрезку.
Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует, что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.
Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.
2) Вычисляем значения функции на концах отрезка.
3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.
Садимся на берег синего моря и бьём пятками по мелководью:
Найти наибольшее и наименьшее значения функции на отрезке
Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
Полученное квадратное уравнение имеет два действительных корня:
– критические точки.
Ещё раз подчёркиваю, что нас не интересует, есть в них максимумы/минимумы или нет.
Первая критическая точка принадлежит данному отрезку:
А вот вторая – нет: , поэтому про неё сразу забываем.
Вычислим значение функции в нужной точке:
Итоговый результат я выделил жирным цветом, при оформлении задания в тетради его удобно обвести в кружок простым карандашом или пометить как-то по-другому.
2) Вычислим значения функции на концах отрезка:
Результаты опять каким-либо образом выделяем.
3) Дело сделано, среди «жирных» чисел выбираем наибольшее и наименьшее.
Ответ:
Критическое значение на поверку оказалось точкой максимума, но об этом нас никто не спрашивал. Впрочем, для саморазвития можете устно подмечать такие факты.
Найти наибольшее и наименьшее значения функции на отрезке
Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.
В рассматриваемой задаче очень важно не допускать вычислительных ошибок, так как рецензент немедленно посмотрит, сами догадываетесь куда.
Другой существенный момент касается пункта № 1.
Во-первых, критических точек может не оказаться вообще. Это очень хорошо – меньше вычислений. Просто записываем вывод: «критические точки отсутствуют» и переходим ко второму пункту алгоритма.
Во-вторых, все критические точки (одна, две или бОльшее количество) могут не принадлежать отрезку. Замечательно. Пишем следующее: «критические точки (а) не принадлежат (ит) рассматриваемому отрезку». Находить какие-то значения функции здесь, разумеется, тоже не надо.
В моей коллекции есть и те и те примеры, но они унылы как бескрайние просторы Сахары. По сути, всё задание сводится к нахождению двух значений функции на концах интервала. Гораздо интереснее снять кепки, солнечные очки и отправиться играть в пляжный футбол:
Найти наибольшее и наименьшее значения функции на заданном отрезке
Решение: всё опять начинается дежурной фразой:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
Да, критических точек тут и правда целая команда:
Первые две точки принадлежат нашему отрезку:
Но третья оказывается вне игры:
(надеюсь, все сумели сосчитать )
Вычислим значения функции в подходящих точках:
Чтобы не заблудиться в трёх соснах, не забываем выделять результаты,
2) Вычислим значения функции на концах отрезка:
Среди «жирных» чисел выбираем наибольшее и наименьшее значения. Максимальное значение («пятёрка») достигается сразу в двух точках, и это необходимо указать в завершающей записи:
Ответ:
Время от времени критические точки могут совпадать с одним или даже с обоими концами отрезка, и в этом случае укорачивается второй этап решения. Следующий пример для самостоятельного изучения посвящен как раз такой ситуации:
Найти наибольшее и наименьшее значения функции на заданном отрезке
Примерный образец решения в конце урока.
Иногда техническая трудность рассматриваемого задания состоит в замысловатой производной и громоздких вычислениях:
Найти максимальное и минимальное значения функции на отрезке
Решение: отрезок, надо сказать, творческий, но пример взят из конкретной контрольной работы и ни в коем случае не придуман.
1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
Очевидный корень оказывается не в теме: .
Решаем уравнение:
Второй корень принадлежит нашему отрезку:
Если вам не понятно, почему именно такой корень, обязательно обратитесь к школьному учебнику Алгебра и начала анализа 10-11 класс и повторите, что такое логарифм, ибо плох тот студент, который не мечтает овладеть логарифмами.
Дальнейшие вычисления задачи я распишу максимально подробно, но без комментариев. Некоторую информацию о логарифмической функции и свойствах логарифма можно почерпнуть в статье Графики и свойства элементарных функций и методичке по школьным формулам.
Вычислим значение функции во второй критической точке:
2) Вычислим значения функции на концах отрезка:
3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :
Вот теперь всё понятно.
Ответ:
Дробно-рациональный экземпляр для самостоятельного решения:
Найти максимальное и минимальное значения функции на отрезке
Вычисления в данном случае не менее кропотливы и точно так же потребуют вмешательства калькулятора (если вы, конечно, не вундеркинд). Полное решение и ответ в конце урока.
Стрелки часов приближаются к 9 утра, и побережье потихоньку заполняется всё бОльшим и бОльшим количеством стройных ног. Если честно, не терпится захлопнуть ноут и похулиганить, но всё-таки мужественно разберу нетривиальную вещь:
Найти максимальное и минимальное значения функции на отрезке
Решение:
1) Найдём критические точки. Предварительно можно раскрыть скобки, но не особо сложнее использовать и правило дифференцирования произведения:
– критические точки.
Обратите внимание, что точка обращает знаменатель производной в ноль, но её следует отнести к критическим значениям, поскольку САМА ФУНКЦИЯ определена в данной точке. На этом случае я подробно останавливался в теоретической части и последнем примере урока Интервалы монотонности. Экстремумы функции.
Кроме того, данная точка совпала с правым концом отрезка, а значит, в следующем пункте будет меньше расчётов. В следующем, но не сейчас:
2) Вычислим значения функции на концах отрезка:
уже известно.
Ответ:
Раз, два, три, четыре, пять – мне пора верстать.
Скорее всего, вы прочитали данную статью в ненастную погоду, поэтому желаю всем скорейшего летнего загара без зачётки в кармане! …ну или с дипломом на груди… …ой, что-то я не то сказал =)
Пример 2: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
– критические точки.
2)Вычислим значения функции на концах отрезка:
Ответ:
Пример 4: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
– критические точки.
2) Вычислим значения функции на концах отрезка:
уже рассчитано в предыдущем пункте.
Ответ:
Пример 6: Решение:
1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
– критические точки.
2) Вычислим значения функции на концах отрезка:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам