Что такое компаратор в электронике простыми словами
Компараторы. Устройство и работа. Виды и применение. Особенности
Компараторы — название произошло от принципа работы – сравнения. Так функционируют приборы, производящие измерения способом сравнивания с эталоном: весы с одинаковыми плечами, электрические потенциометры.
По своей принципиальной работе компараторы делятся на механические, электрические и оптические. Приборы с механической конструкцией применяются для проверки конечных мер длины. Компараторы для таких целей впервые применены во Франции в 1792 году, об этом имеется информация в энциклопедиях. Такой компаратор на механической основе работал для поверки эталонного метра во время появления метрической системы Франции. Точность таких замеров компаратора рычагами доходила до 0,0005 мм. Это большая точность для того периода времени.
Наша задача рассмотреть компараторы, применяющиеся в современное время в электротехнике для напряжения.
Принцип работы и виды интегральных компараторов
Компараторы с двумя входами и одним выходом. Причем один из входов является прямым, а другой инверсным. На эти входы поступает напряжение, которые устройство сравнивает. В зависимости от этого сравнения на своем выходе устройство устанавливает либо логический ноль, когда напряжение на инверсном входе выше, чем на прямом, либо логическую 1, когда напряжение входа прямого выше, чем на инверсном.
На схеме видно стандартное обозначение компаратора. Компаратор сам по себе достаточно универсален и находит широкое применение в радиолюбительской деятельности. На основе компаратора можно собрать таймер, мультивибратор и даже драйвер для светодиодов.
При выборе компаратора следует обратить внимание на следующие параметры:
Не все компараторы могут установить плюс питания на выходе.
Данная схема построена на переменном резисторе 20 кОм, двух постоянных резисторов 10 кОм, которые образуют собой делитель напряжения на постоянных резисторах. Они подключены к инвертирующему входу. К нему же подключен делитель напряжения на переменном резисторе.
Выход компаратора представляет собой коллектор внутреннего транзистора, эмиттер которого подключен к земле. Этот транзистор либо подключает выход к земле, либо отключает его, поэтому плюса питания на выходе быть не может. Поэтому мы подтягиваем выход компаратора через резистор номиналом 1 кОм к плюсу питания.
Когда на неинвертирующем входе напряжение выше, чем на инвертирующем, транзистор закрывается. Добавленный нами резистор подтягивает к его к плюсу питания, вследствие чего светодиод загорается. Когда на неинвертирующем входе напряжение ниже, чем на инвертирующем, то транзистор открывается и притягивает выход компаратора к земле, вследствие чего светодиод перестает светиться.
Если же на двух входах напряжение примерно одинаковое, то выход компаратора логично переключается из одного состояния в другое и обратно под воздействием внутренних и внешних помех. Для борьбы с помехами и четкого переключения компаратора из одного состояния в другое собираются схемы с гистерезисом.
Обозначения выводов выглядят следующим образом:
Первая ножка – это выход первого компаратора, вторая ножка – инвертирующий вход первого компаратора, третья – неинвертирующий вход первого компаратора, четвертая – земля, восьмая ножка – напряжение питания. Второй компаратор не используется. Выход подключен желтым проводом к подтягивающему резистору и к светодиоду, зеленый провод подключен к делителю напряжения на постоянных резисторах, белый провод подключен к средней ножке переменного резистора, который является делителем напряжения.
При измерении напряжения питания на делителе напряжения на постоянных резисторах 10 кОм. При включении схемы загорается красный светодиод. Включаем мультиметр для измерения постоянного напряжения диапазона до 20 В, подключим его ко второй ножке микросхемы. Показания напряжения 2,4 В. Это постоянные резисторы, делитель напряжения не будет изменять само напряжение. Так как переменный резистор установлен на неинвертирующем входе, то переключаемся на него. Показания 0,87 В. На неинвертирующем входе напряжение ниже, чем на инвертирующем. Следовательно светодиод не горит.
При превышении напряжения выше 2,4 В светодиод начинает светиться. При воздействии внешних помех происходит хаотичное переключение выхода компаратора. Здесь может пригодиться схема гистерезиса.
Компараторы применяются в интегральном исполнении в качестве составных деталей микросхем. Интегральные таймеры имеют в составе два входных компаратора. Этим определяется особенность работы прибора. Микроконтроллеры производят со встроенными компараторами. Независимо от конструкции и схемы принцип действия прибора не отличается.
Новые компараторы похожи на операционные усилители, у них высокий усиливающий коэффициент, не имеют обратной связи, входы такого же типа.
Работа компаратора напряжения
В различных описаниях работы устройства приводятся примеры сравнения с рычажными весами. На одну сторону весов ложится гиря – эталон, на другую товар. Когда вес товара станет равным массе гири, или больше, то гири поднимаются вверх, на этом взвешивание окончено.
С работой компаратора напряжения происходит похожий процесс. Вместо гирь выступает опорное напряжение, вместо товара – сигнал входа. При возникновении логической единицы на выходе устройства происходит сравнение напряжений. Это называют «пороговой чувствительностью» компаратора.
Для тестирования устройства не нужно сложной схемы. Необходимо включить вольтметр на выход устройства, а на входы подключить напряжение, которое регулируется. При изменении входного напряжения на вольтметре будет видна работа компаратора.
Характеристики компараторов
При применении приборов нужно учесть характеристики, делящиеся на динамические и статические. Статические – это параметры установившегося режима. Это пороговая чувствительность. Она является наименьшей разностью сигналов входа. При ней возникает логический сигнал на выходе.
Некоторые компараторы оснащены выводами для смещающего напряжения, осуществляющего смещение характеристики передачи от идеального положения. Важным параметром является гистерезис, то есть разница напряжений входа. Он обусловлен обратной связью положительного значения, предназначенного для устранения «дребезга» сигнала выхода при переключении компаратора.
Устройство
Схема прибора довольно сложная, большая и не слишком понятная. Рассмотрим простую функциональную схему по рисунку.
Показан дифференциальный каскад входа, схема уровневого смещения, логика выхода. Дифференциальный каскад производит основное усиление сигнала разности. Устройством смещения осуществляется оптимальное состояние выхода. Это дает возможность выбрать тип логики для работы. Такая настройка производится подстроченным резистором на выводах «балансировки».
Компаратор с памятью и стробированием
Современные инновационные компараторы оснащены стробирующим входом. Это значит, что сравнение сигналов входа осуществляется только при подаче импульса. Это дает возможность сравнить сигналы входа в необходимый момент.
Простая схема структуры устройства со стробированием:
Устройства по рисунку с парафазным выходом, подобно триггеру – прямой верхний выход, нижний (кружок) – инверсный. С – стробирующий вход. На рисунке а) стробирование сигналов входа осуществляется по высокому уровню входа С. На обозначении входа С изображают знак инверсии маленьким кружком.
Рисунке б) стробирующий вход с чертой /. Это значит, что стробирование проходит по восходящему импульсу. Стробирующий сигнал – разрешение сравнения. Итог сравнения появляется на выходе при действии импульса стробирования. На некоторых устройствах есть память (с триггером). Они сохраняют результат до следующего импульса.
Время импульса стробирования (фронта) должно хватать для того, чтобы сигнал входа успевал проходить через дифференциальный каскад до срабатывания ячейки памяти. Использование стробирования повышает защиту от помех, так как помеха изменяет состояние устройства за время импульса.
Классификация
Компараторы делятся на три группы: общего применения, прецизионные и быстродействующие. В практической деятельности чаще применяются устройства общего применения.
Такие устройства имеют особенности и свойства, привлекающие к себе внимание. Они потребляют небольшую мощность, могут работать при малом напряжении питания. В одном корпусе можно разместить 4 устройства. Эта группа иногда дает возможность производить полезные устройства.
Это простой преобразователь сигнала в унитарный цифровой код, который можно преобразовать в двоичный, цифровым преобразованием. На схеме имеется 4 компаратора. Напряжение опорное подается на инвертирующие входы по делителю резистивного типа. При одинаковых резисторах на инвертирующих входах устройства напряжение будет равно n * Uоп / 4, n – номер устройства. Напряжение входа подается на неинвертирующие входы, которые соединены вместе.
В итоге сравнения напряжения входа с опорным, на компараторных выходах образуется цифровой унитарный код напряжения входа.
Компараторы, как они работают.
Общие сведения.
Для согласования выхода с логическими уровнями КМОП микросхем, напряжение питания соответственно может быть 9-15 вольт.
Процессы переключения компараторов.
Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый «дребезг»).
Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС.
Её можно так же ввести в схему компаратора при необходимости, например, как изображено на рисунке ниже.
Рисунок 3.
Схема включения в компаратор ПОС (гистерезиса).
На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б).
Пороговые напряжения для этой схемы определяются по формулам;
Хотя гистерезис вносит небольшую задержку в переключении компаратора, но благодаря ему, существенно уменьшается или даже устраняется полностью «дребезг» выходного напряжения.
Для того, кто желает более полного и подробного знакомства с компараторами, рекомендую прочитать статью Б. Успенского в ВРЛ № 97 стр.49.
Что такое компараторы
Как работает компаратор?
На один из входов подается постоянный сигнал, который называется опорным. Он используется как образец для сравнения. Ко второму поступает испытуемый сигнал. На выходе стоит транзистор, меняющий свое состояние в зависимости от условий:
Соответственно, выходное напряжение меняется скачком от минимума до максимума, или наоборот.
Напряжение выходных каскадов соответствует входным уровням большинства цифровых микросхем. Это необходимо для случаев, когда компаратор – это формирователь импульса, управляющего работой логических элементов.
Видео
Принцип действия аналогового компаратора
Аналоговый компаратор сравнивает непрерывные сигналы – входной измеряемый и входной опорный.
При медленном изменении входного сигнала, происходит многократное переключение компаратора за малый отрезок времени.
Такое явление называют «электронным дребезгом». Его наличие значительно снижает эффективность сравнения. Поскольку часто повторяющиеся смены состояния выхода, вводят оконечный транзистор в состояние насыщения.
Для уменьшения эффекта «электронного дребезга», в схему вводят ПОС – положительную обратную связь.
Она обеспечивает гистерезис – небольшую разницу между уровнем напряжения включения и отключения.
Некоторые компараторы имеют встроенную ПОС, что уменьшает количество дополнительных элементов построения конструкции.
Принцип работы компаратора (для любознательных)
Иногда, юные электронщики используют юмористический термин «магический треугольник», т.к. они еще не знакомы с внутренней структурой схемы. Чтобы полностью понять, как работает компаратор, нужно хорошо знать транзисторы — внутри компаратора нет никакого волшебства.
Ниже представлена простейшая принципиальная схема компаратора. Схема ужасная, но она будет работать. Следующая информация должна рассматриваться чисто из любопытства — мы не будем использовать этот тип компараторов.
Построение простого компаратора на транзисторах
Компараторы, продаваемые как интегральные схемы, содержат дюжину и более транзисторов, поэтому они не удобны при ручном анализе работы. |
Транзисторы Т1 и Т2 образуют так называемую дифференциальную схему, которая находится на входе каждого компаратора. Ее преимущество в том, что она позволяет изучать дифференциальное напряжение, ведь здесь важна только разница напряжений между их базами.
Если напряжение на Т1 ниже, чем на Т2, первый транзистор открывается, а второй забивается. Это связано со свойствами транзистора PNP — для его открытия необходим базовый потенциал ниже, чем у эмиттера. База T1 будет снижать потенциал эмиттеров ниже, чем база T2, вызывая засорение T2. Весь ток от резистора будет проходить через коллектор T1.
Транзисторы Т1 и Т2 постоянно конкурируют друг с другом за ток от резистора R1. Тот, кто побеждает (то есть начинает проводить ток от эмиттера к коллектору), устанавливает напряжение эмиттер-база около 0,7 В. Если его «противник» не проводит ток, его напряжение эмиттер-база ниже.
Если в ситуации, показанной ниже, транзистор T2 с базовым потенциалом 2,5 В должен был проводить ток, то его потенциал эмиттера был бы 3,2 В или 0,7 В. Однако тогда, напряжение эмиттер-база транзистора T1, поскольку их эмиттеры соединены, будет до 3,2 В — 2 В = 1,2 В, поэтому он будет проводить гораздо больший ток.
Простой компаратор — текущий путь в первой ситуации
В такой схеме проводящим может быть только один транзистор. Ситуация, в которой ток протекает через оба транзистора одновременно, невозможна. |
В схеме напряжений, которую мы только что предположили, Т1 должен проводить ток. Потенциал эмиттера будет 2,7 В. Тогда напряжение эмиттер-база в транзисторе Т2 будет всего 2,7 В — 2,5 В = 0,2 В. Следовательно, Т2 останется забитым. Весь ток от R1 будет течь на землю через коллектор T1. Ток не будет течь в базу T3, и этот транзистор также будет забит.
Теперь поменяем местами провода, подающие напряжение на входы компаратора. Дифференциальное напряжение по-прежнему составляет 0,5 В, но его знак изменился. Теперь потенциал базы Т2 составляет 2 В, а Т1 — 2,5 В. Теперь можно сделать вывод, что Т2 придется открывать. Его напряжение эмиттер-база будет 0,7 В, а Т1 — 0,2 В, поэтому он останется забитым.
Простой компаратор — путь тока во второй ситуации
Весь ток от резистора R1 будет протекать через эмиттер T2 на базу T3. Этот транзистор, пока забитый, но сможет открыться и через его коллектор сможет протекать ток, например, от дополнительного резистора (подробнее об этой теме чуть позже), к земле системы. Если ток коллектора достаточно низкий, транзистор может насыщаться.
Таким образом, эта простая схема действует как реальный компаратор. Когда потенциал входа, отмеченного знаком «+», выше, чем «-», состояние выхода высокое (выходной транзистор забит). Если входной потенциал «-» выше, чем «+», выход будет закорочен на массу (выходной транзистор открыт).
Как обозначается компаратор на схемах
На схемах компаратора и в электротехнических схемах графическое обозначение измерителя выполняется в форме треугольника, имеющего три выхода. Они обозначаются символами «+» и «-», соответствующих неинвертирующим/инвертирующим показателям, также представляется выходной маркирующий знак «Uout».
Вам это будет интересно Особенности ответвительного сжима
Обозначение на схемах
Когда (+) на входе микрочипа, степень сигнала станет больше, чем конкретно на инверсном ( — ), то на выводе будет образовываться устойчивое значение. Исходя из схемотехнической базы компаратора, это число имеет возможность принимать вариант логического «0» либо «1». В цифровых электронных устройствах за «12» принимается сигнал, степень напряжения которого имеет 5В, а за «0» установлено его отсутствие. Другими словами, положение выхода измерителя устанавливается как высокое либо низкое. Хотя обычно на практике за логический «0» принимают разность потенциалов до 2.7 В.
Что такое компаратор напряжения?
Компаратор напряжения — это небольшая интегральная схема, которая позволяет сравнивать два напряжения друг с другом. Компаратор имеет два входа: инвертирующий (-) и неинвертирующий (+), а также выход. Кроме того, такая схема явно требует мощности.
На схемах часто не указывается информация о линиях электропитания, потому что опытному электронщику «очевидно», что каждая схема должна быть запитана. |
Символ компаратора на схемах
Компаратор проверяет разницу напряжений между входами, и на основании этого устанавливает свой выход:
На картинке ниже мы видим с питанием от 6 В. Кроме того, два его входа подключены к отдельным источникам напряжения, которые мы и хотим сравнить друг с другом. К выходу компаратора (и к земле) подключается мультиметр.
Слева большее напряжение на инвертирующем входе, а справа — на неинвертирующем входе
Сразу стоит запомнить, что при сравнении двух напряжений компаратор выдает информацию в виде нуля или единицы. Это означает, что на его выходе напряжение близко к положительной шине питания (здесь 6 В) или к отрицательной (здесь 0 В). Промежуточных состояний нет!
Таким образом, компараторы являются чрезвычайно важным «мостом» между аналоговыми и цифровыми схемами. |
Компараторы напряжения также полезны там, где вам просто нужно сравнить два напряжения. В следующей статье мы обсудим так называемые аналоговые датчики, которые могут измерять, например, текущую температуру или яркость солнечного света. Объединив их с компараторами, мы построим термостат (систему, которая реагирует на превышение заданной температуры) и лампу, которая включается после наступления темноты. Однако, прежде чем мы перейдем к таким схемам, нам необходимо познакомиться с самим компаратором на практике.
Компаратор на операционном усилителе
У компараторов есть немалое сходство с операционными усилителями:
Чувствительность, по-другому разрешающая способность, – это специфический параметр. Она определяет точность сравнения. Характеризуется минимальной разностью сигналов, при которой происходит срабатывание компаратора. Ее значение у интегральных микросхем имеет сотен микровольт. Это несколько хуже, чем у компараторов на операционных усилителях.
Время переключенияхарактеризует быстродействие компараторов. Определяется минимальным временем изменения выходного сигнала: от момента сравнения до момента срабатывания. Зависит от разности сигналов на входах. Значения времени переключения составляют десятки и сотни наносекунд.
Процессы переключения компараторов
Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый «дребезг»). Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС. Её можно так же ввести в схему компаратора при необходимости, например, как изображено на рисунке ниже.
Рисунок 3. Схема включения в компаратор ПОС (гистерезиса).
На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б). Пороговые напряжения для этой схемы определяются по формулам;
Конструкция компаратора
КН нашли обширную область применения в радиоэлектронике разнообразной направленности. В магазинах радиотоваров можно увидеть огромное количество разнообразных микросхем. Но особенно часто применяемыми микросхемами у пользователей считаются:
Они легкодоступны в торговой сети и имеют довольно бюджетную цену. Такие КН выделяются обширным спектром входных параметров. К выходу КН способна присоединяться разнообразная токовая нагрузка, как правило, не превосходящая 50.0 мА. Это могут быть микрореле, варистор, световой диод, оптрон либо абсолютно разные исполнительные модули, однако с предельными по току компонентами.
Фотореле контроля
Подобное реле выпускается методом навесного монтажа. Его применяют в охранных контролирующих системах либо для контролирования степени света. Входящее напряжение попадает на делитель R1 и фотодиод VD3. Их объединенная точка сочетания использует ограничивающие диоды VD1/ VD2, подключенные к входам DA1. В итоге входящая разность потенциалов КН будет отсутствовать, а следовательно, и восприимчивость измерителя станет максимальной.
Вам это будет интересно Как проверять индикаторной отверткой
Фотореле
Чтобы выходящий сигнал смог инвертироваться, потребуется обеспечить входную разницу в 1 мВ. По той причине, что к входу подсоединены С1 и сопротивление R1, размер U на нем станет увеличиваться с незначительной задержкой, равноправной периоду заряда С1.
Зарядный блок
Такой блок питания принимается функционировать непосредственно после сборки. Его базовые опции сводятся к установлению рабочего зарядного тока и порогов, по которым срабатывает КН. При подключении прибора зажигается световой диод, позиционирующий подачу напряжения. На протяжении процесса зарядки обязан непрерывно гореть алый световой диод, который погаснет после того, как аккумуляторная батарея будет полностью заряжена
Зарядный блок
Подводимое напряжение от питающего блока настраивается R2, а зарядный ток устанавливается с применением R4. Наладка выполняется с применением сопротивления на 160 Ом, подключающегося в параллель к контактам, которые держат батарейку. Транзистор VT1 размещается на радиаторе, взамен его можно применять КТ814Б. Подобную схему надо будет комплектовать на плате с размером не более 50×50 мм.
Кварцевый генератор
Этот генератор ортогональных импульсов выполняется с использованием российского компаратора K544C3, функционирующего на тактовой гармонике 32.768 Гц. Схема станет рабочей в спектре входящего напряжения 7-11В с частотой установленной кварцем ZQ1. Тем не менее, для эксплуатации такого девайса сверх 50.0 кГц потребуется понизить значение R5-R6.
Генератор
При замыкании другого вывода с 0-проводом КН становится подсоединённым по варианту с незакрытым коллектором, а R7 становится нагрузкой. Подстраивание частотности производится совместно, с применением C1. С применением R4 выполняется автозапуск генератора. Меняя значение R2, изменяется импульсная характеристика.
Дополнительная информация! Выбирая конденсаторы С1 или С2, генератор сможет применяться в виде бесконтактного жидкостного датчика. В роли детектора для этой цели потребуется применять микроконтроллер с ПО. Однако возможно использовать и ещё дополнительно компаратор, который станет фиксировать деформации напряжения.
Отсюда следует, что компаратор способен предназначать действия по уровням значений на собственных вводах. Когда они отличаются, то, исходя от дельты U, выход прибора меняет качественное положение. Именно такие их качества используют создатели, разрабатывая самые разные электроприборы с операционным усилителем.