Что такое конечно элементная модель
Принципы построения конечно-элементных моделей
Любая строительная конструкция представляется в виде расчетной схемы. Расчетная схема выступает в виде идеализированной модели.
Модель разбивается на конечные элементы. В результате такой разбивки появляются узлы, которые указывают на соединение элементов. В опорные узлы вводятся соответствующие связи, которые обеспечивают соединение с неподвижным основанием. Нумерация узлов и элементов определяет последовательность задания исходной информации и чтение результатов счета. Конечные элементы, имеющие одинаковые жесткостные характеристики, объединяются по типам жесткости.
Координаты расчетной схемы
Расчетная схема располагается в правой декартовой системе координат X, U, Z. Для фиксации местоположения конечного элемента в схеме служит местная система координат – X1, U1, Z1. Местная система координат необходима для ориентации местной нагрузки, главных осей инерции в сечении стержня, усилий и напряжений, возникающих в элементе.
Каждый узел схемы имеет свою локальную систему координат – X2, U2, Z2, которая является правой декартовой, как и местная система. По умолчанию локальная система координат узла совпадает с глобальной.
Локальная система координат узла позволяет задавать нагрузки и заданные перемещения в направлении, не совпадающем с глобальными осями.
Каждый узел схемы в общем случае имеет 6 степеней свободы: три линейных перемещения вдоль осей X или X2; U или U2; Z или Z2 и три поворота вокруг X или X2, U или U2, Z или Z2.
Для расчетных схем, в которых количество степеней свободы в узле заведомо меньше 6 (плоские фермы, плоские рамы и т.п.), применяется так называемый признак схемы. В ПК “ЛИРА” задействованы пять признаков схемы. Признак 1 – 3 – для двухмерных задач, а признак 4 и 5 – для трехмерной задачи.
Признак 2 – схемы, располагаемые в плоскости XOZ; каждый узел имеет 3 степени свободы – линейные перемещения вдоль осей X, Z или X2, Z2 и поворот вокруг оси Y или Y2. В этом признаке схемы рассчитываются плоские рамы и допускается включение элементов ферм и балок-стенок.
Признак 3 – схемы, располагаемые в плоскости XOY; каждый узел имеет 3 степени свободы – линейное перемещение вдоль оси, Z или Z2 и повороты вокруг осей X, Y или X2, Y2. В этом признаке рассчитываются балочные ростверки и плиты; допускается учет упругого основания.
Признак 4 – пространственные схемы, каждый узел которых имеет 3степени свободы – линейные перемещения вдоль осей X, Y, Z или X2, Y2, Z2. В этом признаке рассчитываются пространственные фермы и объемные тела.
Признак 5 – пространственные схемы общего вида с 6 степенями свободы в узле. В этом признаке схемы рассчитываются пространственные каркасы, оболочки и допускается включение объемных тел, учет упругого основания и т.п.
Граничные условия в расчетной схеме могут быть заданы непосредственно на узел, а также смоделированы при помощи связей конечной жесткости.
Построение расчетной модели
Представляя расчетную схему сооружения в виде конечно-элементной модели, пользователь всегда стремится достичь компромисса между двумя противоречивыми желаниями: получить как можно более точное решение задачи и за короткое время. Желательно также получить обозримый объем результатов. Для достижения такого компромисса необходимо уметь оценивать оба указанных фактора. Так, время решения задачи легко прогнозируется по количеству узлов, элементов, загружений, а также быстродействию компьютера. ПК “ЛИРА” автоматически дает прогноз времени решения задачи для всех этапов расчета. Однако оценка точности решения задачи является вопросом очень сложным, так как зависит от многих слабо формулируемых факторов:
· густота сетки– с одной стороны, сгущение сетки повышает точность, с другой – неограниченное сгущение может повлечь слабую обусловленность матрицы канонических уравнений и потерю точности;
· физико-механические свойства расчётной модели– расчетная схема может быть близка к геометрически изменяемой, содержать элементы с сильно различающимися жесткостями, что также влечет за собой потерю точности;
· геометрия конечных элементов– если стороны элементов сильно различаются по длине, то это приведет к плохой обусловленности
матрицы накопленных уравнений и также к потере точности;
· свойство конечных элементов– использование высокоточных элементов часто приводит к более точному решению, чем использование простых элементов на значительно более густой сетке.
Назначение сетки надо проводить на основе многих факторов. Так, например, густоту сетки предпочтительно увеличивать только в местах предполагаемого большого градиента напряжений (входящие узлы, места сосредоточенных нагрузок и т.п.). Кроме того, знание свойств конечных элементов также часто помогает рационально построить конечную модель.
Иногда приходится решать большие задачи, в которых густая сетка недопустима из-за ограниченных ресурсов компьютера, а укрупненная разбивка не дает достаточно полной картины напряженно- деформированного состояния конструкции. В этом случае предлагается совместить укрупненную и густую сетку.
Решая задачу несколько раз, можно использовать расчет укрупненной схемы с последующей фрагментацией ее частей.
Фрагментация заключается в последовательном вырезании, уменьшении и детальном расчете некой области конструкции. Такой подход применяется при исследовании областей концентрации напряжений – вокруг отверстий, в местах резкого изменения сечений элементов и т.д. Этот подход применим также при решении больших задач. Первоначально рассчитывается схема из укрупненных конечных элементов. Затем вырезаются отдельные фрагменты этой схемы и дробятся более мелко. Расчет фрагмента производится на воздействия, полученные в результате расчета крупной схемы.
Итак, пусть есть абстрактная задача найти некоторую зависимость y от x в интервале от a до b. Можно поступить двояко – 1) искать аналитический вид зависимости в виде функции y=y(x), т.е. в виде некоторой формулы, как например, все делали в школе, когда брали интеграл, или 2) искать функцию в виде набора точек с некоторой нужной или заданной точностью.
Так, например, на рисунке выше показана некоторая искомая функция y=y(x), вместо которой найдена ломаная 1-2-3-4-5-6 без особого ущерба для точности. Понятно, что чем в большем числе точек искать значение функции, тем точнее будет результат ее представления ломаной. А методы, которые вместо аналитической зависимости находят искомую функцию (или много функций) в виде конечного числа точек (чисел), называются численными.
Введение в метод конечных элементов
В реальных конструкциях почти всегда присутствуют сложные формы, состоящие к тому же из различных материалов. В качестве примера рассмотрим задачи. представленные на рис. 8.2. Рассчитать распределение напряжений в кронштейне (рис. 8.2, о) при помощи аналитических методов крайне сложно. Если же кронштейн изготовлен из композитного материала со сложными свойствами, задача становится практически неразрешимой. Непреодолимые затруднения возникают и при попытке вывести аналитическое выражение для распределения температур в объекте, изображенном на рис. 8.2, б.
Метод конечных элементов, по всей видимости, является наиболее популярным численным методом решения таких задач. Универсальность этого метода удовлетворяет требованиям современных сложных систем конструирования, для которых обычно отсутствуют замкнутые решения уравнений равновесия. Анализ методом конечных элементов начинается с аппроксимации исследуемой области (области задачи) и делении ее на ячейки сетки. На рис. 8.3, а по углам каждой ячейки находятся узлы (черные точки). Такие ячейки и называются конечными элементами. На рис. 8.3, а, б представлены аппроксимации объектов с рис. 8.2, а, б наборами конечных элементов (треугольных и четырехугольных).
В этом примере мы аппроксимировали исходный объект треугольниками и четырехугольниками, однако возможны и конечные элементы других типов. Выбор элементов определяется областью задачи, ее типом, а также конкретным пакетом анализа. Выбор подходящих элементов с нужным количеством узлов из библиотеки доступных элементов является одним из наиболее важных решений, которые приходится принимать пользователю пакета конечноэлементного анализа. Конструктору также приходится задавать полное количество элементов (другими словами, их размер). Общее правило состоит в том, что чем больше количество узлов и элементов (в h-версии) или чем выше степень функции формы (в р-версии), тем точнее оказывается решение, но тем дороже оно стоит с вычислительной точки зрения. Другая проблема — построение сетки, особенно для объекта сложной геометрии. Создание трехмерных сеток конечных элементов обычно представляет собой трудоемкий и кропотливый процесс. Сейчас ведутся активные разработки систем автоматизированного построения сеток, которые могли бы подключаться к системам геометрического моделирования. Такие системы позволили бы полностью интегрировать средства CAM и CAE.
После аппроксимации исходного объекта конечными элементами с должным количеством узлов каждому узлу сопоставляется неизвестная величина, которая ищется в процессе решения задачи. Например, для рис. 8.3, а неизвестными были бы смещения узлов по координатам х и у. Отсюда следует, что у каждого узла будет две степени свободы, а у задачи в целом будет 2п степеней свободы, если число узлов равно п. В разделе 8.2 мы покажем, что смещение в любой точке конечного элемента выводится из смещений его узлов при помощи функций формы, поэтому неизвестными могут быть только смещения узлов. Функции формы служат лишь для того, чтобы вычислять значения неизвестных внутри элемента по заданным значениям на его узлах. После вычисления смещений программа может перейти к расчету деформаций как частных производных от функции смещения, а по деформациям рассчитываются напряжения.
Аппроксимировав область задачи набором дискретных конечных элементов, мы должны задать характеристики материала и граничные условия для каждого элемента. Указав различные характеристики для разных элементов, мы можем анализировать поведение объекта, состоящего из разных материалов. Граничные условия (смещение, внешняя сила или температура) обычно задаются на внешней границе объекта. Эти условия должны быть выражены в виде значений смещения, силы или температуры в граничных узлах некоторых конечных элементов. После задания граничных условий для всех внешних узлов программа конечноэлементного анализа формирует систему уравнений, связывающую граничные условия с неизвестными (смещениями или температурой в узлах или коэффициентами функции формы в р-версии), после чего решает эту систему относительно неизвестных.
После нахождения значений неизвестных пользователь получает возможность рассчитать значение любого параметра в любой точке любого конечного элемента по той же функции формы, которая использовалась при построении системы уравнений. Выходные данные программы анализа методом конечных элементов обычно представляются в числовой форме. В задачах механики твердых тел выходными данными являются смещения и напряжения. В задачах на тепло перенос выходными данными являются температуры и тепловые потоки через конкретные элементы. Однако по числовым данным пользователю бывает затруднительно получить общее представление о поведении соответствующих параметров. Графические изображения обычно более информативны, поскольку дают возможность изучить поведение параметров на всей области задачи. Анализ поведения параметров может производиться при помощи постпроцессора, который строит кривые и контурные графики переменных по данным программы конечноэлементного анализа. Для задач строительной механики возможно отображение деформированных тел вместе с недеформированными. В этой области для систем автоматизированного конструирования очень важными становятся функции компьютерной графики.
Многие конструкторы страдают чрезмерной верой в мощь этого метода, не имея представления о его ограничениях; они принимают неправильные результаты без тени сомнения. К преимуществам метода конечных элементов относится возможность работы с телами произвольной геометрии и неоднородными материалами. Однако суть метода состоит в делении области задачи на набор конечных элементов и поиске наилучшего решения, непрерывного «внутри» элементов, но имеющего возможность претерпевать скачки на их границах. Например, деформация на границе конечных элементов кронштейна (рис. 8.3, а),может испытывать скачок, невозможный с точки зрения физики. Величина такого скачка часто служит мерой точности решения, полученного методом конечных элементов. Неточности такого рода зависят от количества элементов, их размера и степени функции формы, используемой внутри каждого из элементов.
Дата добавления: 2015-09-29 ; просмотров: 6042 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Анализ методом конечных элементов (FEA)
Анализ методом конечных элементов (FEA) — это моделирование продуктов и систем в виртуальной среде с целью поиска и решения потенциальных (или существующих) проблем со структурой или производительностью. FEA — это практическое применение метода конечных элементов (FEM), который используется инженерами и учеными для математического моделирования и численного решения сложных структурных, жидкостных и мультифизических задач. FEA-решения используются в самых разных областях, но особенной популярностью они пользуются в авиационной, биомеханической и автомобильной отрасли.
Конечно-элементная модель содержит систему точек, или «узлов», которые формируют конструкцию. С этими узлами связаны сами конечные элементы, которые образуют сетку конечных элементов и содержат материальные и структурные свойства модели, определяя, как она будет реагировать на различные условия. Плотность сетки конечных элементов может быть разной в разных точках материала, в зависимости от того, какие изменения уровня напряжения ожидаются в той или иной области. Области с резким изменением напряжения обычно требуют более плотной сетки, чем те, в которых изменений нет или они незначительны. Особое внимание уделяется точкам разрушения ранее испытанного материала, скруглениям, углам, сложным деталям и областям с высоким напряжением.
Создание конечно-элементных моделей
Моделирование реальной рабочей среды
При моделировании эффектов реальной рабочей среды с помощью FEA к конечно-элементной модели применяются различные типы нагрузки: узловые (сила, момент, смещение, скорость, ускорение, температура и тепловой поток), элементные (распределенная нагрузка, давление, температура и тепловой поток), а также инерционные нагрузки (сила тяжести).
Типы FEA включают линейную статистику, нелинейную статику и динамику, нормальные формы, динамический отклик, устойчивость и теплопередачу. Типичные результаты, рассчитанные решателем, включают узловые смещения, скорости и ускорения, а также элементарные силы, деформации и напряжения.
Преимущества FEA
спрогнозировать и улучшить характеристики и надежность изделия;
сократить количество прототипов и натурных испытаний;
проанализировать разные конструкции и материалы;
оптимизировать конструкцию и уменьшить расход материала.
Оптимальная расчетная конечно-элементная модель. Способы соединения частей КЭ модели
«Оптимальная расчетная конечно-элементная модель – какая она?» – такой чаще всего не проговоренный вслух, а порою даже и неосознанный вопрос непременно рождается (как минимум в подсознании) у каждого инженера-расчетчика при получении ТЗ на решение задачи методом конечных элементов. Каковы критерии этой самой расчетной модели-мечты? Пожалуй, здесь стоит отталкиваться от известного философского принципа «Всё следует упрощать до тех пор, пока это возможно, но не более того». Вот только как применить этот принцип к нашим научным и инженерным задачам?
Рисунок 1
Критерии оптимальной расчетной конечно-элементной модели
Поразмыслив, проанализировав свой практический опыт, я выделил три основных критерия оптимальной расчетной конечно-элементной модели: 1) физические допущения, адекватные целям расчета; 2) упрощения детализации геометрии, правильный выбор видов конечных элементов и способов их соединения; 3) качественная сетка КЭ. Эта статья является продолжением моего доклада «Особенности использования различных видов конечных элементов в Femap с NX Nastran», прочитанного на Femap Symposium 2020. В докладе я обзорно рассказывал о применении этих трех критериев на примере конкретных проектов, а здесь я подробнее расскажу подробнее о втором критерии.
Чтобы определиться с концепцией рациональной расчетной схемы, в которую мы будем преобразовывать (чаще упрощать) исходную геометрическую модель, нужно в первую очередь хорошо понимать физику моделируемого процесса, осознавать факторы и параметры, изменение которых более всего влияет на результат. Необходимо разбираться в видах конечных элементов (линейные, поверхностные, объемные), способах соединения частей модели и в особенностях их совместного применения. Причем части модели могут состоять из конечных элементов разных видов. Да, и конечно же нужно знать возможности используемого вами расчетного комплекса. Расчетный комплекс Femap с NX Nastran поддерживает все виды конечных элементов и позволяет соединять области, состоящие из конечных элементов разных видов, всеми основными способами.
Способы соединения частей КЭ-модели
Существует три основных способа соединения (в более широком смысле слова – взаимодействия) частей конечно-элементной модели, передачи нагрузки и внутренних усилий между частями модели. Эта классификация носит условный характер, и я ввел ее для удобства восприятия информации расчетчиками-практиками.
Первый способ – соединение конечных элементов разных частей модели «узел в узел». Это самый классический способ. При его использовании граница перехода между частями модели не оказывает никакого собственного влияния. Фактически решатель работает с единой сплошной моделью, а части модели существуют только для удобства работы пользователя в пре- и постпроцессоре.
Рисунок 2
Второй способ – это применение MPC-связей (multiple point constraint). MPC соединяют узел с узлом (тогда это скорее SPC – single point constraint) или узел с группой узлов с помощью жестких или интерполяционных элементов.
Рисунок 3
Третий способ – применение контактных поверхностей различных типов (например, «склейка» или «с трением»). При использовании этого способа пользователь выбирает контактирующие поверхности, а препроцессор автоматически определяет взаимодействующие узлы.
Рисунок 4
Эти три способа соединения (взаимодействия) даже более чем различны. Например, целые классы задач (штамповка, соударение тел) просто невозможно решить без применения контактных поверхностей. При решении же более простых задач (линейная статика, модальный анализ), как правило, есть возможность выбрать, как именно упрощать геометрию и какой способ соединения частей модели применить.
Практические примеры
Разберем и проанализируем по вышеописанным критериям модель радиобашни, изображенную на рис.3. Расчетная модель радиобашни используется для определения собственных форм и частот колебаний металлоконструкции башни, потому точный учет жесткости силовых элементов исключительно важен. Это очень ответственная задача – собственные частоты колебаний необходимы для определения динамической составляющей ветровой нагрузки (см. Руководство по расчету зданий и сооружений на действие ветра к СП 20.13330.2010 «Нагрузки и воздействия»).
Модель радиобашни состоит из конечных элементов трех видов: 1) несущие вертикальные круглые трубы и связи соединяющих их (также из круглых труб) смоделированы балочными конечными элементами; 2) ребра жесткости, соединяющие трубы и опорную плиту, смоделированы поверхностными КЭ; 3) опорная плита смоделирована солидами (объемными КЭ).
В модели также применены три основных способа соединения частей конечно-элементной модели:
а) узел в узел соединены части модели (линейные), между которыми нет зазоров;
б) с помощью MPC-связей соединены линейные элементы (имитирующие трубы), между которыми есть зазоры. Кроме того, посредством MPC-связей соединены элементы ребер жесткости и вертикальных труб;
в) контакты заданы между нижней гранью ребер жесткости и поверхностью опорной плиты.
Я считаю эту расчётную модель очень грамотным результатом преобразования геометрической модели в расчетную, так как модель достаточно проста, но при этом в ней учтены основные конструктивные элементы, определяющие жесткость конструкции. Как правило, в простых строительных САПР отсутствуют инструменты, позволяющие соединять конечные элементы различных видов (в случае радиобашни не было бы возможности смоделировать опорные элементы). То есть в простой строительной САПР конструкцию радиобашни удалось бы смоделировать лишь из одних труб, разбив их балочными конечными элементами. В этом случае податливость основания не учитывается и собственные частоты колебаний конструкции оказываются завышены.
Далее на примере расчетного комплекса Simcenter Femap c NX Nastran я подробнее расскажу о втором способе соединения частей модели, а точнее о применении MPC-связей. Элементы типа R математически эквивалентны многоточечному уравнению связи (Multipoint Constraints Equations, MPC). Они накладывают постоянные ограничения на компоненты перемещения соединяемых узлов. Каждое уравнение связи выражает зависимую степень свободы как функцию независимой степени свободы.
Элементы RROD, RBAR, RBE1, RBE2 и RTRPLT – это жесткие элементы. Элементы RBE3 и RSPLINE – интерполяционные элементы, они не являются жесткими.
Рисунок 5
Элемент RBE2 использует уравнения связи, чтобы связывать степени свободы зависимых узлов со степенями свободы независимого узла. Относительные деформации между зависимыми узлами отсутствуют, то есть соответствующие элементы не деформируются. Варьируя настройки степеней свободы RBE2 в поле DEPENDENT (Зависимый), можно получить WELD – сварное соединение (активируя шесть степеней свободы TX, TY, TZ, RX, RY, RZ) или BOLT – болтовое соединение (активируя TX, TY, TZ, вращения остаются свободными).
В отличие от элементов RBE2, элемент RBE3 не добавляет конструкции дополнительную жесткость, то есть RBE3 – это интерполяционный элемент. RBE3 можно использовать как инструмент распределения нагрузки и массы в КЭ-модели, аналогичный «грузовым площадям» в строительных системах автоматизированного проектирования. Нагрузки в виде сил и моментов, приложенные к зависимому узлу, распределяются в независимые узлы пропорционально весовым коэффициентам.
Рисунок 6
В большинстве случаев в настройках степеней свободы RBE3 в поле INDEPENDENT (Независимый) не рекомендуется активировать вращательные степени свободы.
Подробнее специфика применения RBE2 и RBE3 представлена в статье наших партнеров из компании «КАДИС»: «RBE2 в сравнении с RBE3 в Femap c NX Nastran».
Рисунок 7
Но вернемся от теории к практике и разберем типовую задачу расчета кронштейна, на примере которой отлично видно, что, неправильно задав способ соединения частей модели, мы получим принципиально неверное решение. Кронштейн закреплен на П-образной пластине с помощью двух болтов. К отверстиям кронштейна приложена сила с направлением вдоль пластины. П-образная пластина разбита поверхностными конечными элементами, а кронштейн – объемными КЭ. С учетом толщины пластины пластина и кронштейн соприкасаются.
Рисунок 8
Чтобы результат расчета был адекватен, способ соединения кронштейна с П-пластиной (модель передачи нагрузки) должен соответствовать реальной физике работы болтового соединения. Гайки закручены с некоторым усилием (моментом). Этот момент вызывает силу, прижимающую кронштейн к поверхности пластины. Силу трения в свою очередь определяют коэффициент трения и сила реакции. При приложении нагрузки к кронштейну часть его основания прижимается к пластине, а некоторая часть основания, напротив, стремится от него оторваться, вследствие чего при превышении определенной нагрузки происходит частичное раскрытие стыка.
С точки зрения математического моделирования нам необходимо: а) задать непосредственное соединение болтов и гаек с кронштейном и пластиной и б) задать взаимодействие изначально прижатых друг к другу поверхностей. На рис. 9 показаны напряженно-деформированные состояния кронштейна с пластиной при двух вариантах задания соединений. Составляющая а – назовем ее «имитация болтов» – в обоих вариантах задана одинаково: два «паучка» из RBE-элементов и болт из балочных конечных элементов созданы с помощью встроенной API-команды Hole to Hole Fastener.
Первый и второй варианты различаются настройками свойств контактной пары поверхностей – составляющей б. В первом варианте настройки контакта соответствуют «склейке» двух поверхностей, что не отвечает физике работы болтового соединения. Этот вариант можно было бы использовать, если бы кронштейн был соединен с пластиной при помощи сварных швов – по периметру и внутри. Адекватное решение (второй вариант расчета) получается при задании контакта с трением. Такой вид взаимодействия поверхностей позволяет учесть эффект частичного раскрытия стыка. Задача при этом становится нелинейной и решение занимает гораздо больше времени в связи с необходимостью обеспечить сходимость решения. Подробнее о нелинейном анализе и обеспечении сходимости можно прочитать в моей статье «Просто о нелинейном анализе методом конечных элементов. На примере кронштейна».
Рисунок 9
Существует несколько способов моделирования болтового соединения. Представленный выше способ (балочный элемент + RBE + контакт с трением) относительно прост, однако он позволяет учесть передачу сдвиговых усилий. Есть более точный, но и гораздо более трудоемкий способ моделирования болтового соединения: непосредственное моделирование болтов, гаек, шайб объемными конечными элементами (рис. 10). Этот способ позволяет учесть все тонкости работы болтового соединения (даже контакт в резьбе) и в том числе производить нелинейный анализ с учетом пластичности.
Рисунок 10
Глобально-локальный анализ
Проанализируем теперь сложную конечно-элементную модель марсохода «Кьюриосити» («Curiosity»). На примере марсохода я хочу познакомить читателя с понятием глобально-локального анализа (ГЛА). Глобально-локальный анализ – это процесс изолированного рассмотрения отдельных частей конструкции, при котором выполняется условие равенства силовых факторов и перемещений, соответствующих поведению этой части в составе конструкции. Возможность применения ГЛА обоснована принципом Сен-Венана: в частях конструкции, достаточно удаленных от места приложения нагрузки, напряжения и деформации мало зависят от способа приложения нагрузки. Потому часть модели можно вырезать и выполнить анализ только для этой части – при условии, что значения силовых факторов на границах выреза заданы правильно.
Рисунок 11
Но вернемся к марсоходу и его модели. Весит марсоход около тонны, его габариты: длина – 4,5 метра, ширина – 2,5 метра, высота – 2,1 метра. В процессе проектирования было проведено множество расчетов средствами Simcenter Femap, в том числе линейный статический анализ, анализ потери устойчивости, нелинейный анализ; рассчитаны отклики на воздействие случайной вибрации, выполнен анализ переходных процессов.
Конечно-элементная модель марсохода, изображенная на рис. 11, – это глобальная конечно-элементная модель (ГКЭМ). С ее помощью можно подобрать сечения труб и толщины оболочек, вычислить нагрузки – реакции в узлах конструкции. В модели применены линейные, поверхностные и объемные КЭ, части модели соединяются как «узел в узел», так и посредством MPC-связей и контактов. Для такой сложной конструкции как марсоход рационально использовать глобальную модель как нагрузочную, а узлы считать отдельно с помощью подробных локальных конечно-элементных моделей (ЛКЭМ) – то есть применять алгоритм глобально-локального анализа (рис. 12).
Для расчета узлов в ЛКЭМ очень важно правильно задать граничные условия, силовые факторы. Существует три способа переноса граничных условий из ГКЭМ в локальную конечно-элементную модель: перенос перемещений, перенос силовых факторов, комбинированный способ. Для осуществления этих операций в Femap есть удобный инструмент FreeBody. Чтобы более подробно узнать о ГЛА и о применении FreeBody, рекомендую ознакомиться с докладом Алексея Патая из компании «Центр Технических Проектов»: «Возможности Femap для глобально-локального анализа авиационных конструкций».
Рисунок 12
Заключение
Подведем итоги, опираясь на вышеприведенные результаты анализа трех расчетных моделей: радиобашни, кронштейна и марсохода. Какая она все-таки – оптимальная расчетная конечно-элементная модель, и насколько простой модель может быть? Ответ для каждой конкретной задачи индивидуален, но есть общие критерии.
Что касается понимания физики процесса: например, нам не нужно моделировать каждый крепежный элемент радиобашни, чтобы определить собственные формы и частоты колебаний конструкции, – требуется учитывать лишь элементы, в целом определяющие распределение масс и жесткость конструкции.
Для подбора сечений в строительных расчетах (металлоконструкции, деревянные конструкции и даже часть железобетонных), где чаще всего можно ограничиться использованием только линейных конечных элементов, достаточно понимать, является ли узел условно «жестким» или условно «шарнирным». Условно – потому как в любом «шарнирном» узле есть трение, а любой «жесткий» узел все равно имеет некоторую податливость. Для моделирования течений жидкости или газа, с точки зрения геометрической модели, и вовсе достаточно задать поверхность обтекаемого объекта. Так, например, геометрическая модель для определения буксировочного сопротивления судна – это прямоугольный параллелепипед, из которого вычтен объем корпуса судна.
На примере расчета кронштейна, соединенного болтами с П-образной пластиной, мы увидели, что очень важно правильно задать способ передачи нагрузки, граничные условия. В противном случае мы получим результат, не соответствующий действительности. Да, в соответствии с принципом Сен-Венана, напряженно-деформированное состояние (НДС) конструкции в глобальной модели на достаточном удалении от неточно смоделированного узла практически не изменится. Но НДС элементов узла будет определено неверно, что может быть критичным, если это ответственный узел и он сильно нагружен. Особенно важно – как для точности решения, так и для сходимости – правильно задавать нелинейные контакты.
Для сложных же конструкций, таких как марсоход «Кьюриосити», делать одну сложную и подробную конечно-элементную модель чаще всего нерационально. Целесообразнее использовать алгоритм глобально-локального анализа, то есть формировать глобальную нагрузочную конечно-элементную модель и локальные конечно-элементные модели для расчета ответственных узлов. Затем, после расчета узлов, при необходимости можно внести изменения-уточнения в ГКЭМ.
Конечно, тема оптимальной расчетной конечно-элементной модели не может быть исчерпана в рамках одной статьи. Но я надеюсь, что мой обобщенный практический опыт и теоретические знания будут полезны, и в следующий раз вы сможете быстрее найти свое оптимальное решение. При этом расчетная модель будет проще, а точность выше!
Филипп Титаренко,
специалист по расчетам на прочность,
продакт-менеджер по направлению Femap
АО «Нанософт»
E-mail: titarenko@nanocad.ru
Уважаемые читатели, приглашаю вас на бесплатный «Профессиональный курс по расчетам методом конечных элементов» (март-апрель 2021 г.). Чтобы зарегистрироваться на курс и ознакомиться с его программой, пройдите, пожалуйста, по ссылке здесь или щелкните на рисунок выше.
Профессиональный курс по расчетам МКЭ от АО «Нанософт» включает в себя как ценные теоретические знания и инженерные методики, ориентированные на прикладное применение, так и практические демонстрации, вокршопы по решению типовых инженерных задач в расчетном комплексе конечно-элементного моделирования Simcenter Femap c NX Nastran.
Курс состоит из трех вебинаров и предназначен для инженеров, технических работников и студентов, работающих в областях, где требуется проведение физических расчетов. В заключительной части каждого вебинара вы сможете задать вопрос ведущему, Филиппу Титаренко, и получить консультации по интересующим вас вопросам.
Даты и время проведения вебинаров: