Что такое куб в медицине
Туберкулез: формы, симптомы, диагностика, лечение
Туберкулез – это инфекционное заболевание, вызываемое палочкой Коха (Mycobacterium tuberculosis). Патоген чаще всего поражает легкие, но существуют и другие формы: туберкулез костей, суставов, почек, кожи и других органов.
Процент смертности от туберкулеза по всему миру высок, он входит в десятку заболеваний, приводящих к летальным исходам [1]. Это не только медицинская, но и социальная проблема, поскольку на заболеваемость, помимо состояния здоровья, также влияют социальные и экономические причины, качество питания и образ жизни. Ключевыми факторами риска считаются вредные привычки, ослабленная иммунная система и хронический стресс.
Как передается туберкулез
Возбудитель передается от человека к человеку воздушно-капельным путем при чихании и кашле и просто при разговоре, а также иногда контактно (через поврежденную кожу или внутриутробно). Бактерии туберкулеза долго сохраняются активными во внешней среде в плохо проветриваемом помещении и попадают в организм здорового человека через предметы быта и продукты питания.
Заражение туберкулезом еще не означает начало заболевания: оно развивается только у 5-15% инфицированных. До развития первых симптомов может пройти несколько недель или месяцев, и основным фактором риска считается ослабление иммунных сил организма [1].
Классификация туберкулеза
Симптомы туберкулеза
Признаки заражения различаются в зависимости от органа, пораженного микобактерией. Общие симптомы включают утомляемость, сниженную трудоспособность, плохой аппетит, повышенную температуру тела, потерю веса, появление румянца на щеках.
Клинические признаки туберкулеза у детей развиваются быстрее и более выражены. Риск заражения у этой группы пациентов выше. Это связано с возрастными особенностями строения органов и нестойкостью иммунитета ребенка к агрессивным инфекциям. Помимо «взрослых» симптомов у детей также отмечаются капризность, плаксивость, необоснованная беспокойность и нарушения сна.
Диагностика туберкулеза
Это заболевание, особенно закрытая форма, сложно диагностируется. Переход из латентной фазы в активную смазанный, а клинические симптомы не позволяют установить точный диагноз или отсутствуют. В связи с этим решающее значение имеет лабораторная диагностика.
Проба Манту (или туберкулиновая проба). Для проведения этого классического анализа на туберкулез пациенту подкожно в области предплечья вводят очищенный туберкулин – смесь белков, характерных для микобактерий. Оценку иммунологической реакции проводят через 48-72 часов на основании диаметра папулы (узелка над поверхностью кожи) или участка покраснения в месте введения туберкулина. У людей, неинфицированных бактерией, папулы не образуются или их размеры незначительны. К основным недостаткам метода относятся непереносимость туберкулина и ложноположительная реакция у людей, вакцинированных от туберкулеза вакциной БЦЖ.
Квантифероновый тест на туберкулез. Этот современный иммунологический метод позволяет выявить латентный туберкулез, а также туберкулезное поражение других органов. Введения туберкулина не требуется, поэтому этот тест подходит уязвимым группам пациентов (беременные и кормящие женщины, пожилые люди, ВИЧ-инфицированные, люди с непереносимостью туберкулина). Для диагностики используется венозная кровь. Наличие в организме активного туберкулеза обуславливает появление в крови особых белков, входящих в состав микобактерий. Т-лимфоциты реагируют на присутствие этих белков и в результате такой сенсибилизации начинают усиленно вырабатывать интерферон-гамма. Квантифероновый тест основан на измерении уровня интерферона-гамма, повышение которого указывает на наличие туберкулезной инфекции в пробе крови.
Метод T-SPOT.TB. Позволяет диагностировать латентную и активную формы легочного и внелегочного туберкулеза. Для исследования используют венозную кровь. В основе метода лежит оценка количества самих сенсибилизированных Т-лимфоцитов. Он также не дает ложноположительных результатов и подходит уязвимым группам пациентов.
Анализ мокроты. Для проведения теста необходимо собрать утреннюю мокроту, которая отделяется при кашле. Во взятом образце определяют наличие самих микобактерий. Анализ подходит только для диагностики туберкулеза легких.
Анализ мочи. Выявляют изменения параметров, характерные для туберкулеза: появление лейкоцитов, эритроцитов, бактерий, белка, гноя, сдвиг реакции мочи в кислую сторону.
Отрицательные лабораторные анализы не гарантируют отсутствие туберкулеза. Пациенты с подозрением на заболевание проходят флюорографию и/или рентгенографию легких. Для выявления внелегочных форм туберкулеза проводят МРТ, КТ и другие инструментальные исследования. Также применяют биопсию (взятие образца тканей) для микроскопических исследований и посевов на питательные среды.
Дифференциальную диагностику проводят с широким рядом заболеваний в тех случаях, когда ни одно исследование не подтвердило наличие микобактерий, присутствуют атипичные симптомы или отсутствует адекватный ответ на противотуберкулезное лечение.
Лечение туберкулеза
Полное выздоровление не гарантирует отсутствие рецидива заболевания в будущем.
Что такое куб в медицине
Мокрота – отделяемый из легких и дыхательных путей (трахеи и бронхов) патологический секрет. Общий анализ мокроты – лабораторное исследование, которое позволяет оценить характер, общие свойства и микроскопические особенности мокроты и дает представление о патологическом процессе в дыхательных органах.
Клинический анализ мокроты.
Мг/дл (миллиграмм на децилитр).
Какой биоматериал можно использовать для исследования?
Как правильно подготовиться к исследованию?
Общая информация об исследовании
Мокрота – это патологический секрет легких и дыхательных путей (бронхов, трахеи, гортани), который отделяется при откашливании. У здоровых людей мокрота не выделяется. В норме железы крупных бронхов и трахеи постоянно образовывают секрет в количестве до 100 мл/сут., который проглатывается при выделении. Трахеобронхиальный секрет представляет собой слизь, в состав которой входят гликопротеины, иммуноглобулины, бактерицидные белки, клеточные элементы (макрофаги, лимфоциты, слущенные клетки эпителия бронхов) и некоторые другие вещества. Данный секрет обладает бактерицидным эффектом, способствует выведению вдыхаемых мелких частиц и очищению бронхов. При заболеваниях трахеи, бронхов и легких усиливается образование слизи, которая отхаркивается в виде мокроты. У курильщиков без признаков заболеваний органов дыхания также обильно выделяется мокрота.
Клинический анализ мокроты является лабораторным исследованием, которое позволяет оценить характер, общие свойства и микроскопические особенности мокроты. На основании данного анализа судят о воспалительном процессе в органах дыхания, а в некоторых случаях ставят диагноз.
При клиническом исследовании мокроты анализируются такие показатели, как количество мокроты, ее цвет, запах, характер, консистенция, наличие примесей, клеточный состав, количество волокон, определяется присутствие микроорганизмов (бактерий, грибов), а также паразитов.
Мокрота по составу неоднородна. Она может содержать слизь, гной, серозную жидкость, кровь, фибрин, причем одновременное присутствие всех этих элементов не обязательно. Гной образуют скопления лейкоцитов, возникающие в месте воспалительного процесса. Воспалительный экссудат выделяется в виде серозной жидкости. Кровь в мокроте появляется при изменениях стенок легочных капилляров или повреждениях сосудов. Состав и связанные с ним свойства мокроты зависят от характера патологического процесса в органах дыхания.
Микроскопический анализ дает возможность под многократным увеличением рассмотреть присутствие различных форменных элементов в мокроте. Если микроскопическое исследование не выявило наличия патогенных микроорганизмов, это не исключает присутствия инфекции. Поэтому при подозрении на бактериальную инфекцию одновременно рекомендуется выполнять бактериологическое исследование мокроты с определением чувствительности возбудителей к антибиотикам.
Материал для анализа собирается в стерильный одноразовый контейнер. Пациенту необходимо помнить, что для исследования нужна мокрота, выделенная при откашливании, а не слюна и слизь из носоглотки. Собирать мокроту нужно утром до приема пищи, после тщательного полоскания рта и горла, чистки зубов.
Результаты анализа должны оцениваться врачом в комплексе с учетом клиники заболевания, данных осмотра и результатов других лабораторных и инструментальных методов исследования.
Для чего используется исследование?
Когда назначается исследование?
Что означают результаты?
Количество мокроты при разных патологических процессах может составлять от нескольких миллилитров до двух литров в сутки.
Незначительное количество мокроты отделяется при:
Большое количество мокроты может выделяться при:
По изменению количества мокроты иногда можно оценить динамику воспалительного процесса.
Цвет мокроты
Чаще мокрота бесцветная.
Зеленый оттенок может свидетельствовать о присоединении гнойного воспаления.
Различные оттенки красного указывают на примесь свежей крови, а ржавый – на следы распада эритроцитов.
Ярко-желтая мокрота наблюдается при скоплении большого количества эозинофилов (например, при бронхиальной астме).
Черноватая или сероватая мокрота содержит угольную пыль и наблюдается при пневмокониозах и у курильщиков.
Мокроту могут окрашивать и некоторые лекарственные средства (например, рифампицин).
Запах
Мокрота обычно не имеет запаха.
Гнилостный запах отмечается в результате присоединения гнилостной инфекции (например, при абсцессе, гангрене легкого, при гнилостном бронхите, бронхоэктатической болезни, раке легкого, осложнившемся некрозом).
Своеобразный «фруктовый» запах мокроты характерен для вскрывшейся эхинококковой кисты.
Характер мокроты
Слизистая мокрота наблюдается при катаральном воспалении в дыхательных путях, например, на фоне острого и хронического бронхита, трахеита.
Серозная мокрота определяется при отеке легких вследствие выхода плазмы в просвет альвеол.
Слизисто-гнойная мокрота наблюдается при бронхите, пневмонии, бронхоэктатической болезни, туберкулезе.
Гнойная мокрота возможна при гнойном бронхите, абсцессе, актиномикозе легких, гангрене.
Кровянистая мокрота выделяется при инфаркте легких, новообразованиях, травме легкого, актиномикозе и других факторах кровотечения в органах дыхания.
Консистенция мокроты зависит от количества слизи и форменных элементов и может быть жидкой, густой или вязкой.
Плоский эпителий в количестве более 25 клеток указывает на загрязнение материала слюной.
Клетки цилиндрического мерцательного эпителия – клетки слизистой оболочки гортани, трахеи и бронхов; их обнаруживают при бронхитах, трахеитах, бронхиальной астме, злокачественных новообразованиях.
Альвеолярные макрофаги в повышенном количестве в мокроте выявляются при хронических процессах и на стадии разрешения острых процессов в бронхолегочной системе.
Лейкоциты в большом количестве выявляются при выраженном воспалении, в составе слизисто-гнойной и гнойной мокроты.
Эозинофилы обнаруживаются при бронхиальной астме, эозинофильной пневмонии, глистных поражениях легких, инфаркте легкого.
Эритроциты. Обнаружение в мокроте единичных эритроцитов диагностического значения не имеет. При наличии свежей крови в мокроте выявляются неизмененные эритроциты.
Клетки с признаками атипии присутствуют при злокачественных новообразованиях.
Эластические волокна появляются при распаде ткани легкого, которое сопровождается разрушением эпителиального слоя и освобождением эластических волокон; их обнаруживают при туберкулезе, абсцессе, эхинококкозе, новообразованиях в легких.
Коралловидные волокна выявляют при хронических заболеваниях (например, при кавернозном туберкулезе).
Обызвествленные эластические волокна – эластические волокна, пропитанные солями кальция. Их обнаружение в мокроте характерно для туберкулеза.
Спирали Куршмана образуются при спастическом состоянии бронхов и наличии в них слизи; характерны для бронхиальной астмы, бронхитов, опухолей легких.
Кристаллы Шарко – Лейдена – продукты распада эозинофилов. Характерны для бронхиальной астмы, эозинофильных инфильтратов в легких, легочной двуустки.
Мицелий грибов появляется при грибковых поражениях бронхолегочной системы (например, при аспергиллезе легких).
Прочая флора. Обнаружение бактерий (кокков, бацилл), особенно в больших количествах, указывает на наличие бактериальной инфекции.
Кто назначает исследование?
Пульмонолог, терапевт, педиатр, врач общей практики, ревматолог, фтизиатр, аллерголог, инфекционист, клинический миколог, онколог, паразитолог.
Лабораторные методы выявления микобактерий туберкулеза Методы обследования на МБТ
Бактериологическая диагностика включает обработку клинического материала, микроскопическое исследование, выделение микроорганизма с применением культуральных методов, идентификацию микобактерий с использованием бактериологических и биохимических гестов, а также определение лекарственной чувствительности микобактерий.
Существует несколько групп методов, используемых для выявления МБТ в различном диагностическом материале: рутинные (микроскопия, культуральное исследование), биологические (биопроба, определение вирулентности штаммов МБТ). автоматические системы (MGIT, ВАСТЕС, МВ/ВасТ, ESP Culture System и др.), молекулярной генетические методики (PCR. I.CR, NASBA, Q-Bela и др.). Каждый из этих методов обладает определенной чувствительностью и специфичностью, что необходимо учитывать при клинической интерпретации полученных результатов.
Бактериоскопическое исследование мокроты с окраской мазка по Цилю-Нильсену для выявления кислотоустойчивых микобактерий (КУБ) является наиболее быстрым, доступным и экономически эффективным из существующих методов выявления больных туберкулезом. Оно может быть осуществлено в любой клинико- диагностической лаборатории (КДЛ) лечебно-профилактических учреждений всех уровней и ведомств. Бактериоскопия мокроты представляется чрезвычайно информативной для выяснения эпидемиологической опасности пациента для окружающих, которая коррелирует с числом микобактерий в образце. Бактериоскопическое исследование, проведенное должным образом, имеет положительную прогностическую ценность для легочного туберкулеза, более 90%. Разрешающая способность данного метода составляет 50-100 тыс. микобактерий в 1 миллилитре мокроты и существенно зависит от ряда факторов: правильности сбора мокроты, подготовленности лабораторного персонала и разрешающей способности используемых микроскопов. При микроскопии мазков, приготовленных из проб, взятых в течение трех последовательных дней, результативность метода повышается на 20-30%. Однако нет необходимости использовать более 4-5 проб мокроты.
Метод окраски по Цилю-Нильсену наиболее часто используется при бакгериоскопичсском выявлении микобактерий. Он заключается в следующем: мазки мокроты окрашивают фуксином при нагревании, затем обесцвечивают солянокислым спиртом и докрашивают метиленовым синим. В результате микобактерий окрашиваются в малиновый цвет, а фон — в синий. Это специфическое окрашивание обусловлено способностью микобактерий удерживать краситель при обработке кислотой или спиртом.
Пессарии в акушерстве и гинекологии
СОДЕРЖАНИЕ:
Что объединяет Корнелия Цельса из Древнего Рима, Амбруаза Паре из средневековой Франции и Тротулу из Салерно, которая трудилась врачом еще в 11 веке? Ответ прост – все они активно использовали для лечения своих пациенток пессарии. Выпадение матки и гениталий в те времена, когда женщина могла родить с десяток детей в условиях полной антисанитарии, было очень распространенно. Так что история пессариев насчитывает многие сотни лет. Они благополучно дожили до наших дней, хотя современные врачи уже не применяют ни половинки граната, ни шары из шерсти, ни бронзовые изделия. Так какой же он – нынешний пессарий?
Что такое пессарий в акушерстве и гинекологии?
Пессарий – небольшое изделие из силикона либо пластика, которое вводится во влагалище, дабы поддерживать органы малого таза. Это не только матка, но и мочевой пузырь, а также прямая кишка. Пессарий применяют акушеры и гинекологи, причем, в зависимости от назначения, он может быть различной формы – в виде кольца, чаши, куба и т.д. Разумеется, фирмы-производители изготавливают изделия самых разнообразных размеров, чтобы врач мог подобрать для каждой пациентки максимально подходящий ей пессарий.
Акушерский пессарий Арабин
Когда применяют акушерские пессарии?
Гинекологические пессарии – для чего они нужны?
Эти пессарии применяются для следующих целей:
У таких пессариев очень много форм: кольцевые, грибовидные, кубические, чашечные и т.д. Это необходимо для того, чтобы врач подобрал оптимальный вариант для своей пациентки, в зависимости от ее возраста, степени пролапса и выраженности симптомов недержания мочи, а также того, с чем связано нарушение в расположении органов малого таза – травмы, операции, врожденные дефекты и т.д.
Пессарий тонкое маточное кольцо Арабин
Производители пессариев
Казалось бы, устройство пессария настолько простое, что можно смело брать с полки товар от любого производителя. Но не спешите с выводами! На самом деле от того, как точно рассчитан размер изделия, каков материал, из которого оно изготовлено, и насколько серьезная научная база лежит в основе производства пессария, зависит очень многое. Продукт ненадлежащего качества может травмировать слизистую, а потому лучше всего выбирать надежную фирму-производителя.
Какой пессарий выбрать?
Установка и уход за акушерским пессарием
Дабы избежать гипертонуса матки врач может прописать прием спазмолитиков за 30 минут до установки пессария. Обязательно сначала опорожнить мочевой пузырь. Собственно установка длится всего несколько минут и проходит без обезболивания.
После осмотра пациентки на гинекологическом кресле, врач обрабатывает пессарий лубрикантом, чтобы облегчить введение. Если это разгружающий пессарий, то доктор располагает его у входа во влагалище широким основанием вниз. Процедура проходит так:
Установка куполообразного пессария проходит проще: врач вводит его во влагалище, сжимая так, чтобы, когда пессарий развернулся, его выпуклая поверхность пессария была обращена к шейке матки.
При использовании пессария необходимо каждые 2-3 недели сдавать мазки из влагалища для предотвращения кольпита и каждые 3-4 недели проходить УЗИ шейки матки. Раз в 2 недели влагалище и пессарий обрабатываются растворами антисептиков. Извлекать пессарий при это не нужно.
Врач удалит пессарий на 37-38 неделе или же в случае возникновения экстренных показаний (кровянистые выделения, преждевременно отошедшие воды и т.д.).
Установка и уход за гинекологическим пессарием
Размер пессария подбирается с помощью адаптационных колец:
Туберкулез и микобактериоз. Общая информация
Туберкулез у человека вызывают микобактерии туберкулеза (МБТ): M.tuberculosis, M.bovis, M.africanum, M.microti, M.canettii, M.caprae, M.pinnipedii, M. mungi, объединяемые в группу микобактерий, называемую Mycobacterium tuberculosis complex, к которой также относится вакцинный штамм M.bovis BCG. Преобладающим этиологическим агентом является M.tuberculosis. Кроме абсолютно-патогенных для человека микобактерий, к которым кроме МБТ относится микобактерия лепры, существуют еще нетуберкулезные микобактерии (НТМБ), около 30 видов которых являются условно-патогенными для человека, прочие являются сапрофитами. Все НТМБ являются убиквитарными – т. е. повсеместно распространенными в окружающей среде.
Микобактерии (МБ) отличаются высокой устойчивостью к воздействию физикохимических факторов. До полугода они могут сохраняться на объектах окружающей среды, в пыли, на страницах книг, в почве и воде, причем высушивание увеличивает их жизнеспособность. В высушенной мокроте МБТ сохраняют жизнеспособность в течение 10–12 месяцев и погибают при нагревании до 100. С только через 45 мин, а при 70. С – через 7 часов. Низкие температуры также способствуют сохранению жизнеспособных МБ – в масле и сыре при низких температурах они живут до 1 года.
Туберкулез (ТБ) – антропозоонозное инфекционное гранулематозное заболевание. Передается в большинстве случаев аэрогенным (воздушно-капельным или воздушно-пылевым), но встречаются также алиментарный, контактный и трансплацентарный пути заражения. Следует помнить о возможности перекрестного заражения ТБ человека и животных. Микобактериоз – заболевание, вызванное другими представителями рода Mycobacterium – НТМБ, которые могут передаваться от человека к человеку, но основным источником инфицирования служат сельскохозяйственные животные.
Оба заболевания характеризуются политропностью, т. е. в организме человека и животных при развитии патологического процесса могут поражаться различные органы. Более чем в 80% случаев развивается легочная форма заболеваний, в остальных случаях – внелегочная или сочетанные формы. Внелегочный ТБ, как правило, развивается вторично, в результате распространения туберкулезной инфекции из первичного очага, локализующегося обычно в органах дыхания. При этом первичный ТБ может быть отсроченным по времени с эпизодом проявления внелегочного ТБ и разрешиться ранее, либо вследствие проведения противотуберкулезной терапии, либо самостоятельно, без ее применения.
Заболеваемость туберкулезом в Российской Федерации в настоящее время высокая: 82,4–84,0 на 100 тыс. населения. Растет и число больных с резистентными к стандартной терапии штаммами МБТ. Особую угрозу туберкулез представляет для больных с иммунодефицитными состояниями, при которых он может протекать атипично, создавая трудности для клинико-лабораторной диагностики.
Среди контингента больных ВИЧ-инфекцией в РФ постоянно увеличивается число больных с поздними стадиями ВИЧ-инфекции. Это приводит к тому, что у все большего числа больных ВИЧ-инфекцией россиян, инфицированных МБТ, на фоне иммунодефицита развивается туберкулез. При этом туберкулез – главная причина смерти умерших от причин, связанных с ВИЧ-инфекцией (63,4% в 2010 г. по данным МЗ РФ). Европейское региональное бюро ВОЗ относит Россию к числу стран с наиболее неблагоприятной ситуацией по туберкулезу, сочетанному с ВИЧинфекцией.
Наиболее частыми этиологическими причинами микобактериозов у больных ВИЧ-инфекцией является Mycobacterium avium complex, M. xenopi, M. kansasii, M. fortuitum. Клинические формы этих поражений развиваются исключительно у лиц с выраженным иммунодефицитом. Диагностика легочного и внелегочного ТБ, а также микобактериоза, зависит от настороженности врачей, в первую очередь общей лечебной сети, а также доступности специальных методов исследования. Согласно приказу № 1224н от 29 декабря 2010 г. медицинские работники любых специальностей медицинских организаций РФ должны выявлять симптомы туберкулеза. При подозрении на туберкулез органов дыхания или внелегочной локализации в медицинских организациях проводится лабораторное исследование разных видов биологического материала, преимущественно – выявление возбудителя заболевания методом микроскопии.
Для защиты от ТБ применяется вакцинация, проведение которой регулируется федеральным законодательством. Вакцина представляет собой аттенуированный штамм M.bovis – M.bovis BCG. В ряде случаев вакцинация может вызывать осложнения, т.н. БЦЖ-иты.
ТБ в мире классифицируется в соответствии с МКБ-10, которая учитывает лишь метод подтверждения диагноза и локализацию процесса, и определяется кодами А15 – А19. В России существует собственная классификация, отражающая клинико- морфологические особенности патогенеза. В ее основу положены несколько принципов: клинико-рентгенологические особенности туберкулезного процесса (в т. ч. локализация и распространенность), его течение (т. е. фазы), а также наличие бактериовыделения. В приказе Минздрава РФ от 21.03.2003 № 109 «О совершенствовании противотуберкулезных мероприятий в Российской Федерации» сделана попытка совмещения обеих классификаций, когда к 4 знакам шифра МКБ-10 добавлено еще 6 знаков, в которых нашли отражение уточнения отечественной классификации.
Заболевания, вызванные НТМБ, а также другими представителями порядка Actinomycetales, имеющими близкое генетическое, иммунологическое, хемотаксономическое родство с МБ, микроорганизмами родов Nocardia, Rhodococcus, Corynebacterium и др., имеют сходную с ТБ локализацию патологического процесса, а также клиническую, в ряде случаев микробиологическую, и на определенных этапах патогенеза – морфологическую картины. Такие заболевания могут протекать под маской ТБ, что затрудняет его дифференциальную диагностику. Увеличивающееся в последнее время количество случаев заболеваний, вызванных подобными возбудителями, обусловлено увеличением количества иммунокомпрометированных лиц, а также развитием бактериологических и молекулярно-биологических методов исследования. Вопросы диагностики и лечения таких больных на законодательном уровне в РФ четко не обозначены.
Показания к обследованию
Дифференциальная диагностика. Первичная форма ТБ с поражением внутригрудных лимфатических узлов: саркоидоз I стадии, лимфогранулематоз, микобактериоз, лимфолейкоз, лимфосаркома, ретикулосаркома, центральный рак легкого, застойные изменения в легких на фоне сердечной недостаточности.
Диссеминированный ТБ: саркоидоз II стадии, бактериальная пневмония, профессиональные заболевания легких – пневмокониоз (силикоз и силикатоз, металлокониоз, карбокониоз, пневмокониоз, вызванные смешанной или органической пылью), микобактериоз, канцероматоз легких, фиброзирующий альвеолит, коллагенозы, гистиоцитоз Х, гемосидероз, криптококкоз, аспергиллез, гистоплазмоз, кокцидиоидоз, бластомикоз, гранулематоз Вегенера, хроническая интерстициальная пневмония, альвеолярный протеиноз, легочный васкулит.
Очаговый, инфильтративный ТБ и казеозная пневмония: внебольничная пневмония, периферический и центральный рак легкого, эозинофильный инфильтрат, актиномикоз легкого, нокардиоз, микобактериоз, ателектаз легкого, инфаркт легкого.
Кавернозный и фиброзно-кавернозный ТБ: абсцесс легкого, рак легкого с распадом, солитарные кисты легкого, бронхоэктазы, микобактериоз, нокардиоз.
Цирротический ТБ: саркоидоз III стадии и пневмофиброзы различной этиологии.
В случае округлых образований, наблюдаемых при рентгенологическом исследовании: периферический и метастатический рак, доброкачественные опухоли, эхинококкоз, аспергиллома, ретенционные кисты легкого, ограниченный осумкованный плеврит и артериовенозная аневризма легкого.
ТБ периферических лимфоузлов: саркоидоз, токсоплазмоз, микобактериоз, бруцеллез, болезнь Кикучи (гистиоцитарный некротизирующий лимфаденит), доброкачественный лимфоретикулез, лимфогранулематоз, неходжкинская лимфома.
У больных ВИЧ-инфекцией: вторичные заболевания, протекающие с поражением легких, генерализованные вторичные инфекции, онкологические поражения.
Материал для исследования
Мокрота, трахеальный смыв, материалы, полученные при проведении бронхоскопии – промывные воды бронхов, бронхоальвеолярный лаваж, а также материалы катетер- или щеточной биопсии, промывные воды желудка, экссудаты и транссудаты, гной, отделяемое ран, аспираты и пунктаты, спинномозговая и асцитическая жидкости, цельная кровь, моча, кал, секрет простаты, эякулят, менструальная кровь, ткани, в т.ч. фиксированные или в парафиновых блоках, смывы с предметов окружающей среды, а также культуры микроорганизмов, полученные при посеве этих видов материала для идентификации вида МБ.
Лабораторная диагностика туберкулеза и микобактериоза включает визуализацию кислото- и спиртоустойчивых бактерий при использовании микроскопии, получение первичной культуры или обнаружение ДНК/РНК МБ, их дальнейшее видовое дифференцирование и определение чувствительности возбудителя заболевания к противотуберкулезным препаратам культуральным методом или МАНК.
Сравнительная характеристика методов лабораторной диагностики и особенности интерпретации их результатов. По международным стандартам диагноз ТБ должен быть подтвержден бактериологически или гистологически.
Первоначальное исследование – микроскопия препарата мокроты или других жидкостей и тканей организма, взятых максимально близко к предполагаемой локализации патологического процесса. Микроскопия препарата с окраской по Цилю-Нильсену – быстрый, дешевый, но низко чувствительный метод (с его помощью можно обнаружить 105–106 микробных тел/мл), обладающий невысокой специфичностью, выявляющий все кислото- и спиртоустойчивые микроорганизмы. Метод не позволяет дифференцировать МБТ от НТМБ и, в ряде случаев, от других микроорганизмов порядка Actinomycetales. Диагностическая чувствительность метода составляет 20–65%.
Люминесцентная микроскопия препарата с окраской флуорохромными красителями – более чувствительный метод, т. к. позволяет проводить исследование при меньших увеличениях микроскопа и, следовательно, просматривать значительно больше полей зрения, чем при обычной микроскопии с иммерсионной системой при окраске по Цилю-Нильсену, что позволяет увеличить процент положительных находок на 10–17%.
Бактериологический посев на плотные питательные среды обладает большей чувствительностью и выявляет 100–1000 микробных тел/мл. Согласно стандартам микробиологической диагностики, обязательный посев проводится на 2 питательные среды, одной из которых является яичная среда Левенштейна-Йенсена (по рекомендации ВОЗ). В результате медленного роста, когда каждое деление микобактерий, в зависимости от вида, происходит через 2–24 ч, для получения результата требуется от 7 дней для быстрорастущих и до 2–12 недель для медленнорастущих, в число которых входит и МБТ.
Посев на жидкие питательные среды с помощью автоматических анализаторов BACTEC MGIT 960 (Becton Dickinson Microbiology Systems, Sparks, MD) и VersaTREK Myco (Trek Diagnostic Systems, Westlake, OH), позволяет получить результат через 4–42 дня.
В 2010 году в документах CDC, МАНК, наряду с культуральным методом, предложено использовать для подтверждения диагноза туберкулеза. В то же время, использование методов микроскопии ограничивается и предлагается для применения только в случаях невозможности проведения посева, при получении ложноотрицательного результата посева или его контаминации (пророста). Модификация программного обеспечения «Vercrit», используемого в противотуберкулезной службе США, выстраивает следующую иерархию доказательной диагностики ТБ:
Трехкратное взятие и исследование образцов биологического материала у пациента, например мокроты, увеличивает возможность обнаружения МБТ на 2–5%. Поэтому в отечественных и зарубежных руководствах по диагностике ТБ указана необходимость трехкратного, или, по меньшей мере, двукратного исследования образцов мокроты. Сбор первого образца мокроты проводится в присутствии среднего медицинского персонала для объяснения правильной последовательности действий пациента. Второй образец больной собирает вечером того же дня, а третий утром, после чего приносит их в лабораторию. В случае госпитализации больного образцы собираются последовательно в течение 3-х дней.
Вместе с тем, обнаружение МБТ в экскретируемых организмом жидкостях не всегда возможно даже при многократном сборе и исследовании материала методом ПЦР, что связано с преимущественно тканевой локализацией возбудителя ТБ. Поэтому в сложных диагностических случаях больным показано проведение гистологической диагностики ТБ. Образец ткани из очага патологического процесса, после проведения гистологической проводки и заключения его в парафин, можно исследовать как для верификации специфического туберкулезного воспаления, так и для подтверждения этиологической причины патологического процесса. Исследования проводят с помощью окраски бактерий по Цилю-Нильсену, иммуногистохимического исследования, позволяющего отнести обнаруженные микроорганизмы к роду Mycobacterium, а также МАНК, определяющих их видовую принадлежность.
С целью дифференцирования МБ до вида, необходимого для правильного определения этиологии заболевания, анализируют морфологические характеристики выросшей культуры, проводят ее микроскопическое исследование с окраской препаратов по Цилю-Нильсену, после чего осуществляют биохимические тесты и пересев на селективные питательные среды. Такая стратегия требует много времени как для получения достаточного для анализа роста культуры, так и для осуществления используемых методик. Однако даже применение всех методов позволяет дифференцировать МБ с точностью, не превышающей 95%, что связано с индивидуальными особенностями штаммов.
Дифференцирование до вида целесообразнее осуществлять с помощью молекулярно- биологических методов: ПЦР; гибридизация с ДНК-зондами, выявляющая наиболее распространенные МБ; высокоэффективная жидкостная хроматография, сравнивающая профиль жирных кислот клеточной стенки анализируемого микроорганизма с имеющимися в базе данных; секвенирование 16S rDNA и ITS-региона МБ, результаты которого анализируются с помощью интернет-ресурса RIDOM ( http://rdna.ridom.de ). Для дифференцирования некоторых НТМБ, особенно быстрорастущих (M.fortuitum, M.abscessus, M.chelonae), обязательно ориентируются на данные антибиотикочувствительности и результаты секвенирования. Практически для всех технологий, за исключением ПЦР, в качестве материала для исследования применимы только первичные культуры МБ, выросших на плотных или жидких питательных средах
Не менее важно дифференцирование до вида внутри группы Mycobacterium tuberculosis complex. Это связано с необходимостью определения источника заболевания, определения дальнейшей тактики противотуберкулезной терапии (при индикации М.bovis или ее вакцинного штамма М.bovis BCG, которые отличаются природной резистентностью к одному из основных ПТП – пиразинамиду, этот препарат не назначается), а также для подтверждения поствакцинальных осложнений у пациента. МР № 99/219 «Диагностика поствакцинальных осложнений после введения вакцины БЦЖ» предлагают с этой целью использовать диагностический комплекс, предусматривающий последовательное применение двух методов: культурального и ИФА для обнаружения АГ полученной культуры с помощью моноклональных АТ, специфически взаимодействующих с поверхностными АГ М.bovis, но не связывающимися с АГ М.tuberculosis. Исследование включает определение морфологических особенностей штамма, его тинкториальных свойств, спирто- и кислотоустойчивости, видовой принадлежности и изучение его лекарственной чувствительности к ПТП с обращением особого внимания на чувствительность к пиразинамиду. Несмотря на то, что в МР написано, что использование диагностического комплекса при морфологической верификации диагноза позволяет в 100% случаев верифицировать диагноз «БЦЖит», очевидно, что данные методы не позволяют дифференцировать М.bovis от ее вакцинного штамма М.bovis BCG. С этой задачей успешно справляется набор реагентов, основанный на использовании метода ПЦР, который выявляет виды M.tuberculosis complex: M.tuberculosis, M.bovis и ее вакцинный штамм M.bovis BCG и др. непосредственно в разных видах биологического материала.
Для определения лекарственной чувствительности (ЛЧ) МБ к противотуберкулезным препаратам с помощью культурального метода используют первичную культуру МБ. Существует 3 основных метода непрямого определения ЛЧ МБ: метод пропорций, метод коэффициента устойчивости и метод абсолютных концентраций на плотных и жидких средах. В России и большинстве стран мира наиболее распространенным и традиционно используемым методом определения ЛЧ МБ является непрямой метод абсолютных концентраций на плотной яичной питательной среде Левенштейна–Йенсена. Остальные методы определения ЛЧ МБТ являются альтернативными. Основным недостатком традиционных культуральных методов определения ЛЧ МБТ, является их чрезвычайная длительность. Результаты исследования ЛЧ первичной культуры МБ учитываются через 3–4 недели инкубации для плотных и 4-13 дней для жидких питательных сред, поэтому необходимая коррекция химиотерапии может быть проведена не ранее, чем через 10–60 дней или 40–120 дней, в зависимости от используемых питательных сред, от момента поступления в лабораторию диагностического материала.
Определение ЛЧ с помощью молекулярно-биологических методов основано на выявлении мутаций, ассоциированных с развитием лекарственной устойчивости к ПТП. Основное преимущество таких методов заключаются в скорости получения результатов анализа – 1–2 дня, что достигается вследствие возможности использования для тестирования непосредственно клинического материала, хотя возможно использование также и первичной культуры.
Необходимо учитывать, что наборы реагентов, основанные на применении разных методов, характеризуются разными показателями чувствительности и специфичности. Гибридизационные технологии, такие как ДНК-микрочипы, могут обнаруживать только конкретные мутации, внесенные в дизайн диагностических наборов и/или дикий тип МБТ. Их диагностическая чувствительность в значительной степени зависит от спектра генетических изменений штаммов МБТ, характерных для данного географического региона, в случае наличия других мутаций исследование будет давать ложноотрицательные результаты.
Метод секвенирования является «золотым стандартом» в молекулярной диагностике, он может определять любые изменения в нуклеотидной последовательности, в т. ч. протяженные инсерции и делеции. На сегодняшний день выпускаются наборы реагентов, а также специальное программное обеспечение, автоматизирующее процесс получения результатов.
Из вышеназванных исследований тестами лабораторной диагностики in vitro являются IGRA, в настоящее время представленные наборами QFT-IT и T-SPOT. TB. Исследование основано на стимуляции мононуклеарных клеток пациента антигенами, специфичными для M.tuberculosis complex, в ответ на которую высвобождается гамма-интерферон (IFN-.). АГ представлены секреторным белком 6-kDa early-secreted antigenic target (ESAT-6), его шапероном 10-kDa culture filtrate protein (CFP-10), а также дополнительным туберкулезным протеином TB 7.7 (p4) (только в наборе QFT-IT). Эти белки отсутствуют у всех вариантов вакцинного штамма M.bovis BCG и большинства НТМБ, за исключением M.kansasii, M.marinum, M.szulgai, M.flavescens и M.gastrii. Следовательно, оба теста всегда будут давать отрицательный результат при поствакцинальной аллергии или БЦЖ-ите, и ложноположительный результат при наличии в организме НТМБ: M.kansasii, M.marinum или M.szulgai, имеющих клиническое значение.
Тесты IGRA не могут дифференцировать у человека состояние инфицированности МБТ (латентный ТБ) и активный ТБ. Их результаты должны оцениваться совместно с клиническими и рентгенологическими данными, сведениями о контактах, микробиологическими исследованиями и т. д. Особое значение приобретает использование тестов IGRA в странах, где проводится вакцинация БЦЖ. В случае положительной пробы Манту и отрицательном результате теста IGRA у пациента достоверно подтверждается состояние поствакцинальной аллергии. При конверсии результатов теста IGRA, т. е. при изменении отрицательного результата на положительный, риск последующего развития активного туберкулезного процесса не увеличивается. У иммуносупрессивных пациентов IGRA-тесты, как и проба Манту, будут отрицательными, что не может исключить у них активного туберкулезного процесса.
Наиболее удобно применять тесты IGRA у пациентов, ранее вакцинированных против ТБ, у лиц, имеющих противопоказания к проведению кожного теста, у детей, а также у тех пациентов, которым сложно попасть на повторный прием к врачу через 72 часа для определения результатов пробы Манту. В зарубежной практике тесты IGRA используют вместо или вместе с пробой Манту, во многих странах такие исследования закреплены законодательно.
IGRA-тесты являются качественными, их результаты выдаются в категориях: положительный, отрицательный и неопределенный.
Положительный результат означает текущую инфекцию МБТ, но не позволяет дифференцировать недавнее инфицирование МБТ от ранее произошедшего, а также оценить степень активности туберкулезного процесса.
Отрицательный результат чаще означает отсутствие МБТ в организме человека, но может наблюдаться и при супрессии Т-клеточного звена иммунной системы, наступившей вследствие иммунодефицитного состояния, в т. ч. и при прогрессировании туберкулеза. В этом случае следует ориентироваться на результаты прямых методов исследования, подтверждающих специфическую природу заболевания.
В редких случаях результаты тестов не могут быть интерпретированы вследствие не прохождения положительного контроля теста и оцениваются как неопределенные. В этом случае нельзя ни подтвердить, ни исключить туберкулезную инфекцию.
Следует помнить, что у части больных не удается обнаружить МБТ традиционными микробиологическими методами и даже методом ПЦР (если не проводится биопсийный забора материала). В этих случаях диагноз ТБ будет основываться на клинических данных, результатах косвенных методов диагностики и терапии ex juvantibus, а принимаемые по этому поводу решения полностью зависят от квалификации и опыта врача-фтизиатра. Вследствие этого, учитывая биологические особенности микроорганизма, а также иммунного ответа организма человека, диагностика ТБ не может ограничиваться каким-либо одним методом и должна проводиться комплексно.
Показания к применению лабораторных исследований для диагностики туберкулеза у больных ВИЧ-инфекцией и особенности интерпретации их результатов. Основной принцип диагностики туберкулеза у больных ВИЧ-инфекцией такой же, как и у пациентов с ВИЧ-негативным статусом – выявление достоверных признаков специфического воспаления (детекция возбудителя либо морфологическая верификация).
Самым важным в диагностике туберкулеза у больных ВИЧ-инфекцией является выявление возбудителя. У этой категории больных частота выявления МБТ из мокроты уменьшается по мере снижения количества CD4+лимфоцитов (ввиду снижения регистрации деструктивных форм). Однако при глубоком иммунодефиците (менее 100 клеток/мкл), вероятность обнаружения МБТ повышается (за счет огромного количества возбудителя в легочной ткани). Важно отметить, что у больных полиорганным туберкулезом не менее ценным, чем исследование мокроты, является выявление возбудителя в другом диагностическом материале. Поэтому необходим обязательный поиск МБТ в любых биологических жидкостях и биопсийном материале. Также для детекции МБТ целесообразно применять молекулярно-биологические методы, чувствительность и специфичность которых значительно превосходит традиционные микробиологические методы.
Туберкулиновая чувствительность у больных с активным туберкулезом на фоне ВИЧ-инфекции снижается по мере прогрессирования иммунодефицита, и у пациентов с количеством CD4+лимфоцитов менее 100 клеток/мкл частота регистрации положительной пробы Манту с 2 ТЕ не превышает 10%, а при количестве CD4 клеток более 500/мкл она сопоставима с группой больных без ВИЧ-инфекции (до 95%). Проведенные клинические исследования показали, что при высокой специфичности Диаскинтеста (до 100%), чувствительность этого диагностического метода также снижается по мере уменьшения количества CD4+лимфоцитов и сопоставима с чувствительностью реакции Манту.
При неинформативности туберкулинодиагностики, Диаскин- и IGRA-тестов, снижении вероятности выявления МБТ в мокроте и расширении дифференциально- диагностического ряда за счет других вторичных заболеваний в диагностике специфического процесса важную роль приобретает малоинвазивная хирургия с целью морфологической верификации туберкулезного процесса. Морфология туберкулезного воспаления тесно связана с состоянием иммунной системы больного и в значительной степени зависит от него. Гистоморфологические проявления туберкулезного воспаления при ВИЧ-инфекции утрачивают свои специфические признаки по мере ее прогрессирования. У больных с количеством СD4+лимфоцитов более 350 клеток/мкл сохраняется способность к формированию типичной гранулематозной реакции. В биоптатах пациентов с более тяжелой степенью иммуносупрессии (число СD4+лимфоцитов 200–350 в мкл) преобладает несовершенная стертая гранулематозная реакция. Это свидетельствует о смене реакции гиперчувствительности замедленного типа, типичной для туберкулеза, реакцией гиперчувствительности немедленного типа. Состояние выраженного иммунодефицита (при количестве СD4+лимфоцитов менее 200 клеток/мкл), характеризуется в большинстве случаев некротическими изменениями с выраженным экссудативным компонентом воспаления. Однако при проведении микроскопии препаратов биопсии с окраской по Циль-Нильсену обнаруживаются кислотоустойчивые бактерии в большом количестве (20-50 и более в одном поле зрения). В связи с этим у больных ВИЧинфекцией, особенно на фоне выраженной иммуносупрессии, важно проведение комплексного поэтапного изучения биопсийного материала с проведением микроскопии препаратов с окраской по Цилю-Нильсену, микроскопических исследований с применением методов иммуногистохимии (использование моноклональных АТ к M. tuberculosis) и ПЦР для выявления ДНК МБТ в нативном материале и из парафиновых гистологических блоков. Обнаружение микобактерий в кале, мокроте или бронхоальвеолярном лаваже при отсутствии клинической симптоматики может свидетельствовать только о колонизации слизистых оболочек.