Что такое макрошлиф и как он приготовляется

что такое микрошлиф? как он готовится и для чего? как он готовится и для чего?

Микрошлиф – это специально подготовленный образец для микроскопического исследования.

Изготовление шлифов состоит из вырезания образца, шлифовки, полировки и травления.

Поверхность образца, на которой должен быть подготовлен шлиф, предварительно выравнивают путем обработки на абразивном круге с периодическим его охлаждением. Для удаления грубого рельефа и наклепа на поверхности образца, получающихся после обработки на абразивном круге, производится шлифовка бумажной шкуркой. Ее нужно начинать с более крупнозернистого материала, последовательно переходя к более мелкозернистому. Шлифовать образцы можно вручную, на неподвижной шкурке, или на шлифовальных станках. Ручная шлифовка – медленный и трудоемкий процесс, однако при нем меньше разогреваются образцы и как следствие – меньше искажается структура поверхности.

Полированный образец промывают проточной водой и тщательно высушивают фильтровальной бумагой, прикладывая ее к шлифу, но не вытирая ею.

При проведении вышеописанной механической полировки возникает некоторое искажение поверхностного слоя металла, поэтому в ряде случаев проводят электрохимическую полировку.

Для исследования микроструктуры шлиф подвергают травлению. Перед травлением поверхность шлифа обезжиривают спиртом. Наиболее часто применяется травление методом избирательного растворения фаз. Он основан на различии физико-химических свойств отделенных фаз и пограничных участков зерен. В результате различной интенсивности растворения создается рельеф поверхности шлифа.

Для выявления микроструктуры применяются специально подобранные кислоты и щелочи различной концентрации, растворы солей. На поверхности шлифа происходит растворение одних фаз, окисление и окрашивание других. Химическое травление осуществляется путем погружения образца в травящий реактив или протирания образца с помощью тампона. Продолжительность травления чаще всего устанавливается опытным путем. В большинстве случаев признаком травления является потускнение поверхности, наступающее обычно через несколько секунд. После травления шлиф быстро промывают водой и сушат фильтровальной бумагой.

Источник

Приготовление макрошлифа

Краткие теоретические сведения для лабораторной работы №1

ЧАСТЬ 1. МАКРОАНАЛИЗ

Макроанализ применяют для выявления в металле дендритного строения, усадочной рыхлости, газовых пузырей, трещин, пустот, плен, шлаковых включений, расположения волокон в поковках и штамповках, ликвации серы и фосфора, структурной неоднородности, качества сварного соединения. При макроанализе проводится исследование макроструктуры. Макроструктура может быть исследована непосредственно на поверхности заготовки или детали; в изломе или, что делается чаще, на вырезанном образце (темплете) после его шлифования и травления специальным реактивом. Образец (темплет) металла, поверхность которого подготовлена для макроанализа, называется макрошлифом.

Приготовление макрошлифа

Место и способ вырезки образца.

Образец для макроанализа вырезают в определенном месте и в определенной плоскости в зависимости от того, что подвергают исследованию – отливку, поковку, штамповку, прокат, сварную или термически обработанную деталь и что требуется выявить и изучить – первичную кристаллизацию, дефекты, нарушающие сплошность металла, неоднородность структуры. В связи с этим образцы вырезают из одного или нескольких мест слитка, заготовки или детали как в продольном, так и в поперечном направлении.

Получение плоской поверхности образца.

Поверхность образца для макроанализа обрабатывают на фрезерном или строгальном станке (если материал с невысокой твердостью) или на плоскошлифовальном станке (если материал твердый). Для получения более гладкой поверхности образец шлифуют вручную. При шлифовании по поверхности образца водят шлифовальной шкуркой, обернутой вокруг деревянного бруска. Шлифование начинают шкуркой с наиболее грубым абразивным зерном, затем постепенно переходят на шлифование шкуркой с более мелким зерном. При переходе с одного номера шкурки на другой направление шлифования меняют на 90 градусов. После шлифования образцы протирают ватой и подвергают травлению.

Исследование дефектов, нарушающих сплошность металла

Для выявления в стали дефектов, нарушающих сплошность металла (трещин, пор, раковин), проводится глубокое травление отшлифованного образца водным раствором соляной кислоты (50 см3 НСl, 50 см3 воды).

Работа выполняется следующим образом:

1. Отшлифованную поверхность образца протирают ватой, смоченной спиртом.

2. В водяную баню, установленную в вытяжном шкафу (так как при травлении выделяются ядовитые газы), помещают фарфоровую ванну, вливают в неё реактив и нагревают до температуры 60–70 °С.

3. Образец при помощи щипцов погружают в горячий реактив и выдерживают в нем 10–45 мин.

4. После выдержки образец при помощи щипцов вынимают из реактива.

5. Образец промывают водой, затем 10–15 %-м водным раствором азотной кислоты и просушивают.

При глубоком травлении раствором кислоты высокой концентрации происходит растравливание дефектов, нарушающих сплошность металла – они становятся видимыми невооруженным глазом (рис. 1.1).

Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Рис. 1.1. Дефекты, нарушающие сплошность металла: а – поры; б – трещины

Выявление строения литой стали

Строение литой стали (дендритной структуры) выявляют травлением отшлифованного образца в 15 %-м водном растворе персульфата аммония.

Для выявления дендритной структуры необходимо:

1) отшлифованную поверхность образца протереть ватой, смоченной спиртом;

2) в водяную баню поместить фарфоровую ванну, налить в неё реактив и нагреть до 80–90 °С;

Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Рис. 1.2. Макроструктура литой стали

3) образец при помощи щипцов погрузить в горячий реактив и выдержать в нем 5–10 мин;

4) после выдержки в реактиве образец при помощи щипцов вынуть из реактива;

5) образец промыть водой и просушить.

На рис. 1.2 дана макроструктура литой стали.

Внутренние дефекты, которые могут привести к разрушению изделия, выявляются при изучении изломов. Изломом называется поверхность, образующаяся вследствие разрушения металлов. Изломы металлов могут существенно отличаться по цвету. Так, стали и белые чугуны, в которых весь углерод связан в цементите, имеют излом светло-серого цвета. У графитизированных сталей и чугунов, в которых углерод находится преимущественно в виде графита, излом черного цвета. На поверхности изломов можно видеть дефекты, которые способствовали разрушению. В зависимости от состава, строения металла, наличия дефектов, условий обработки и эксплуатации изделий изломы могут иметь вязкий, хрупкий или усталостный характер.

Вязкий (волокнистый) излом (рис. 1.3, а) имеет бугристо-сглаженный рельеф и свидетельствует о значительной пластической деформации, предшествующей разрушению. По виду вязкого излома нельзя судить о форме и размерах зерен металла.

а Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляетсяб Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Рис. 1.3. Изломы стали: а – вязкий; б – хрупкий, х400

Хрупкий (кристаллический) излом (рис. 1.3, б) характеризуется наличием на поверхности плоских блестящих участков (фасеток). Так как разрушение протекает без заметной пластической деформации и форма зерна неискажается, то на хрупком изломе видны исходная форма и размер зерен металла. При этом разрушение может происходить через зерна (транскристаллический излом) либо по границам зерен (интеркристаллический, или межкристаллический, излом). Разрушение по границам зерен имеет место при наличии на границах неметаллических включений (фосфиды, сульфиды, оксиды) или других выделений, ослабляющих прочность границ зерна. Хрупкое разрушение наиболее опасно, так как происходит чаще всего при напряжениях ниже предела текучести материала. Его возникновению способствуют наличие поверхностных дефектов, конструкционные просчеты (резкое изменение сечения, толстостенность деталей), низкая температура и ударные нагрузки при работе, крупнозернистость металла, выделение по границам зерен хрупких фаз, межзеренная коррозия. Разновидностями хрупкого излома являются нафталинистый, камневидный, фарфоровидный и др.

Нафталинистый излом – транскристаллический с крупным зерном и избирательным блеском, подобным блеску кристаллов нафталина. Он свидетельствует о повышенной хрупкости стали и наблюдается в легированных, преимущественно быстрорежущих сталях. Причиной возникновения такого излома является перегрев стали, вызывающий укрупнение зерен и образование определенной ориентации структурных составляющих (текстура). Внешне в изломе текстура проявляется как одно крупное зерно. Нафталинистый излом устраняется путем многократных повторных фазовых перекристаллизаций металла.

Хрупкий излом называют камневидным, если металл имеет крупнозернистое строение, а разрушение носит преимущественно межкристаллический характер. Причина образования такого излома – перераспределение примесей при перегреве металла с выделение их в приграничных участках зерен. Камневидный излом можно устранить путем гомогенизирующего отжига. Обычно изломы бывают смешанными. При смешанном изломе на его поверхности наблюдаются участки вязкого и хрупкого разрушения.

Фарфоровидный излом характерен для правильно закаленной стали, вид излома матовый, мелкозернистый.

Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Рис. 1.4. Усталостный излом штока компрессора

Усталостный излом (рис. 1.4) образуется в результате длительного воздействия на металл циклических напряжений и деформаций. Излом состоит из трех зон: зарождения трещины, собственно усталостного распространения трещины и долома. Механизм усталостного разрушения следующий: усталостная трещина возникает в местах, где имеются концентраторы напряжений или дефекты. Первая зона плоская и гладкая. Увеличиваясь при работе детали, трещина образует зону собственного усталостного распространения с характерными концентрическими бороздками или дугами и мелкозернистым, фарфоровидным изломом. Зачастую она имеет отдельные участки гладкой притертой поверхности. Долом происходит внезапно, когда ослабленное трещиной сечение детали не способно выдержать прикладываемой механической нагрузки. Долом бывает вязким или хрупким.

Контрольные вопросы

1. Как выявить дендритную структуру в литых образцах?

2. Какие бывают изломы?

3. Назвать характерные признаки хрупкого и вязкого изломов.

4. Каков механизм усталостного разрушения?

5. Какова цель макроанализа?

6. Что позволяет установить макроанализ?

7. Что позволяет определить макроанализ?

8. Какие элементы структуры позволяет определить макроанализ?

9. Какие особенности строение металла определяют методом макроанализа?

Источник

Приготовление микрошлифов

Макроскопический анализ

Макроструктура – структура материала, выявленная методом макроструктурного анализа (макроанализа). Макроанализ – способ изученияструктуры материала невооруженным глазом или при увеличении до 30 раз с помощью лупы.

Макроанализ позволяет одновременно наблюдать значительную часть исследуемой поверхности материала, но не обеспечивает выявления всех особенностей строения, поэтому часто является предварительным видом анализа, после которого выбранный участок исследуется методами микроанализа, рентгенографии, электронной микроскопии, микрорентгеноспектрального анализа и др.

Основными способами изучения макроструктуры являются изучение макрошлифов и изломов.

При изучении макрошлифов решаются следующие задачи:

— выявление дефектов, нарушающих сплошность металла (трещины, раковины, газовые пузыри и т.д.);

— выявление структуры литых и деформированных металлов, сварных швов;

— выявление химической неоднородности металлов и сплавов (ликвации);

— выявление неоднородности состава и структуры, созданных термической или химико-термической обработкой.

При изучении изломов решаются следующие задачи:

— определение характера разрушения (вязкое, хрупкое);

— выявление дефектов, нарушающих сплошность металла и выходящих на поверхность излома;

— выявление структуры и причин брака металлов после термической и химико-термической обработки;

— определение типа материала.

Макрошлифы изготавливают либо непосредственно на готовой детали, либо на специально подготовленных образцах. Макрошлиф поперечного сечения детали называется «темплетом». Методика изготовления макрошлифа заключается в вырезке образца в необходимом месте и направлении, холодной механической обработке (торцевание, строгание, шлифование) и травлении реактивом для выявления макроструктуры. При исследовании макрошлифов применяются следующие способы выявления макроструктуры:

Сущность метода глубокого травления заключается в обработке поверхности макрошлифа растворами неорганических кислот, в результате чего участки, неоднородные по составу, обладающие более развитой и активизированной поверхностью, протравливаются различно. Образуется макрорельеф с участками поверхности большей и меньшей высоты, которые при большой глубине резкости невооруженного глаза или малых увеличениях могут быть идентифицированы. Составы наиболее распространенных реактивов для глубокого травления стали представлены в таблице.

Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Таблица1. Рекомендуемые реактивы и режимыдля глубокого травления стали

При изучении макрошлифов можно выявить:

— дендритное строение литого металла (рис. 1)

Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Рис. 1. Макроструктура слитка стали

1 – наружная мелкозернистая зона (корка); 2 – зона столбчатых кристаллов;

— волокнистую структуру металла после горячей обработки давлением (рис. 2); при получении изделий обработкой давлением необходимо избегать образования перерезанных волокон и их расположение совпадало с направлением главных усилий в деталях при работе.

Что такое макрошлиф и как он приготовляется. Смотреть фото Что такое макрошлиф и как он приготовляется. Смотреть картинку Что такое макрошлиф и как он приготовляется. Картинка про Что такое макрошлиф и как он приготовляется. Фото Что такое макрошлиф и как он приготовляется

Рис.2. Макроструктура (зарисовка) продольного разрезаколенчатого вала с правильным (а) и неправильным (б) расположением волокон.

— химическую неоднородность стали, характеризующую­ся различным содержанием углерода па поверхности зубь­ев шестерни и в их сердцевине, что является результатом цементации (насыщения поверхностного слоя углеродом с целью обеспечении после термической обработки высокой твердости и износостойкости поверхностного слоя при вяз­кой сердцевине);

— наличие трещин, пузырей, пористости, химической не­однородности в макроструктуре сварных швов;

— зональную ликвидацию—неоднородность распределе­ния элементов по зонам слитка, поковки или детали; выяв­ляется путем снятия, например, серных или фосфорных от­печатков.

Поверхностное травление имеет более ограниченный характер в макроанализе и используется для общего исследования структуры и выявления дефектов непосредственно выходящих на поверхность, а также выявления характера ликвации в металлах. Для общего исследования структуры сталей широко применяется реактив состава: 10-20 г персульфата аммония [(NH4)2S2O8] на 100 мл воды, температура реактива 50-60 °С, время выдержки 5-40 мин. Данный реактив позволяет наблюдать рекристаллизационные явления, неоднородность зёрен по размерам, строение сварных швов.

Одной из наиболее вредных примесей в стали является фосфор, который, обладая большой склонностью к ликвации, располагается в срединных слоях слитка (зональная ликвация) или по границам зерен (дендритная ликвация), что уменьшает вязкость стали, повышает ее хрупкость и температурный порог хладноломкости. Ликвацию фосфора выявляют травителем состава: 85 г хлорной меди (CuCl2), 53 г хлористого аммония (NH4Cl) на 1000 мл воды, выдержка 30-60 с при комнатной температуре. Слой меди с поверхности удаляется струей воды и более тёмные участки макрошлифа являются зонами с повышенным содержанием фосфора.

Преимущество метода поверхностного травления по сравнению с глубоким травлением заключается в возможности лучшего выявления отдельных деталей структуры, а также меньшей агрессивности реактивов и простоты обращения с ними.

Метод отпечатков применяется для определения ликвации примесей в металлах и сплавах. В сталях наряду с фосфором наиболее вредной примесью является сера. Сера также обладает большой склонностью к ликвации, нерастворима в железе и образует с ним химическое соединение – сульфид железа (FeS), который входит в состав легкоплавкой эвтектики Fe-FeS, располагающейся отдельными включениями по границам зёрен. При нагреве до температуры горячей деформации (800-1200 °С) включения эвтектики (температура плавления 988 °С) придают стали хрупкость, либо оплавляются и образуют в материале надрывы и трещины (явление красноломкости стали). Для определения ликвации серы наибольшее распространение получил метод Баумана. В данном методе засвеченную фотобумагу выдерживают в 5 % водном растворе серной кислоты в течение 25-30 мин, просушивают и плотно прикладывают к макрошлифу на 25-30 минут. Снятая с макрошлифа фотобумага промывается, фиксируется в растворе гипосульфита 20-30 мин, промывается и высушивается. Более тёмные участки фотоотпечатка макрошлифа соответствуют ликвации серы в металле.

По излому изучают макроструктуру стали с содержанием углерода более 0,3 %. Для хрупкого разрушения стали характерен кристаллический светлый излом, для вязкого – волокнистый излом пепельного оттенка. По излому могут быть определены элементы литой структуры, дефекты, нарушающие сплошность материала: поры, газовые пузыри, остатки усадочной раковины, флокены, трещины и т.д. При термической и химико-термической обработке по излому обнаруживается обезуглероженный слой белого цвета с крупнокристаллической структурой, а науглероженный слой имеет матовую мелкокристаллическую структуру. Для стали, нагретой под последующую обработку до температуры на 150. 200 °С выше линий Ас3 или Асm, характерен крупнокристаллический белый излом (перегрев стали) – брак, исправимый повторным нагревом до рекомендуемой, более низкой температуры. Для стали, нагретой на 30…100 °С ниже температуры солидуса, характерен грубокристаллический излом синего цвета (пережог стали), брак неисправимый из-за значительной потери углерода, окисления, а иногда и оплавления границ зерен. По излому может быть определен вид чугуна: белый чугун имеет излом белого цвета с характерным блеском; серые, высокопрочные и ковкие чугуны имеют мелкокристаллический излом серого цвета.

Микроскопический анализ

Микроскопический анализ металлов заключается в исследовании их структуры с помощью оптического микроскопа (использующего обычное белое или ультрафиолетовое излучение) и электронного микроскопа.

При использовании оптического микроскопа структуру металла можно изучать при общем увеличении от нескольких десятков до 2 000–3 000 раз. Микроанализ позволяет характеризовать размеры и расположение различных фаз, присутствующих в сплавах, если размеры частиц этих фаз не менее 0,2 мкм. Многие фазы в металлических сплавах имеют размеры 10 –4 –10 –2 см и поэтому могут быть различимы в микроскопе.

При микроанализе однофазных сплавов (обычно твердых растворов) и чистых металлов можно определять величину зерен и отметить существование дендритного строения.

Определение размеров зерен проводится либо методами количественной металлографии, либо путем сопоставления структуры с заранее составленными шкалами.

Дендритное строение связано с определенной химической неоднородностью, выявляемой при травлении образца, подлежащего микроанализу. Если однофазные сплавы состоят из вполне однородных по составу зерен, то это указывает на достижение равновесного состояния.

В многофазных сплавах с помощью микроанализа можно определить не только количество, форму и размеры включений отдельных фаз, но и их взаимное распределение.

Разные фазы могут образовывать устойчивые формы взаимного распределения, характерные не для одного какого-либо сплава, а для целых групп сплавов, имеющих общие типы превращений, описываемых диаграммой состояния (например, эвтектические и эвтектоидные превращения).

Количество эвтектической или эвтектоидной структуры, а также строение и характер распределения этих структур оказывают большое влияние на свойства сплавов. В частности, свойства стали весьма сильно зависят от коли­чества эвтектоида (перлита) и его строения. Форма перлита в зависимости от характера термической обработки может быть различной — от грубопластинчатой до мелкозернистой.

Другие сочетания фаз могут зависеть от условий термической и горячей механической обработки; фазы могут быть в виде отдельных включений округлой, пластинчатой или игольчатой формы, а также в виде строк и сетки. Например хорошо известно, что равномерное распределение карбидов в структуре заэвтектоидной стали обеспечивает высокие механические свойства инструмента, тогда как наличие сетчатого распределения цементита по границам зерен (цементитная сетка) вызывает хрупкость.

Пользуясь методами микроанализа, можно также оценить свойства ряда многофазных сплавов и, в частности, чугуна, для которого имеются специальные шкалы, классифицирующие по форме и количеству графит и фосфидную эвтектику.

По площади, занимаемой каждой фазой или структурной составляющей в поле зрения микроскопа, можно в ряде случаев определить количество присутствующих фаз, если известна их плотность. Кроме того, если известен состав каждой из фаз, можно приблизительно определить и состав изучаемого сплава. Такие расчеты только в том случае будут достаточно точными, если присутствующие фазы не слишком дисперсны и находятся в значительном количестве.

С помощью микроанализа можно определить структуру сплава не только в равновесном, но и в неравновесном состоянии, что в ряде случаев позволяет установить предшествующую обработку сплава.

Изменение структуры от поверхностного слоя к середине изделий указывает на характер нагрева (наличие окисления или обезуглероживания стали) или на применение химико-термической обработки (цементации, азотирования и т. д.).

Приготовление микрошлифов

В оптическом микроскопе рассматриваются микрошлифы — специальные образцы металла, имеющие шлифованную и полированную гладкую поверхность, отражающую световые лучи.

Вырезка образца из исследуемого металла. Детали или образцы небольших размеров и веса после подготовки поверхности можно непосредственно установить на столике микроскопа. Если же размеры или вес детали (образца) значительны или трудно получить на детали плоскую поверхность, необходимо вырезать из детали специальную пробу, часто называемую темплетом.

Особое значение для результатов исследования имеет выбор места, из которого надо вырезать образец, и выбор той поверхности, по которой надо приготовить микрошлиф. Этот выбор зависит от цели исследования и формы детали.

Микроструктуру литых металлов и сплавов (в фасонных отливках) проверяют в различных сечениях отливки — от самых больших до минимальных, так как такие участки обычно охлаждаются с различной скоростью, а структура многих литейных сплавов, например чугуна или бронзы, зависит от скорости охлаждения. Кроме того, в этих случаях важно определить направление, по которому следует изготовить микрошлиф. Часто плоскость, на которой производят изучение микроструктуры, выбирают перпендикулярно поверх­ности отвода тепла, с тем, чтобы можно было определить структуру в периферийных и срединных слоях металла.

Для изучения микроструктуры слитка вырезают несколько образцов (темплетов) таким образом, чтобы можно было определить изменение структуры по ряду поперечных сечений.

При исследовании влияния пластической деформации место вырезки образца лучше определить по данным макроанализа, когда выявлены направление течения металла и наиболее характерные участки детали. Если изделие подвергалось ковке или штамповке, важно изучить участки, где, например, имело место наиболее сложная гибка или большая вытяжка, а также объемы металла, на которые не распространялась деформация. Во всех этих случаях необходимо исследовать микроструктуру главным образом в нап­равлении течения металла, а иногда также и в перпендикулярном направлении. Из крупных деталей целесооб­разно вырезать несколько образцов в разных участках, что позволит характеризовать однородность строения металла, из которого изготовлено данное изделие.

Структуру сплавов, прошедших термическую обработку, проверяют как в поверхностных, так и в более глубоких слоях детали, в соответствии с чем и изготовляют образцы для микроанализа. При оценке свойств сплавов, находящихся в неравновесном состоянии, необходимо, наряду с микроанализом, использовать и другие методы исследования и, прежде всего, измерение твердости.

При исследовании причин разрушения различных деталей в процессе эксплуатации образцы для анализа вырезают вблизи места разрушения и в отдалении от него, чтобы можно было определить наличие каких-либо отклонений в строении металла. Кроме того, изучают структуру в продольном и поперечном направлениях.

Получение плоской поверхности образца. Поверхность образца, по которой будет проводиться металлографическое исследование, подвергают специальной обработке. В первую очередь получают приблизительно плоскую поверхность.

Образцы небольших размеров для облегчения обработки помещают в специальный зажим, состоящий обычно из двух пластин, которые можно с помощью винтов сближать и раздвигать, или заливают в специальные легкоплавкие сплавы серу и т. п.

Заливку производят следующим образом: на металлическую или керамическую пластинку устанавливают круглую или квадратную оправку (из стали или латуни) и внутрь оправки помещают образец таким образом, чтобы подготавливаемая поверхность опиралась на пластинку. Затем жидкую легкоплавкую массу заливают в оправку с достаточно плотным заполнением ее.

В последнее время в лабораторной практике начали применять более удобную, чем заливка, запрессовку образцов в пластмассу.

Шлифование плоскости образца. После получения приблизительно плоской поверхности образец шлифуют наждачной бумагой, помещенной для этого на плоском основании (обычно на стекле), или закрепленной с помощью зажимных колец, или наклеенной на вращающийся круг.

Шлифование производят последовательно наждачной бумагой различного сорта, сначала с более крупным зерном абразива, а затем с более мелким. Направление движения образца по наждачной бумаге или положение образца относительно направления круга при смене сорта бумаги изменяют на 90° для лучшего удаления гребешков и рисок, созданных предыдущим шлифованием.

Остающиеся на поверхности образца после шлифования частицы абразивного материала удаляют обдуванием воздухом или промывкой водой.

При шлифовании очень мягких металлов вырываемые из наждачной бумаги абразивные частицы и металлические опилки могут легко вдавливаться в поверхность мягких металлов, поэтому наждачную бумагу предварительно смачивают в керосине или натирают парафином. Последнее применяют, например, при изготовлении микрошлифов из алюминия.

Полирование плоскости образца. Полированием удаляют оставшиеся после шлифования мелкие риски. Применяют механический, химико-механи­ческий и электрохимический способы полирования.

1. Механическое полирование производят на вращающемся круге с натянутым или наклеенным полировальным материалом (фетр, бархат, тонкое сукно), на который непрерывно или периодически наносят абразивное вещество с частицами очень малых размеров (оксид хрома, оксид алюминия, оксид железа и т. д.). Эти абразивные вещества предварительно взмучивают в воде, а затем поливают ими круг.

Полировальный круг должен быть влажным, а нажатие образца на круг незначительным. Скорость вращения круга диаметром 250 мм должна быть 400–600 об/мин.

Полирование считается законченным, когда поверхность образца приобретает зеркальный блеск и даже под микроскопом не видны риски или царапины.

2. Химико-механическое полирование производят полировальным кругом, на который вместе с абразивом наносят химические вещества, способствующие более быстрой обработке.

Для полирования черных металлов применяют пасту ГОИ. Эта паста выпускается трех сортов по зернистости и состоит из трехоксида хрома, стеарина, керосина, силикагеля и других веществ.

Для полирования цветных и некоторых редких металлов применяют травящие химически активные реактивы (например, раствор желтой кровяной соли), которые ускоряют процесс полирования, а в некоторых случаях выявляют также ми­кроструктуру без специального последующего травления.

3. Электрохимическое полирование проводят, помещая образцы в электролитическую ванну и присоединяя их к положительному полюсу. Катодом обычно является пластинка из нержавеющей стали. Шлифованную поверхность образца располагают против катода. Примерные составы элек­тролита, а также плотность тока на аноде указаны в табл. 2.

МеталлСостав электролитаПлотность тока, А/м 2Температура, °С
Углеро-дистая стальОртофосфорная кислота — 48 % Серная кислота — 40 % Вода — 12 %(1–6) · 10 335–50
Нержавеющая стальОртофосфорная кислота — 38 % Глицерин — 53 % Вода — 9 %(2–20) · 10 320–115

Таблица 2.Состав электролита и режим электрополирования

При включении тока происходит растворение выступов на шлифованной поверхности (анодное растворение), в результате чего поверхность образца постепенно становится ровной (зеркальной).

Этот способ является более совершенным, обеспечивает быстрое проведение операции полирования, позволяет полностью избежать изменения структуры в поверхностном слое образца и, кроме того, иногда выявляет особенности микроструктуры, не обнаруживаемые после полирования механическим способом и химического травления. Важным преимуществом электрохимичес­кого полирования является устра­нение наклепа поверхностных слоев, который может образоваться при шлифовании или механическом полировании металлов (особенно при изготовлении шлифов металлов невысокой твердости).

После полирования, независимо от способа его выполнения, микрошлиф промывают водой, затем, если сплавы окисляются, промывают спиртом и просушивают фильтровальной бумагой.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *