Что такое латентность cl16

Что такое латентность оперативной памяти и что она означает?

Приветствую вас уважаемые гости! Сегодня поговорим про латентность оперативной памяти – что это такое, какая бывает, как на нее влияют тайминги и что значит это в практическом плане.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Как работает оперативная память

Структурно любая планка оперативки представляет собой своего рода матрицу, разделенную на строчки и столбцы. Каждая ячейка может иметь значение 1 (полный заряд) или 0 (полный разряд). По сути, любая такая планка – своеобразная таблица, состоящая из множества микроскопических конденсаторов.

Каждый элемент в оперативке имеет собственный уникальный адрес, по которому к нему обращаются напрямую процессор или периферические устройства.

Кроме того, конденсаторы сгруппированы по банкам, число которых зависит от плотности ячеек. На открытие строки в одном банке уходит больше времени, чем если обратиться к другому банку, так как используемую строку сначала нужно закрыть. Применяется принцип чередования строк, когда новая строка открывается в новом банке.

Что значит латентность у модуля памяти

Дословное определение этого параметра ОЗУ – «задержка», то есть время, необходимое на чтение, запись и копирование данных.

Несмотря на высокое быстродействие современных компьютеров, все действия не выполняются мгновенно. По-другому такие задержки называют таймингами и для удобства пользователей наносят такие характеристики на шильдике, который должен быть наклеен согласно нормативам(правда это, не всегда встречается). Например, так: 4-4-4-6.Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16Каждая цифра в этой маркировке обозначает время в миллисекундах, которое проходит перед началом выполнения команды.

Здесь идут в ряд четыре типа латентности:

Чем выше тактовая частота ОЗУ, тем больше и тайминги у нее будут.

Поэтому у современной памяти возможны значения cl 11, cl15, cl 16 и даже cl19. Например, для планки памяти DDR3 с тактовой частотой 1333 МГц оптимальным значением считается CL 9.

У ДДР4 с частотой 2800 МГц средние значения латентности 14-15. К слову, в этом случае речь идет о так называемой CAS-латентности, то есть задержке между отправкой в ОЗУ адреса столбца данных и началом передачи данных – время, необходимое для чтения первого бита.

Детальнее про значения латентности в оперативной памяти и какие из них лучше читайте скоро на блоге.

Настройка латентности

Именно данная цифра (CL) представляет наибольший интерес в практическом плане, поэтому часто в маркировке указывают только ее.

Для того, чтобы узнать более детальную информацию об интервалах задержки оперативки, приходится искать на сайте производителя ее полную спецификацию.Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16Информация о латентности записана в самой планке оперативной памяти в микросхеме SPD, который есть в любом модуле ОЗУ. Как правило, при сборке компьютера не нужно выполнять дополнительных настроек в BIOS: предусмотренная производителем латентность выставляется автоматически.

Все, что нужно сделать пользователю – только правильно смонтировать модули ОЗУ в подходящие слоты.

Впрочем, в случае необходимости тайминги таки можно настроить, для чего БИОС предоставляет ряд возможностей пользователю. Для этого используется функция DRAM Timings, с помощью которой можно задать значения четырех основных значений латентности.

При установке режима AUTO будут использованы настройки по умолчанию – те, на которых планка работает с оптимальной производительностью.

Самостоятельная установка таймингов может понадобиться при разгоне модуля памяти: так как наблюдается обратная взаимосвязь, меньшая латентность приводит к ускорению работы ОЗУ.

Кроме того, это может понадобиться при попытке подружить пару немного отличающихся по параметрам планок оперативной памяти, чтобы заставить их работать в двухканальном режиме. С другой стороны, увеличение задержек немного замедляет работу памяти, но делает ее более стабильной.

Такие «танцы с бубном» рекомендуется проводить пользователям, которые твердо знают, что именно они делают и зачем.

Если же вы пока не на «Ты» с компьютерным железом и еще не скоро будете в нем хорошо разбираться, рекомендую установить латентность по умолчанию. А еще советую ознакомиться с публикациями «На что влияет частота оперативной памяти» и «Что это — поддержка ECC оперативной памяти».

Напоминаю, что делясь статьями этого блога в социальных сетях, вы способствуете его продвижению, что позволит мне публиковать еще больше полезных инструкций. Чтобы не пропустить новость, подпишитесь на рассылку уведомлений по электронной почте. А на сегодня все. Всем до завтра!

Источник

Начну с первого поколения DDR, которое появилось ровно 20 лет назад в 2001 году. Как первое поколение Double Data Rate памяти, её частоты понемногу росли год от года. И к 400 МГц или спецификации DDR400 (PC-3200) первое поколение этого типа памяти можно считать, что созрело.

реклама

DDR1 использовалась с Pentium 4, c Athlon XP и даже Athlon 64 первой волны, которые устанавливались в Socket 754 и 939. Были, естественно, и оверклокерские модули памяти с частотой, превышающей 400 МГц. Память, под конец своего развития, доросла до 600 и в отдельных случаях до 700 МГц.

Нормальными и быстрыми таймингами считались цифры 2-2-2-5 на 400 МГц. Память чуть похуже или золотая середина работала с таймингами 2.5-3-3-5, а вся остальная или медленная на всех тройках: 3-3-3-6. Я нашел в интернете несколько скриншотов работы скоростной памяти на частоте 500 и 700 МГц. Посмотрите на её латентность.

реклама

С 2004 года начала появляться память второго поколения. За пару лет она достигла своих зрелых частот и её стандартной и эффективной частотой работы можно назвать 800 МГц. Конечно, как и с DDR1 производители скоростных комплектов не сидели сложа руки, появились наборы, работающие на 1066 МГц, 1200 и даже 1300 МГц. Скоростные модули памяти на 800 МГц работали с таймингами 4-4-4-12, а подавляющее большинство уже на всех пятерках 5-5-5-18. Третий сорт довольствовался шестерками соответственно.

реклама

На 800 МГц при таймингах 5-5-5-18 латентность составляет 82.5 нс, но в некоторых случаях она доходила до 90 и даже 100 нс. На 1000 МГц ситуация несколько улучшалась и можно было надеяться на цифры менее 70 нс.

В 2008 году появились первые планки памяти стандарта DDR3. Сначала их примерили процессоры на Intel Socket 775, а затем и AMD AM3. Стартовало третье поколение DDR памяти с 800 МГц, хотя более распространенными были 1066 и 1333 МГц планки. Для таких частот нормальными таймингами считались 9-9-9-24.

С появлением народных процессоров нового поколения Sandy Bridge частота DDR3 памяти подросла до 2133 МГц. На такой частоте самые скоростные модули работали на 7 и 8-х, а подавляющее большинство на 9 и 10.

реклама

Sandy Bridge вернул латентность в прежнее русло и она стала меньше 50 нс. Потом появились Ivy Bridge, Haswell, где частота выросла до 2800, 3000 и в отдельных случаях до 3200 МГц. Для таких частот тайминги подросли до значений 12-12-12.

На 2600 МГц память стандарта DDR3 с таймингами 11-12-11-32 демонстрирует латентность порядка 40.6 нс.

С 2014 года началось шествие нового стандарта оперативной памяти четвертого поколения. В этот раз начало новому стандарту дала не мейнстрим платформа, а HEDT Socket 2011 от Intel. Раскачиваться DDR4 начала с отметки 2133 МГц, хотя сразу же был доступен и вариант с 2400 МГц. Тайминги памяти подросли до 15-15-15-36.

Латентность в таких условиях равнялась 60 наносекундам. Далее память медленно, но верно покорила отметку в 3 ГГц, и продолжила дальнейший рост.

А спустя год, цифры порядка четырех гигагерц стали уже нормой. Вариант выборов таймингов в это время стал очень обширным. Все благодаря микросхемам памяти производства Samsung. Память на одной и той же частоте могла работать как с таймингами 16-16-16, так и 20-20-20.

На скриншоте выше показан очень хороший результат работы оперативной памяти стандарта DDR4 на частоте 4 ГГц с таймингами 16-16-16, латентность при этом составляет 36,2 нс. Рост частот продолжился и далее, благодаря компании Hynix появились модули памяти с частотой 5000 и 5333 МГц. Тайминги на такой частоте уже подросли до 20-24 по Cas Latency.

Но к концу жизни памяти DDR4 её уделом стала платформа AMD. На 5000 МГц с таймингами 18-26-24-42 латентность на ней составляет 58.1 нс.

И вот буквально несколько дней назад мы все стали свидетелями появления нового стандарта памяти – DDR5, который принесли нам процессоры Intel Alder lake для Socket LGA1700. Память нового стандарта стартовала с отметки 4800 МГц с таймингами 40-40-40.

С заниженными до минимальных значений 36-36-36 на 4800 МГц DDR5 демонстрирует латентность порядка 86.3 нс, что конечно же многовато.

На 6400 МГц с таймингами 40-40-40 латентность увеличивается до 92.5 нс. Подводя итог можно сказать, что DDR5 еще только в начале своего пути и пока сыровата. Должна пройти пара лет, и мы увидим привычные нам цифры латентности менее 50 нс, а может и не увидим, смотря в какую сторону пойдет прогресс и развитие.

Источник

Что такое тайминги и как они влияют на скорость оперативной памяти

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Содержание

Содержание

Выбор оперативной памяти в игровую сборку может обернуться кошмаром, если начать разбираться в тонкостях ее работы. Требования современных игровых и рабочих задач диктуют свои условия, поэтому память — теперь чуть ли не самая важная и сложная часть в сборке компьютера. Среди многочисленных моделей нужно выбрать единственный подходящий вариант и это пугает. Причем самое сложное в этом — почему память с меньшей частотой работает быстрее и показывает больше кадров в играх, чем та, у которой частота выше. Для этого нужно разобраться, в чем все-таки измеряется скорость памяти и какие параметры влияют на нее.

Мощность компьютера измеряется величиной FLOPS, которая обозначает количество вычислительных операций за секунду. По причине того, что компьютеры могут одновременно выполнять миллионы операций, к флопсам добавляют приставку «гига».

В привычной же обстановке мы можем путать мощность и частоту, поэтому считаем производительность компьютеров не гигафлопсами, а максимальной рабочей частотой. Это проще в рядовых ситуациях, когда говорящие знают тему хорошо и соотносят мощность с герцами в уме автоматически.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

В то же время, такое языковое упрощение вносит коррективы в понимание практической части вопроса. Вырывая контекст из форумов, рядовой пользователь и правда думает, что мощность памяти можно выразить в герцах. Просто потому, что гонка за частотой стала трендом среди любителей и энтузиастов. Это и мешает неопытному человеку понять, почему его высокочастотный процессор может проиграть тому, у которого на несколько сотен герц меньше. Все просто — у одного два ядра и четыре потока, а у другого четыре настоящих. И это большая разница.

Оперативная память и ее скорость

Оперативная память состоит из тысяч элементов, связанных между собой в чипах-микросхемах. Их называют банками (bank), которые хранят в себе строчки и столбцы с электрическим зарядом. Сам электрический заряд — это информация (картинки, программы, текст в буфере обмена и много чего еще). Как только системе понадобились данные, банка отдает заряд и ждет команды на заполнение новыми данными. Этим процессом руководит контроллер памяти.

Для аналогии, сравним работу оперативной памяти и работу кафе. Чипы можно представить в виде графинов с томатным соком. Каждый наполнен соком и мякотью спелых помидоров (электрический заряд, информация). В кафе приходит клиент (пользователь компьютера) и заказывает сок (запускает игру). Бармен (контроллер, тот, кто управляет банками) принимает заказ, идет на кухню (запрашивает информацию у банок), наливает сок (забирает игровые файлы) и несет гостю, а затем возвращается и заполняет графин новым соком (новой информацией о том, что запустил пользователь). Так до бесконечности.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Тайминги — качество

Работа памяти, вопреки стереотипу, измеряется не только герцами. Быстроту памяти принято измерять в наносекундах. Все элементы памяти работают в наносекундах. Чем чаще они разряжаются и заряжаются, тем быстрее пользователь получает информацию. Время, за которое банки должны отрабатывать задачи назвали одним словом — тайминг (timing — расчет времени, сроки). Чем меньше тактов (секунд) в тайминге, тем быстрее работают банки.

Такты. Если нам необходимо забраться на вершину по лестнице со 100 ступеньками, мы совершим 100 шагов. Если нам нужно забраться на вершину быстрее, можно идти через ступеньку. Это уже в два раза быстрее. А можно через две ступеньки. Это будет в три раза быстрее. Для каждого человека есть свой предел скорости. Как и для чипов — какие-то позволяют снизить тайминги, какие-то нет.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Частота — количество

Теперь, что касается частоты памяти. В работе ОЗУ частота влияет не на время, а на количество информации, которую контроллер может утащить за один подход. Например, в кафе снова приходит клиент и требует томатный сок, а еще виски со льдом и молочный коктейль. Бармен может принести сначала один напиток, потом второй, третий. Клиент ждать не хочет. Тогда бармену придется нести все сразу за один подход. Если у него нет проблем с координацией, он поставит все три напитка на поднос и выполнит требование капризного клиента.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Аналогично работает частота памяти: увеличивает ширину канала для данных и позволяет принимать или отдавать больший объем информации за один подход.

Тайминги плюс частота — скорость

Соответственно, частота и тайминги связаны между собой и задают общую скорость работы оперативной памяти. Чтобы не путаться в сложных формулах, представим работу тандема частота/тайминги в виде графического примера:

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Разберем схему. На торговом центре есть два отдела с техникой. Один продает видеокарты, другой — игровые приставки. Дефицит игровой техники довел клиентов до сумасшествия, и они готовы купить видеокарту или приставку, только чтобы поиграть в новый Assassin’s Creed. Условия торговли такие: зона ожидания в отделе первого продавца позволяет обслуживать только одного клиента за раз, а второй может разместить сразу двух. Но у первого склад с видеокартами находится в два раза ближе, чем у второго с приставками. Поэтому он приносит товар быстрее, чем второй. Однако, второй продавец будет обслуживать сразу двух клиентов, хотя ему и придется ходить за товаром в два раза дальше. В таком случае, скорость работы обоих будет одинакова. А теперь представим, что склад с приставками находится на том же расстоянии, что и у первого с видеокартами. Теперь продавец консолей начнет работать в два раза быстрее первого и заберет себе большую часть прибыли. И, чем ближе склад и больше клиентов в отделе, тем быстрее он зарабатывает деньги.

Так, мы понимаем, как взаимодействует частота с таймингами в скорости работы памяти.

Соответственно, чем меньше метров проходит контроллер до банок с электрическим зарядом, тем быстрее пользователь получает информацию. Если частота памяти позволяет доставить больше информации при том же расстоянии, то скорость памяти возрастает. Если частота памяти тянет за собой увеличение расстояния до банок (высокие тайминги), то общая скорость работы памяти упадет.

Сравнить скорость разных модулей ОЗУ в наносекундах можно с помощью формулы: тайминг*2000/частоту памяти. Так, ОЗУ с частотой 3600 и таймингами CL14 будет работать со скоростью 14*2000/3600 = 7,8 нс. А 4000 на CL16 покажет ровно 8 нс. Выходит, что оба варианта примерно одинаковы по скорости, но второй предпочтительнее из-за большей пропускной способности. В то же время, если взять память с частотой 4000 при CL14, то это будет уже 7 нс. При этом пропускная способность станет еще выше, а время доставки информации снизится на 1 нс.

Строение чипа памяти и тайминги

В теории, оперативная память имеет скорость в наносекундах и мегабайтах в секунду. Однако, на практике существует не один десяток таймингов, и каждый задает время на определенную работу в микросхеме.

Они делятся на первичные, вторичные и третичные. В основном, для маркетинговых целей используется группа первичных таймингов. Их можно встретить в характеристиках модулей. Например:

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Вот, как выглядят тайминги на самом деле:

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Их намного больше и каждый за что-то отвечает. Здесь бармен с томатным соком не поможет, но попробуем разобраться в таймингах максимально просто.

Схематика чипов

Микросхемы памяти можно представить в виде поля для игры в морской бой или так:

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

В самом упрощенном виде иерархия чипа это: Rank — Bank — Row — Column. В ранках (рангах) хранятся банки. Банки состоят из строк (row) и столбцов (column). Чтобы найти информацию, контроллеру необходимо иметь координаты точки на пересечении строк и столбцов. По запросу, он активирует нужные строки и находит информацию. Скорость такой работы зависит от таймингов.

Первичные

CAS Latency (tCL) — главный тайминг в работе памяти. Указывает время между командой на чтение/запись информации и началом ее выполнения.

RAS to CAS Delay (tRCD) — время активации строки.

Row Precharge Time (tRP) — прежде чем перейти к следующей строке в этом же банке, предыдущую необходимо зарядить и закрыть. Тайминг обозначает время, за которое контроллер должен это сделать.

Row Active Time (tRAS) — минимальное время, которое дается контроллеру для работы со строкой (время, в течение которого она может быть открыта для чтения или записи), после чего она закроется.

Command Rate (CR) — время до активации новой строки.

Вторичные

Второстепенные тайминги не так сильно влияют на производительность, за исключением пары штук. Однако, их неправильная настройка может влиять на стабильность памяти.

Write Recovery (tWR) — время, необходимое для окончания записи данных и подачи команды на перезарядку строки.

Refresh Cycle (tRFC) — период времени, когда банки памяти активно перезаряжаются после работы. Чем ниже тайминг, тем быстрее память перезарядится.

Row Activation to Row Activation delay (tRRD) — время между активацией разных строк банков в пределах одного чипа памяти.

Write to Read delay (tWTR) — минимальное время для перехода от чтения к записи.

Read to Precharge (tRTP) — минимальное время между чтением данных и перезарядкой.

Four bank Activation Window (tFAW) — минимальное время между первой и пятой командой на активацию строки, выполненных подряд.

Write Latency (tCWL) — время между командой на запись и самой записью.

Refresh Interval (tREFI) — чтобы банки памяти работали без ошибок, их необходимо перезаряжать после каждого обращения. Но, можно заставить их работать дольше без отдыха, а перезарядку отложить на потом. Этот тайминг определяет количество времени, которое банки памяти могут работать без перезарядки. За ним следует tRFC — время, которое необходимо памяти, чтобы зарядиться.

Третичные

Эти тайминги отвечают за пропускную способность памяти в МБ/с, как это делает частота в герцах.

Эти отвечают за скорость чтения:

Эти отвечают за скорость копирования в памяти (tWTR):

Скорость чтения после записи (tRTP):

А эти влияют на скорость записи:

Скорость памяти во времени

Итак, мы разобрались, что задача хорошей подсистемы памяти не только в хранении и копировании данных, но и в быстрой доставке этих данных процессору (пользователю). Будь у компьютера хоть тысяча гигабайт оперативной памяти, но с очень высокими таймингами и низкой частотой работы, по скорости получится уровень неплохого SSD-накопителя. Но это в теории. На самом деле, любая доступная память на рынке как минимум соответствует требованиям JEDEC. А это организация, которая знает, как должна работать память, и делает это стандартом для всех. Аналогично ГОСТу для колбасы или сгущенки.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Стандарты JEDEC демократичны и современные игровые системы редко работают на таких низких настройках. Производители оставляют запас прочности для чипов памяти, чтобы компании, которые выпускают готовые планки оперативной памяти могли немного «раздушить» железо с помощью разгона. Так, появились заводские профили разгона XMP для Intel и DOHCP для AMD. Это «официальный» разгон, который даже покрывается гарантией производителя.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Профили разгона включают в себя информацию о максимальной частоте и минимальных для нее таймингах. Так, в характеристиках часто пишут именно возможности работы памяти в XMP режимах. Например, частоте 3600 МГц и CL16. Чаще всего указывают самый первый тайминг как главный.

Чем выше частота и ниже тайминги, тем круче память и выше производительность всей системы.

Так работает оперативная память с момента ее создания и до нашего времени.

Источник

Что такое и как узнать тайминги (латентность) в оперативной памяти

В этой статье мы разберемся, что такое тайминги оперативной памяти. Узнаем какие параметры латентности лучше для скорости и как их посмотреть на компьютере или ноутбуке. Поймем, как правильно подобрать и выставить тайминги оперативки и на что они влияют. Дам ссылку на калькулятор таймингов и таблицу для основных типов памяти и частот.

Обычно при выборе оперативной памяти для настольного ПК или ноутбука, мы смотрим на объём ОЗУ, тактовую частоту и тип памяти DDR для ее совместимости с материнской платой. Однако у оперативки есть еще такая характеристика, как тайминги или по научному — латентность. И вот на этот параметр обращают внимание только специалисты и продвинутые геймеры.

Да, латентность менее важна, чем объем модуля и его рабочая частота, но при грамотном подходе ее уменьшение может дать пусть и не большое, но все же ускорение работы вашего компьютера. Чем более грамотно и сбалансированно подобраны комплектующие ПК или ноутбука, тем больше может дать прироста в скорости установка памяти с меньшими таймингами.

Чем выше частота и ниже тайминги, тем быстрее работает оперативка.

Разбираемся с основными значениями таймингов

Латентность (от англ. CAS Latency сокращенно CL) в обиходе “тайминг” — это временные задержки, которые возникают при обращении центрального процессора к ОЗУ. Измеряют эти задержки в тактах шины памяти.

Чем меньше значения таймингов, тем быстрее происходит обмен данными между процессором и памятью и значит тем производительней оперативная память.

Каждая временная задержка имеет свое название и отвечает за скорость передачи определенных данных. В технических характеристиках оперативной памяти их записывают в строгой последовательности в виде трех или четырех чисел: CAS Latency, RAS to CAS Delay, RAS Precharge Time и DRAM Cycle Time Tras/Trc (Active to Precharge Delay). Сокращенно это может выглядеть так: CL-RCD-RP-RAS.

Большинство производителей указывают тайминги в маркировке на модулях памяти. Это могут быть 4 цифры, например: 9-9-9-24

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

, или только одна, например CL11

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

. В этом случае имеется ввиду первый параметр, то есть CAS Latency.

Теперь разберемся с этими задержками более подробно.

Для наглядного примера возьмем пару планок памяти DDR3 1600 Мгц по 8 Gb каждая с таймингами 11-11-11-28.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

На планке памяти данная информация хранится в чипе SPD и доступна чипсету материнки. Посмотреть эту информацию можно с помощью специальных утилит, например CPU-Z или HWINFO.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Тайминги памяти в программах CPU-Z и HWINFO

CAS Latency (tCL) — самый главный тайминг в работе памяти, который оказывает наибольшее значение на скорость ее работы. В характеристиках памяти всегда стоит первым. Указывает на промежуток времени, который проходит между подачей команды на чтение/запись информации и началом ее выполнения.

Это время можно измерить в наносекундах. Для этого лучше всего воспользоваться калькулятором. Вводим частоту в Мгц (у нас это 1600) и время задержки (11). На выходе получаем, что время задержки между подачей команды на чтение/запись данных и началом ее выполнения составляет 13.75 наносекунд.

По большому счету остальные задержки малозначительны и при выборе планок памяти достаточно обращать внимание только на этот параметр.

RAS to CAS Delay (tRCD) — задержка от RAS до CAS. Время, которое должно пройти с момента обращения к строке матрицы (RAS), до момента обращения к столбцу матрицы (CAS), в которых хранятся нужные данные.

RAS Precharge Time (tRP) — интервал времени с момента закрытия доступа к одной строке матрицы и началом доступа к другой строке данных.

Row Active Time (tRAS) — пауза, которая нужна памяти, чтобы вернуться в состояние ожидания следующего запроса. Он определяет отношение интервала, в течение которого строка открыта для переноса данных (tRAS — RAS Active time), к периоду, в течение которого завершается полный цикл открытия и обновления ряда (tRC — Row Cycle time), также называемого циклом банка (Bank Cycle Time).

Command Rate — скорость поступления команды. Время с момента активации чипа памяти до момента, когда можно будет обратиться к памяти с первой командой. Часто этот параметр в маркировке памяти не указывается, но всегда есть в программах. Обычно это T1 или T2. 1 или 2 тактовых цикла.

Как изменить

Изменить тайминги можно, как в сторону уменьшения, так и в сторону увеличения при помощи разгона. Для этого необходима тонкая настройка частоты работы модуля и его напряжения. Путем уменьшения или увеличения частоты работы памяти, так же уменьшаются или увеличиваются тайминги. Эти параметры подбираются индивидуально для каждого модуля памяти или наборов памяти.

Вот один из комментариев к памяти, о которой я рассказывал выше ⇓

Память очень достойная! С базовой частоты 1600 mhz удалось разогнать до 2200 mhz с таймингами 11-12-12-28 на напряжении 1.65v.

Разгон по частоте составил 27%, что очень хороший результат. При этом тайминги и напряжение были повышены минимально. Такой разгон довольно заметно сказался на всей скорости работы компьютера.

Весь смысл этого действа, подобрать такие оптимальные характеристики частоты, таймингов и напряжения, чтобы модуль/модули памяти выдавали максимальную скорость работы и при этом стабильно работали в таком режиме. Это требует времени и знаний.

Так же материнка должна поддерживать разгон оперативки. Сейчас есть планки памяти со встроенным XMP профилем. В нем уже прописаны заводские параметры разгона, с которыми память может работать. Вам остается только применить нужный XMP профиль и оперативка запуститься с этими параметрами.

В штатном режиме компьютер получает все настройки оперативной памяти из SPD — микросхемы, которая распаивается на каждом модуле. Но, если есть желание добиться максимальной производительности, целесообразно попробовать изменить тайминги. Конечно, можно сразу приобрести модули с минимальными значениями задержек, но они могут стоить заметно дороже.

Настройки памяти меняются через BIOS персонального компьютера или ноутбука. Универсального ответа на вопрос, как в биосе поменять тайминги оперативной памяти не существует.

Возможности по настройке подсистемы памяти могут сильно различаться на разных материнских платах. У дешевых системных плат и ноутбуков может быть предусмотрена только работа памяти в режиме по умолчанию, а возможности выбирать тайминги оперативной памяти — нет.

В дорогих моделях может присутствовать доступ к большому количеству настроек, помимо частоты и таймингов. Эти параметры называют подтаймингами. Они могут быть полезны при тонкой настройке подсистемы памяти, например, при экстремальном разгоне.

Изменение таймингов позволяет повысить быстродействие компьютера. Для памяти DDR3 это не самый важный параметр и прирост будет не слишком большим, но если компьютер много работает с тяжелыми приложениями, пренебрегать им не стоит. В полной мере это относится и к более современной DDR4.

Заметно больший эффект может принести разгон памяти по частоте, а в этом случае тайминги весьма вероятно придется не понижать, а повышать, чтобы добиться стабильной работы модулей памяти во внештатном режиме. К слову, подобные рекомендации можно встретить при выборе памяти для новых процессоров AMD Ryzen. Тестирования показывают, что для раскрытия потенциала этих процессоров нужна память с максимальными частотами, даже в ущерб таймингам. Вот калькулятор таймингов для процессоров Ryzen.

Стоит отметить, что далеко не во всех случаях настройка подсистемы памяти даст сколько-нибудь заметный результат. Есть приложения, для которых важен только объем оперативной памяти, а тонкий тюнинг задержек даст прирост на уровне погрешности. Судя по результатам независимых тестирований, быструю память любят компьютерные игры, а также программы для работы с графикой и видео-контентом.

Нужно учитывать, что слишком сильное уменьшение задержек памяти может привести к нестабильной работе компьютера и даже к тому, что он откажется запускаться. В этом случае необходимо будет сбросить BIOS на дефолтные настройки или, если вы не умеете этого делать, придется обратиться к специалистам.

Как правильно выставить

Начать, разумеется, стоит с выяснения стандартных настроек, рекомендованных производителем для данного модуля. Как проверить тайминги оперативной памяти, мы рассмотрели ранее. Затем можно посмотреть статистику на интернет ресурсах посвященных разгону, чтобы примерно представлять, чего можно ожидать от конкретного модуля оперативной памяти.

Как отмечалось, неверные значения задержек легко могут привести к невозможности загрузки компьютера, поэтому выясните, как именно осуществляется сброс настроек BIOS. Причем, не только программно, но и аппаратно, на случай, если не будет возможности даже войти в БИОС. Информацию об этом можно найти в документации к материнской плате или в интернете.

Чтобы разобраться, как выставить тайминги оперативной памяти в биосе, обычно не требуется много времени. В первый раз может потребоваться документация, потом все будет проще.

Все изменения таймингов необходимо производить не торопясь, имеет смысл менять по одному параметру и только на такт. После этого важно проверить, сможет ли компьютер стартовать и загрузить операционную систему.

Далее стоит провести тестирование, как система поведет себя под нагрузкой. Для этого можно воспользоваться специализированными программами или просто хорошо нагрузить компьютер, например, запустит на час игру с высокими настройками графики или кодирование видеофайла высокого разрешения. Если компьютер работает стабильно, можно понизить тайминги еще на один такт. Если происходят зависания, появляются сообщения о системных ошибках или программы аварийно завершаются, то нужно отменить изменения и вернуться на такт назад.

Разобравшись, как уменьшить правильно тайминги оперативной памяти ddr3 и более современной ddr4 не стоит сразу приступать к экспериментам. Сначала стоит определить, исходя из особенностей вашего «железа», что предпочтительней: повысить частоты или понизить задержки. Сейчас в большинстве случаев большего эффекта можно достичь за счет повышения тактовых частот.

Что больше влияет на скорость работы оперативной памяти — более низкие тайминги или более высокая частота

Самое важное, что вы должны понять и запомнить, чтобы разобраться в этом вопросе раз и навсегда, это то, что ПРИ ПОВЫШЕНИИ ЧАСТОТЫ, НА КОТОРОЙ РАБОТАЕТ МОДУЛЬ ОЗУ, АВТОМАТИЧЕСКИ ПОВЫШАЮТСЯ И ЗАДЕРЖКИ ПАМЯТИ. При понижении частоты, они уменьшаются. Это хорошо видно при сравнении планок памяти разных поколений.

Для сравнения скорости работы, возьмем два разных типа оперативки. Более старого DDR3 и современного DDR4.

Что такое латентность cl16. Смотреть фото Что такое латентность cl16. Смотреть картинку Что такое латентность cl16. Картинка про Что такое латентность cl16. Фото Что такое латентность cl16

Сравнение таймингов у оперативной памяти DDR4 и DDR3

Сравнить скорость разных модулей ОЗУ в наносекундах можно с помощью формулы ⇓

Тайминг*2000/частоту памяти. Например планка DDR4 с таймингом CL16 будет работать со скоростью 16*2000/3000=10.6 nanosec, а DDR3 с таймингом CL9 со скоростью 9*2000/1600=11.25 nanosec.

Как видно из примера частота работы памяти тоже очень важна. У DDR3 латентность намного ниже, чем у DDR4, но частота работы модуля DDR4 заметно выше DDR3. Хоть не намного, но DDR4 опережает DDR3 по скорости работы. Так же у него еще и большая пропускная способность. У будущей DDR5 я думаю разница в скорости будет еще больше.

Выходит, что тактовая частота оперативки влияет на производительность в большей степени, чем более низкие тайминги. Конечно, если выбор стоит между планками с одинаковой частотой, то лучше выбрать ту, у которой меньшие задержки.

Если кто-то хочет более серьезно разобраться с этим вопросом, вот ссылочка на таблицу по таймингам в Гуглдокс.

Стоит учитывать тайминги и при выборе модулей памяти для многоканального режима. Оптимальным решением будет покупка готового комплекта в котором все планки имеют идентичны характеристики. Если такой возможности нет, то стоит искать модули у которых не только совпадает тактовая частота и организация чипов, но и будут одинаковые тайминги.

Факты

С точки зрения пользователя, информация о таймингах позволяет примерно оценить производительность оперативной памяти до её покупки.

Во времена оперативки DDR и DDR2, таймингам придавалось большое значение, поскольку кэш процессоров был значительно меньше, чем сейчас и приходилось часто обращаться к памяти.

Современные центральные процессоры имеют большие L2 и L3 кэш, что позволяет им гораздо реже обращаться к памяти. В случае маленьких программ, их данные могут целиком помещается в кэш процессора и тогда обращение к памяти вовсе не требуется.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *