Что такое конус в геометрии
Из огромного перечня математических заданий часто встречаются задачи, связанные с темой «Конус». На уроках геометрии школьники должны усвоить основные понятия и названия всех элементов этой фигуры и понять, как и по каким формулам производится расчет нужных параметров.
О данной геометрической фигуре пойдёт речь в сегодняшней статье.
Определение и элементы конуса
Под конусом понимают тело, состоящее из круга и точки, которая удалена от его поверхности на определённое расстояние.
При этом точка соединяется с основанием посредством проведения лучей, которые называются образующими. Линия, соединяющая центр круга с удалённой точкой, является высотой данной фигуры.
Обратите внимание! Также существует такое понятие, как ось конуса. Это линия, проходящая через его центр и совпадающая с высотой. Образующие строятся относительно оси.
Хотелось бы рассмотреть ещё несколько понятий по этой теме:
1. Под конусностью понимают отношение диаметра основания фигуры и её высоты:
Важно! Конусность отвечает за угол наклона образующих. Чем больше данный параметр, тем острее угол.
2. Осевое сечение предполагает наличие плоскости, которая будет рассекать фигуру, проходя через ось:
3. Касательная— это плоскость, которая соприкасается с образующей конуса. При этом важно, чтобы она была перпендикулярна осевому сечению.
Свойства кругового конуса
Выделяют несколько особенностей, которыми обладает фигура данного типа:
Образующие кругового конуса равны друг другу.
Чтобы найти центр тяжести фигуры, нужно её высоту поделить на четыре части.
Место пересечения плоскости сечения и основы образует параболу. Если через вершину тела провести плоскость сечения, то получится равнобедренный треугольник.
Интересный факт! Если вращать прямоугольный треугольник вокруг одного из катетов, то получится конус. При этом важно, чтобы угол вращения был не менее 360 градусов.
Общая формула объёма фигуры
Чтобы найти объём кругового конуса, необходимо умножить число Пи на его высоту, на радиус в квадрате и всё это произведение поделить на три:
Дополнительная информация! Чтобы узнать объём фигуры, нужно умножить площадь её основы на высоту и поделить на три:
Объём усечённого конуса
Это часть прямого конуса, которая находится в пространстве между основой и плоскостью, параллельной этому основанию. В общем виде выглядит следующим образом:
Объём данного тела можно вычислить по формуле:
Важно! S и S 1 это площади соответствующих основ, которые равняются ПR 2 и ПR 1 2 При нахождении этих значений поможет онлайн калькулятор.
Площадь поверхности фигуры
Для вычисления данного параметра потребуется знать площадь боковой поверхности. Она равняется произведению числа π, радиуса и длины образующей.
Чтобы рассчитать площадь всей поверхности, нужно сложить площади его основы и боковой поверхности.
Площадь усечённого конуса
Для нахождения данного параметра нужно воспользоваться формулами:
площади боковой поверхности усечённого конуса Sбок;
полной площади усечённой фигуры Sпол, которая равна сумме площадей двух оснований и площади боковой поверхности:
Уравнение конуса
Часто требуется при решении математических задач. Записывается в следующем виде:
где x0, y0,z0— координаты по соответствующим осям.
Таким образом, в данной статье были представлены основные сведения, которые могут понадобиться при решении задач на тему «Конус».
Что такое конус: определение, элементы, виды
В данной публикации мы рассмотрим определение, основные элементы и виды одной из самых распространенных фигур в пространстве – конуса. Представленная информация сопровождается соответствующими рисунками для лучшего восприятия.
Определение конуса
Далее мы будем рассматривать самый распространенный вид конуса – прямой круговой. Остальные возможные варианты фигуры перечислены в последнем разделе публикации.
Итак, прямой круговой конус – это трехмерная геометрическая фигура, полученная путем вращения прямоугольного треугольника вокруг одного из своих катетов, который в данном случае будет являться осью фигуры. Ввиду этого иногда такой конус называют конусом вращения.
Конус на рисунке выше получен в результате вращения прямоугольного треугольника ACD (или BCD) вокруг катета CD.
Основные элементы конуса
Между образующей конуса, его высотой и радиусом основания есть взаимосвязь (согласно теореме Пифагора):
Развёртка конуса – боковая поверхность конуса, развернутая в плоскость; является круговым сектором.
Примечание: Основные свойства конуса мы рассмотрели в отдельной публикации.
Конус
Прямой круговой конус.
Прямой и косой круговой конусы с равным основанием и высотой. Эти тела обладают одинаковым объёмом.
Усечённый прямой круговой конус.
Ко́нус (от др.-греч. κώνος «шишка») — тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, имеющую ограниченный объём и полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Если основание конуса представляет собой многоугольник, такой конус называется пирамидой.
Содержание
Связанные определения
Свойства
где S — площадь основания, H — высота. Таким образом, все конусы, опирающиеся на данное основание (конечной площади) и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.
где S1 и S2 — площади соответственно верхнего (ближнего к вершине) и нижнего оснований, h и H — расстояния от плоскости соответственно верхнего и нижнего основания до вершины.
Уравнение конуса
где константы a, с определяются пропорцией Отсюда видно, что боковая поверхность прямого кругового конуса представляет собой поверхность второго порядка (она носит название коническая поверхность ). В общем виде коническая поверхность второго порядка опирается на эллипс; в подходящей декартовой координатной системе (оси Ох и Оу параллельны осям эллипса, вершина конуса совпадает с началом координат, центр эллипса лежит на оси Oz ) её уравнение имеет вид
Развёртка
Развёртка прямого кругового конуса