Что такое локальная шина

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Системные платы

Локальные шины

Шины ISA, MCA и EISA имеют один общий недостаток — сравнительно низкое быстродействие. Описанные в следующих разделах четыре типа шин являются локальными. К основным типам локальных шин, используемых в ПК, относятся следующие.

Это ограничение существовало еще во времена первых PC, в которых шина ввода-вывода работала с той же скоростью, что и шина процессора. Быстродействие шины процессора возрастало, а характеристики шин ввода-вывода улучшались в основном за счет увеличения их разрядности. Ограничивать быстродействие шин приходилось потому, что большинство произведенных плат адаптеров не могли работать при повышенных скоростях обмена данными.

Некоторым пользователям не дает покоя мысль о том, что компьютер работает медленнее, чем может. Однако быстродействие шины ввода-вывода в большинстве случаев не играет роли. Например, при работе с клавиатурой или мышью высокое быстродействие не требуется, поскольку в этой ситуации производительность компьютера определяется самим пользователем. Оно действительно необходимо только в подсистемах, где важна высокая скорость обмена данными, например в графических и дисковых контроллерах.

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Проблема, связанная с быстродействием шины, стала актуальной в связи с распространением графических пользовательских интерфейсов (например, Windows). Ими обрабатываются такие большие массивы данных, что шина ввода-вывода становится самым узким местом системы. В конечном счете высокое быстродействие процессора с тактовой частотой 66 или даже 450 МГц оказывается совершенно бесполезным, поскольку данные по шине вводавывода передаются в несколько раз медленнее (тактовая частота — около 8 МГц).

Очевидное решение этой проблемы состоит в том, чтобы часть операций по обмену данными осуществлялась не через разъемы шины ввода-вывода, а через дополнительные быстродействующие разъемы. Наилучший подход к решению этой проблемы — расположить дополнительные разъемы ввода-вывода на самой быстродействующей шине, т.е. на шине процессора (это напоминает подключение внешней кэш-памяти). Соответствующая блок-схема представлена на рисунке нижеТакая конструкция получила название локальной шины, поскольку внешние устройства (платы адаптеров) теперь имеют доступ к шине процессора (т.е. ближайшей к нему шине). Конечно, разъемы локальной шины должны отличаться от слотов шины ввода-вывода, чтобы в них нельзя было вставить платы “медленных” адаптеров.

Интересно отметить, что первые 8- и 16-разрядные шины ISA имели архитектуру локальных шин. В этих системах в качестве основной использовалась шина процессора, и все устройства работали со скоростью процессора. Когда тактовая частота в системах ISA превысила 8 МГц, основная шина компьютера отделилась от шины процессора, которая уже не могла выполнять эти функции. Появившийся в 1992 году расширенный вариант шины ISA, который назывался VESA Local Bus (или VL-Bus), ознаменовал возврат к архитектуре локальных шин. В дальнейшем локальную шину VESA заменила шина PCI, а ее дополнением выступила шина AGP.

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Примечание!

Локальная шина не заменяет собой прежних стандартов, а дополняет их. Основными шинами компьютера, как и раньше, остаются ISA и EISA, но к ним добавляется один или несколько слотов локальной шины. При этом сохраняется совместимость со старыми платами расширения, а быстродействующие адаптеры устанавливаются в слоты локальной шины, при этом реализуются все их возможности. Таким образом, до настоящего момента наиболее распространенными являются разъемы AGP, PCI и ISA. Более старые платы порой оказываются совместимыми с новыми разъемами, однако все возможности локальных шин AGP и PCI позволяют задействовать только новые модели адаптеров. По мере уменьшения популярности шины ISA и смещения акцентов к интерфейсу LPC роль шины ISA постепенно снижается, а вместо нее используются другие шины.

Быстродействие графического интерфейса пользователя Windows или Linux (такого, как KDE или GNOME) значительно возросло после того, как на смену видеоадаптерам с интерфейсом ISA пришли адаптеры с интерфейсом PCI и AGP.

Источник

Локальные шины

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Современные вычислительные системы характеризуются:

□ стремительным ростом быстродействия микропроцессоров и некоторых внеш­них устройств (так, для отображения цифрового полноэкранного видео с высо­ким качеством необходима пропускная способность 22 Мбайт/с);

□ появлением программ, требующих выполнения большого количества интер­фейсных операций (например программы обработки графики в Windows, мультимедиа).

В этих условиях пропускной способности шин расширения, обслуживающих од­новременно несколько устройств, оказалось недостаточно для комфортной рабо­ты пользователей, поскольку компьютеры стали подолгу «задумываться». Разра­ботчики интерфейсов пошли по пути создания локальных шин, подключаемых непосредственно к шине МП, работающих на тактовой частоте МП (но не на внутренней рабочей его частоте) и обеспечивающих связь с некоторыми ско­ростными внешними по отношению к МП устройствами: основной и внешней памятью, видеосистемами и т. д.

Сейчас существуют три основных стандарта универсальных локальных шин: VLB, PCI и AGP.

Внутримашинные системный и периферийный интерфейсы

Шина VLB(VL-bus, VESA Local Bus) представлена в 1992 году ассоциацией стан­дартов видеоэлектроники (VESA — торговая марка Video Electronics Standards Association) и поэтому часто ее называют шиной VESA. Шина VLB, по существу, является расширением внутренней шины МП для связи с видеоадаптером и реже — с жестким диском, платами мультимедиа, сетевым адаптером. Разрядность шины для данных — 32 бита, для адреса — 30, реальная скорость передачи данных по VLB — 80 Мбайт/с, теоретически достижимая — 132 Мбайт/с (в версии 2 — 400 Мбайт/с).

Недостатки шины VLB:

□ ориентация только на МП 80386, 80486 (не адаптирована для процессоров класса Pentium);

□ жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту до 33 МГц);

□ малое количество подключаемых устройств — к шине VLB может подклю­чаться только 4 устройства;

□ отсутствует арбитраж шины — могут быть конфликты между подключаемы­ми устройствами.

Шина PCI(Peripheral Component Interconnect, соединение внешних компонен­тов) — самый распространенный и универсальный интерфейс для подключения различных устройств. Разработана в 1993 году фирмой Intel. Шина PCI являет­ся намного более универсальной, чем VLB; допускает подключение до 10 уст­ройств; имеет свой адаптер, позволяющий ей настраиваться на работу с любым МП от 80486 до современных Pentium. Тактовая частота PCI — 33 МГц, разряд­ность — 32 разряда для данных и 32 разряда для адреса с возможностью расшире­ния до 64 бит, теоретическая пропускная способность 132 Мбайт/с, а в 64-бито­вом варианте — 264 Мбайт/с. Модификация 2.1 локальной шины PCI работает на тактовой частоте до 66 МГц и при разрядности 64 имеет пропускную способ­ность до 528 Мбайт/с. Осуществлена поддержка режимов Plug and Play, Bus Mastering и автоконфигурирования адаптеров.

Конструктивно разъем шины на системной плате состоит из двух следующих подряд секции по 64 контакта (каждая со своим ключом). С помощью этого интер­фейса к материнской плате подключаются видеокарты, звуковые карты, модемы, контроллеры SCSI и другие устройства. Как правило, на материнской плате име­ется несколько разъемов PCI. Шина PCI, хотя и является локальной, выполняет и многие функции шины расширения. Шины расширения ISA, EISA, MCA (а она совместима с ними) при наличии шины PCI подключаются не непосредственно к МП (как это имеет место при использовании шины VLB), а к самой шине PCI (через интерфейс расширения). Благодаря такому решению шина является незави­симой от процессора (в отличие от VLB) и может работать параллельно с шиной процессора, не обращаясь к ней за запросами. Таким образом, загрузка шины процессора существенно снижается. Например, процессор работает с системной памятью или с кэш-памятью, а в это время по сети на жесткий диск пишется информация. Конфигурация системы с шиной PCI показана на рис. 5.8.

Шина AGP(Accelerated Graphics Port — ускоренный графический порт) — интер­фейс для подключения видеоадаптера к отдельной магистрали AGP, имеющей

Глава 5. Микропроцессоры и системные платы

выход непосредственно на системную память. Разработана шина на основе стандар­та PCI v2.1. Шина AGP может работать с частотой системной шины до 133 МГц и обеспечивает высочайшую скорость передачи графических данных. Ее пиковая пропускная способность в режиме четырехкратного умножения AGP4x (передают­ся 4 блока данных за один такт) имеет величину 1066 Мбайт/с, а в режиме восьми­кратного умножения AGP8x — 2112 Мбайт/с. По сравнению с шиной PCI, в шине AGP устранена мультиплексированность линий адреса и данных (в PCI для уде­шевления конструкции адрес и данные передаются по одним и тем же линиям) и усилена конвейеризация операций чтения-записи, что позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Рис. 5.8. Конфигурация системы с шиной PCI

Шина AGP имеет два режима работы: DMAи Execute.В режиме DMA основ­ной памятью является память видеокарты. Графические объекты хранятся в сис­темной памяти, но перед использованием копируются в локальную память кар­ты. Обмен ведется большими последовательными пакетами. В режиме Execute системная память и локальная память видеокарты логически равноправны. Гра­фические объекты не копируются в локальную память, а выбираются непосред­ственно из системной. При этом приходится выбирать из памяти относительно малые случайно расположенные куски. Поскольку системная память выделяется динамически, блоками по 4 Кбайт, в этом режиме для обеспечения приемлемого быстродействия предусмотрен механизм, отображающий последовательные адре­са фрагментов на реальные адреса 4-килобайтовых блоков в системной памяти. Эта процедура выполняется с использованием специальной таблицы (Graphic Address Re-mapping Table или GART), расположенной в памяти. Интерфейс выполнен в виде отдельного разъема, в который устанавливается AGP-видео-адаптер. Конфигурация системы с шиной AGP показана на рис. 5.9.

Внутримашинные системный и периферийный интерфейсы

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шина

Рис. 5.9. Конфигурация системы с шиной AGP

Все сказанное выше в отношении шин обобщается в табл. 5.4. Таблица 5.4. Основные характеристики шин

Источник

Что такое локальная шина?

В данном разделе мы рассмотрим вопросы, связанные с использованием современных системных локальных шин для персональных компьютеров (ПК или, по английски, PC), дадим их сравнительную характеристик и перейдем к проблемам использования шины PCI, так именно по данная шина занимает лидирующее положение на рынке настольных ПК.

Прежде, чем начать обзор шин для персональных компьютеров, необходимо сказать несколько слов о том, что представляет собой системная шина, и для чего она нужна в компьютере. Шина, в самом простом случае, есть множество проводников для соединения различных компонентов микрокомпьютера в единую систему таким образом, чтобы можно было согласовать их работу. Основной обязанностью системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами. Таким образом, системную шину можно представить как совокупность сигнальных линий, объединенных по их назначению:

Обзор локальных шин ПК

Существует множество системных шин, в том числе и локальных, для PC и других типов компьютеров. Перечислим основные их них:

Начнем по порядку, с шины S-100. Эта шина была создана для 8-разрядных микропроцессоров и различных промышленных приложений. Типичные ее характеристики были такие:

В свое время, шина S-100 была очень популярна для широкого диапазона периферийных плат, она входила в состав плат памяти, устройств последовательного и параллельного интерфейсов, плат контроллеров гибких магнитных дисков, видео-плат, плат музыкальных синтезаторов и т.д. S-100 обеспечивала 16 линий данных, 16 линий адреса (при этом максимальное адресное пространство составляло 64Кбайт), 3 линии питания, 8 линий для прерываний и 39 управляющих линий. Эта шина использовалась для микропроцессоров Intel 8080, Zilog Z-80 и Motorola 6500 и 6800. Некоторые фирмы создали на базе S-100 свои стандарты подобной шины.

Одним из таких примеров может служить стандарт шины S-100/IEEE696, которой разрабатывался в 1983 году. Полученная шина имела следующие характеристики:

Полная спецификация этой шины включает до 100 сигналов. Рабочая частота при этом достигает 10 МГц. Шина S-100 и ее модификации нашли применение при разработках небольших промышленных приложений. Основными достоинствами этой шины являются низкая цена и поддержка шины большим числом промышленных разработчиков.

Шина ISA для IBM PC AT имеет следующие параметры:

А теперь о шине MC. Фирма IBM, движимая не столько недовольством шиной ISA, сколько горечью потери лидерства на рынке PC ее имени, в 1987г. предприняла попытку изменить положение и выпустила систему PS/2. В компьютерах PS/2 все было по-новому, в частности принципиально новой была системная шина MicroChannel (или МСА). Достаточно быстрая (до 20 МГц, до 76 Мбайт/с) и широкая (32 бита), шина MicroChannel содержала рад удачных архитектурных решений и вполне могла бы бороться за лидерство среди системных шин. Шина MicroChannel обладает следующими особенностями:

Можно с уверенностью назвать ряд приложений, в которых VME-системы будут доминировать еще не один год:

Локальная шина PCI

Общие характеристики всех перечисленных локальных шин наглядно представлены в виде следующей таблицы:

ПараметрыISAEISAVL-BusPCIFuturebusSCSINubusMCAM-IISbusMbusVME
Рабочая частота (МГц)88-33до 33до 33CPU5-101010-20CPU20-2540-50CPU
Пропускная способность (МБайт/сек)28805080102020648020040
Burst Mode (МБайт/сек)4331321323.2 ГБайт/сек10 (20-fast)407680320320 (64-bit)
Разрядность (битов)163232(64)32(64)32-256323216;3232646432;64
Макс. кол-во подключ. устройств615(10)410147-151521621

Литература

Что такое локальная шина. Смотреть фото Что такое локальная шина. Смотреть картинку Что такое локальная шина. Картинка про Что такое локальная шина. Фото Что такое локальная шинаИсточник: http://ac.cs.nstu.ru.

Источник

Что такое локальная шина

В вычислительной системе, состоящей из множества подсистем, необходим механизм для их взаимодействия. Эти подсистемы должны быстро и эффективно обмениваться данными. Например, процессор, с одной стороны, должен быть связан с памятью, с другой стороны, необходима связь процессора с устройствами ввода/вывода. Одним из простейших механизмов, позволяющих организовать взаимодействие различных подсистем, является единственная центральная шина, к которой подсоединяются все подсистемы. Доступ к такой шине разделяется между всеми подсистемами. Подобная организация имеет два основных преимущества: низкая стоимость и универсальность. Поскольку такая шина является единственным местом подсоединения для разных устройств, новые устройства могут быть легко добавлены, и одни и те же периферийные устройства можно даже применять в разных вычислительных системах, использующих однотипную шину. Стоимость такой организации получается достаточно низкой, поскольку для реализации множества путей передачи информации используется единственный набор линий шины, разделяемый множеством устройств.

Главным недостатком организации с единственной шиной является то, что шина создает узкое горло, ограничивая, возможно, максимальную пропускную способность ввода/вывода. Если весь поток ввода/вывода должен проходить через центральную шину, такое ограничение пропускной способности весьма реально. В коммерческих системах, где ввод/вывод осуществляется очень часто, а также в суперкомпьютерах, где необходимые скорости ввода/вывода очень высоки из-за высокой производительности процессора, одним из главных вопросов разработки является создание системы нескольких шин, способной удовлетворить все запросы.

Одна из причин больших трудностей, возникающих при разработке шин, заключается в том, что максимальная скорость шины главным образом лимитируется физическими факторами: длиной шины и количеством подсоединяемых устройств (и, следовательно, нагрузкой на шину). Эти физические ограничения не позволяют произвольно ускорять шины. Требования быстродействия (малой задержки) системы ввода/ввывода и высокой пропускной способности являются противоречивыми. В современных крупных системах используется целый комплекс взаимосвязанных шин, каждая из которых обеспечивает упрощение взаимодействия различных подсистем, высокую пропускную способность, избыточность (для увеличения отказоустойчивости) и эффективность.

Традиционно шины делятся на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода/вывода. Шины ввода/вывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств, и обычно следуют одному из шинных стандартов. Шины процессор-память, с другой стороны, сравнительно короткие, обычно высокоскоростные и соответствуют организации системы памяти для обеспечения максимальной пропускной способности канала память-процессор. На этапе разработки системы, для шины процессор-память заранее известны все типы и параметры устройств, которые должны соединяться между собой, в то время как разработчик шины ввода/вывода должен иметь дело с устройствами, различающимися по задержке и пропускной способности.

Как уже было отмечено, с целью снижения стоимости некоторые компьютеры имеют единственную шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. Персональные компьютеры, как правило, строятся на основе одной системной шины в стандартах ISA, EISA или MCA. Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к двухуровневой организации шин в персональных компьютерах на основе локальной шины. Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VL-Bus и PCI.

Рассмотрим типичную транзакцию на шине. Шинная транзакция включает в себя две части: посылку адреса и прием (или посылку) данных. Шинные транзакции обычно определяются характером взаимодействия с памятью: транзакция типа «Чтение» передает данные из памяти (либо в ЦП, либо в устройство ввода/вывода), транзакция типа «Запись» записывает данные в память. В транзакции типа «Чтение» по шине сначала посылается в память адрес вместе с соответствующими сигналами управления, индицирующими чтение. Память отвечает, возвращая на шину данные с соответствующими сигналами управления. Транзакция типа «Запись» требует, чтобы ЦП или устройство в/в послало в память адрес и данные и не ожидает возврата данных. Обычно ЦП вынужден простаивать во время интервала между посылкой адреса и получением данных при выполнении чтения, но часто он не ожидает завершения операции при записи данных в память.

Разработка шины связана с реализацией ряда дополнительных возможностей (рисунок 5.43). Решение о выборе той или иной возможности зависит от целевых параметров стоимости и производительности. Первые три возможности являются очевидными: раздельные линии адреса и данных, более широкие (имеющие большую разрядность) шины данных и режим групповых пересылок (пересылки нескольких слов) дают увеличение производительности за счет увеличения стоимости.

В настоящее время используются два типа шин, отличающиеся способом коммутации: шины с коммутацией цепей (circuit-switched bus) и шины с коммутацией пакетов (packet-switched bus), получившие свои названия по аналогии со способами коммутации в сетях передачи данных. Шина с коммутацией пакетов при наличии нескольких главных устройств шины обеспечивает значительно большую пропускную способность по сравнению с шиной с коммутацией цепей за счет разделения транзакции на две логические части: запроса шины и ответа. Такая методика получила название «расщепления» транзакций (split transaction). (В некоторых системах такая возможность называется шиной соединения/разъединения (connect/disconnect) или конвейерной шиной (pipelined bus). Транзакция чтения разбивается на транзакцию запроса чтения, которая содержит адрес, и транзакцию ответа памяти, которая содержит данные. Каждая транзакция теперь должна быть помечена (тегирована) соответствующим образом, чтобы ЦП и память могли сообщить что есть что.

Шина с коммутацией цепей не делает расщепления транзакций, любая транзакция на ней есть неделимая операция. Главное устройство запрашивает шину, после арбитража помещает на нее адрес и блокирует шину до окончания обслуживания запроса. Большая часть этого времени обслуживания при этом тратится не на выполнение операций на шине (например, на задержку выборки из памяти). Таким образом, в шинах с коммутацией цепей это время просто теряется. Расщепленные транзакции делают шину доступной для других главных устройств пока память читает слово по запрошенному адресу. Это, правда, также означает, что ЦП должен бороться за шину для посылки данных, а память должна бороться за шину, чтобы вернуть данные. Таким образом, шина с расщеплением транзакций имеет более высокую пропускную способность, но обычно она имеет и большую задержку, чем шина, которая захватывается на все время выполнения транзакции. Транзакция называется расщепленной, поскольку произвольное количество других пакетов или транзакций могут использовать шину между запросом и ответом.

Рис. 5.43. Основные возможности шин

Асинхронная шина, с другой стороны, не тактируется. Вместо этого обычно используется старт-стопный режим передачи и протокол «рукопожатия» (handshaking) между источником и приемником данных на шине. Эта схема позволяет гораздо проще приспособить широкое разнообразие устройств и удлинить шину без беспокойства о перекосе сигналов синхронизации и о системе синхронизации. Если может использоваться синхронная шина, то она обычно быстрее, чем асинхронная, из-за отсутствия накладных расходов на синхронизацию шины для каждой транзакции. Выбор типа шины (синхронной или асинхронной) определяет не только пропускную способность, но также непосредственно влияет на емкость системы ввода/вывода в терминах физического расстояния и количества устройств, которые могут быть подсоединены к шине. Асинхронные шины по мере изменения технологии лучше масштабируются. Шины ввода/вывода обычно асинхронные.

Обычно количество и типы устройств ввода/вывода в вычислительных системах не фиксируются, что позволяет пользователю самому подобрать необходимую конфигурацию. Шина ввода/вывода компьютера может рассматриваться как шина расширения, обеспечивающая постепенное наращивание устройств ввода/вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода/вывода работать независимо. Появление стандартов определяется разными обстоятельствами.

Рис. 5.44. Примеры стандартных шин

Одной из популярных шин персональных компьютеров была системная шина IBM PC/XT, обеспечивавшая передачу 8 бит данных. Кроме того, эта шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа к памяти (DMA). Для подключения плат расширения использовались специальные 62-контактные разъемы. При этом системная шина и микропроцессор синхронизировались от одного тактового генератора с частотой 4.77 МГц. Таким образом теоретическая скорость передачи данных могла достигать немногим более 4 Мбайт/с.

С появлением процессоров i386, i486 и Pentium шина ISA стала узким местом персональных компьютеров на их основе. Новая системная шина EISA (Extended Industry Standard Architecture), появившаяся в конце 1988 года, обеспечивает адресное пространство в 4 Гбайта, 32-битовую передачу данных (в том числе и в режиме DMA), улучшенную систему прерываний и арбитраж DMA, автоматическую конфигурацию системы и плат расширения. Устройства шины ISA могут работать на шине EISA.

Шина MCA также обеспечивает 32-разрядную передачу данных, тактируется частотой 10 МГц, имеет средства автоматического конфигурирования и арбитража запросов. В отличие от EISA она не совместима с шиной ISA и используется только в компьютерах компании IBM.

Шина PCI (Peripheral Component Interconnect) также, как и шина VL-bus, поддерживает 32-битовый канал передачи данных между процессором и периферийными устройствами, работает на тактовой частоте 33 МГц и имеет максимальную пропускную способность 120 Мбайт/с. При работе с процессорами i486 шина PCI дает примерно те же показатели производительности, что и шина VL-bus. Однако, в отличие от последней, шина PCI является процессорно независимой (шина VL-bus подключается непосредственно к процессору i486 и только к нему). Ee легко подключить к различным центральным процессорам. В их числе Pentium, Alpha, R4400 и PowerPC.

Шина SBus (известная также как стандарт IEEE-1496) имеет 32-битовую и 64-битовую реализацию, работает на частоте 20 и 25 МГц и имеет максимальную скорость передачи данных в 32-битовом режиме равную соответственно 80 или 100 Мбайт/с. Шина предусматривает режим групповой пересылки данных с максимальным размером пересылки до 128 байт. Она может работать в двух режимах передачи данных: режиме программируемого ввода/вывода и в режиме прямого доступа к виртуальной памяти (DVMA). Последний режим особенно эффективен при передаче больших блоков данных.

Шина MBus работает на тактовой частоте 50 МГц в синхронном режиме с мультиплексированием адреса и данных. Общее число сигналов шины равно 100, а разрядность шины данных составляет 64 бит. По шине передаются 36-битовые физические адреса. Шина обеспечивает протокол поддержания когерентного состояния кэш-памяти нескольких (до четырех) процессоров, имеет максимальную пропускную способность в 400 Мбайт/с, а типовая скорость передачи составляет 125 Мбайт/с. Отличительными свойствами шины MBus являются: возможность увеличения числа процессорных модулей, поддержка симметричной мультипроцессорной обработки, высокая пропускная способность при обмене с памятью и подсистемой ввода/вывода, открытые (непатентованные) спецификации интерфейсов.

В современных компьютерах часто применяются и фирменные (запатентованные) шины, обеспечивающие очень высокую пропускную способность для построения многопроцессорных серверов. Одной из подобных шин является системная шина POWERpath-2, которая применяется в суперсервере Chellenge компании Silicon Graphics. Она способна поддерживать эффективную работу до 36 процессоров MIPS R4400 (9 процессорных плат с четырьмя 150 МГц процессорами на каждой плате) с общей расслоенной памятью объемом до 16 Гбайт (коэффициент расслоения памяти равен восьми). POWERpath-2 имеет разрядность данных 256 бит, разрядность адреса 40 бит, и работает на частоте 50 МГц с пониженным напряжением питания. Она поддерживает методику расщепления транзакций, причем может иметь до восьми отложенных транзакций чтения одновременно. При этом арбитраж шины адреса и шины данных выполняется независимо. POWERpath-2 поддерживает протокол когерентного состояния кэш-памяти каждого процессора в системе.

Одной из наиболее популярных шин ввода-вывода в настоящее время является шина SCSI.

Начальный стандарт 1986 года, известный теперь под названием SCSI-1, определял рабочие спецификации протокола шины, набор команд и электрические параметры. В 1992 году этот стандарт был пересмотрен с целью устранения недостатков первоначальной спецификации (особенно в части синхронного режима передачи данных) и добавления новых возможностей повышения производительности, таких как «быстрый режим» (fast mode), «широкий режим» (wide mode) и помеченные очереди. Этот пересмотренный стандарт получил название SCSI-2 и в настоящее время используется большинством поставщиков вычислительных систем.

Первоначально SCSI предназначался для использования в небольших дешевых системах и поэтому был ориентирован на достижение хороших результатов при низкой стоимости. Характерной его чертой является простота, особенно в части обеспечения гибкости конфигурирования периферийных устройств без изменения организации основного процессора. Главной особенностью подсистемы SCSI является размещение в периферийном оборудовании интеллектуального контроллера.

Для достижения требуемого высокого уровня независимости от типов периферийных устройств в операционной системе основной машины, устройства SCSI представляются имеющими очень простую архитектуру. Например, геометрия дискового накопителя представляется в виде линейной последовательности одинаковых блоков, хотя в действительности любой диск имеет более сложную многомерную геометрию, содержащую поверхности, цилиндры, дорожки, характеристики плотности, таблицу дефектных блоков и множество других деталей. В этом случае само устройство или его контроллер несут ответственность за преобразование упрощенной SCSI модели в данные для реального устройства.

Стандарт SCSI-2 определяет в частности различные режимы: Wide SCSI, Fast SCSI и Fast-and-Wide SCSI. Стандарт SCSI-1 определяет построение периферийной шины на основе 50-жильного экранированного кабеля, описывает методы адресации и электрические характеристики сигналов. Шина данных SCSI-1 имеет разрядность 8 бит, а максимальная скорость передачи составляет 5 Мбайт/сек. Fast SCSI сохраняет 8-битовую шину данных и тем самым может использовать те же самые физические кабели, что и SCSI-1. Он отличается только тем, что допускает передачи со скоростью 10 Мбайт/сек в синхронном режиме. Wide SCSI удваивает либо учетверяет разрядность шины данных (либо 16, либо 32 бит), допуская соответственно передачи со скоростью либо 10, либо 20 Мбайт/сек. В комбинации Fast-and-Wide SCSI возможно достижение скоростей передачи 20 и 40 Мбайт/сек соответственно.

Однако поскольку в обычном 50-жильном кабеле просто не хватает жил, комитет SCSI решил расширить спецификацию вторым 66-жильным кабелем (так называемый B-кабель). B-кабель имеет дополнительные линии данных и ряд других сигнальных линий, позволяющие реализовать режим Fast-and-Wide.

В реализации режима Wide SCSI предложена также расширенная адресация, допускающая подсоединение к шине до 16 устройств (вместо стандартных восьми). Это значительно увеличивает гибкость подсистемы SCSI, правда приводит к появлению дополнительных проблем, связанных с эффективностью ее использования.

Реализация режимов Wide-SCSI и Fast-and-Wide SCSI до 1994 года редко использовалась, поскольку эффективность их применения не была достаточно высокой. Однако широкое распространение дисковых массивов и дисковых накопителей со скоростью вращения 7200 оборотов в минуту делают эту технологию весьма актуальной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *