Что такое кластер в компьютере
Что такое кластер?
У термина «кластер» существует довольно много различных определений, но так как мы на ресурсе, который посвящен компьютерной тематике, то мы остановимся только на значениях непосредственно нас касающихся.
Кластер – группа компьютеров
Наверное многие из вас сталкивались с проблемой «притормаживания» на компьютере. А вы никогда не задумывались, что производительность можно увеличить за счёт использования ресурсов сразу нескольких компьютеров? Действительно, для решения многих сложных и трудоёмких задач можно использовать сразу несколько вычислительных машин. Причем, чем больше компьютеров в такой связке мы используем, тем быстрее мы получим желаемый результат. Именно такое использование компьютеров получило название КЛАСТЕР.
Кластер – единица хранения данных
Наиболее часто с понятием «кластер» пользователи компьютера сталкивается при форматировании флешки, диска либо какого-нибудь другого носителя информации.
На рисунке диалоговые окно форматирования диска на операционной системе Windows 7. Это окно практически не отличается в разных ОС семейства Windows.
В диалоговом окне мы видим, что один из параметров форматирования носит название «Размер кластера». Давайте вместе разберемся, что такое кластер и зачем так важно определять его размер.
Чтобы прочитать файл, жесткому диску приходится считывать её из с разных участков своей памяти. Думаю, понятно, что считывание информации с различных областей диска может существенно замедлять работу системы, ведь гораздо проще считывать информацию последовательно, чем прыгать с места на место.
Понятие кластер, в нашем случае, как раз и относится к этим участкам носителя информации. Кластер – это участки памяти на диске, имеющие определенный заданный объем, являющийся минимальным для хранения файлов.
Какой размер кластера выбрать?
Мы могли бы ломать голову о выборе размера кластера, если бы разработчики Windows не сделали все за нас. Под пунктом «по умолчанию» или «стандартный размер кластера», в диалоговом окне форматирования, как раз скрывается цифра (размер кластера), которая является золотой серединой баланса скорости и производительности системы.
Размер кластера «по умолчанию» не имеет какого-то определенного значения, он рассчитывается исходя из типа файловой системы и размера носителя информации.
Расскажете об этой статье своим друзьям:
Что такое сектор и кластер
Этой заметкой я хочу ответить на вопросы «что такое сектор» и «что такое кластер», в чем их отличие и для чего сектора и кластеры нужны.
Для этого нам нужно будет разобраться с принципами хранения информации, и давайте поговорим о самых основах.
Для хранения данных все носители информации имеют специальную разметку. Давайте рассмотрим упрощенную схему подобной разметки на примере жесткого диска.
Жесткий диск имеет несколько «блинов» (дисков), на магнитную поверхность которых и записываются данные (смотрите рисунок выше).
Каждый блин имеет круглую форму и разметка такого блина выглядит так:
Каждый диск разбит на треки (дорожки), а каждая дорожка поделена на сектора. Это конечно, очень упрощенная схема, но она дает представление о том, что такое сектор.
Сектор – это минимальная пронумерованная область диска, в которой могут храниться данные. Обычно размер одного сектора составляет 512 байт.
Для нормальной работы операционной системы на жестком диске создается файловая система. Файловая система использует сектора для хранения файлов, но из-за некоторых ограничений и особенностей различных файловых систем, сектора носителя информации обычно объединяются файловой системой в кластеры. Это означает, что кластер является минимальной областью файловой системы, предназначенной для хранения информации и он может состоять как из одного, так и из нескольких секторов.
Чтобы проиллюстрировать вышесказанное приведу картинку из Википедии:
На этом рисунке замечательным образом продемонстрирована структура диска. Буквой «А» обозначена дорожка, буквой «В» — геометрический сектор диска, а буквой «С» — сектор дорожки. Далее из рисунка видно, что кластер «D» может занимать несколько секторов дорожки (кластер выделен на рисунке зеленым).
В различных файловых системах кластер мог иметь размеры от 512 байт (один сектор) до 64 кбайт (128 секторов). В наиболее популярной в настоящее время файловой системе NTFS размер кластера можно установить от 512 байт, до 4096 байт (8 секторов).
Размером кластера можно управлять в некоторых пределах — его можно задать при форматировании носителя информации.
Вычислительный кластер
Вычислительный кластер – это набор соединенных между собой компьютеров (серверов), которые работают вместе и могут рассматриваться как единая система. В отличие от грид-вычислений, все узлы компьютерного кластера выполняют одну и ту же задачу и управляются одной системой управления.
Серверы кластера обычно соединяются между собой по быстродействующей локальной сети, причем на каждом из серверов работает собственный экземпляр операционной системы. В большинстве случаев все вычислительные узлы кластера используют одинаковое оборудование и одну и ту же операционную систему. Однако в некоторых инсталляциях, например, с использованием платформы приложений для организации кластеров OSCAR (Open Source Cluster Application Resources), могут использоваться различные операционные системы или разное серверное оборудование.
Кластеры обычно развертываются для большей производительности и доступности, чем то, что можно получить от одного компьютера, пусть даже очень мощного. Часто такое решение более экономично, чем отдельные компьютеры.
Компоненты кластера
Вычислительные кластеры обычно состоят из следующих компонентов:
Виды кластеров
Различают следующие основные виды кластеров:
Кластеры высокой доступности
Кластеры высокой доступности НА (high-availability cluster) известны также как отказоустойчивые (failover) кластеры, построенные по схеме сети с большой избыточностью (redundancy). Они применяются для критических серверных приложений, например сервера баз данных. Компьютерный кластер может называться НА-кластером, если он обеспечивает доступность приложений не менее, чем «пять девяток», т. е. приложение должно быть доступно (uptime) в течение 99,999 % времени за год.
Чрезвычайно высокая доступность в НА-кластерах достигается за счет использования специального программного обеспечения и аппаратных решений со схемами обнаружения отказов, а также благодаря работе по подготовке к отказам.
ПО для НА-кластеров обычно заблаговременно конфигурирует узел на резервном сервере и запускает на нем приложение в фоновом режиме так, чтобы основной экземпляр приложения мог немедленно переключиться на свою реплику на резервном компьютере при отказе основного.
НА-кластеры обычно используются для терминальных серверов, серверов баз данных, почтовых серверов, а также для серверов общего доступа к файлам. Они могут быть развернуты как на одном местоположении («серверной ферме»), так и в географически разнесенных местоположениях.
Но не следует думать, что технология кластера высокой доступности, или вообще кластеризация, могут служить заменой резервному копированию (backup), а также решениям катастрофоустойчивости (disaster recovery).
Кластеры с балансировкой нагрузки
Балансировка нагрузки – это эффективное распределение входящего сетевого трафика в группе (кластере) серверов.
Современные веб-сайты должны одновременно обслуживать сотни тысяч и даже миллионы запросов от пользователей или клиентов и не слишком задерживать их в получении контента: текста, видео или данных приложений. Чем больше серверов будут обслуживать эти запросы, тем лучше будет качество воспринимаемого сервиса для клиентов. Однако может возникнуть ситуация, когда одни серверы сайта будут работать с перегрузкой, а другие будут почти простаивать.
Балансировщик нагрузки направляет запросы клиентов равномерно на все серверы кластера, которые способны ответить на те или иные запросы. Таким образом, балансировщик максимизирует процент использования вычислительной емкости, а также обеспечивает то, что ни один сервер не оказывается перегруженным, вызывая общую деградацию производительности кластера.
Если какой-то сервер отказывает, то балансировщик перенаправляет трафик на оставшиеся серверы. Когда новый сервер добавляется к группе (кластеру), то балансировщик автоматически перераспределяет нагрузку на всех серверах с учетом вновь вступившего в работу.
Таким образом, балансировщик нагрузки выполняет следующие функции:
Работа балансировщика нагрузки
Алгоритмы балансировки нагрузки
Различные алгоритмы балансировки предназначены для разных целей и достижения разных выгод. Можно назвать следующие алгоритмы балансировки:
Программная и аппаратная балансировка нагрузки
Балансировщики нагрузки бывают двух типов: программные и аппаратные. Программные балансировщики можно установить на любой сервер достаточной для задачи емкости. Поставщики аппаратных балансировщиков просто загружают соответствующее программное обеспечение балансировки нагрузки на серверы со специализированными процессорами. Программные балансировщики менее дорогие и более гибкие. Можно также использовать облачные решения сервисов балансировки нагрузки, такие как AWS EC2.
Высокопроизводительные кластеры (HPC)
Высокопроизводительные вычисления HPC (High-performance computing) – это способность обрабатывать данные и выполнять сложные расчеты с высокой скоростью. Это понятие весьма относительное. Например, обычный лэптоп с тактовой частотой процессора в 3 ГГц может производить 3 миллиарда вычислений в секунду. Для обычного человека это очень большая скорость вычислений, однако она меркнет перед решениями HPC, которые могут выполнять квадриллионы вычислений в секунду.
Одно из наиболее известных решений HPC – это суперкомпьютер. Он содержит тысячи вычислительных узлов, которые работают вместе над одной или несколькими задачами, что называется параллельными вычислениями.
HPC очень важны для прогресса в научных, промышленных и общественных областях.
Такие технологии, как интернет вещей IoT (Internet of Things), искусственный интеллект AI (artificial intelligence), и аддитивное производство (3D imaging), требуют значительных объемов обработки данных, которые экспоненциально растут со временем. Для таких приложений, как живой стриминг спортивных событий в высоком разрешении, отслеживание зарождающихся тайфунов, тестирование новых продуктов, анализ финансовых рынков, – способность быстро обрабатывать большие объемы данных является критической.
Чтобы создать HPC-кластер, необходимо объединить много мощных компьютеров при помощи высокоскоростной сети с широкой полосой пропускания. В этом кластере на многих узлах одновременно работают приложения и алгоритмы, быстро выполняющие различные задачи.
Чтобы поддерживать высокую скорость вычислений, каждый компонент сети должен работать синхронно с другими. Например, компонент системы хранения должен быть способен записывать и извлекать данные так, чтобы не задерживать вычислительный узел. Точно так же и сеть должна быстро передавать данные между компонентами НРС-кластера. Если один компонент будет подтормаживать, он снизит производительность работы всего кластера.
Существует много технических решений построения НРС-кластера для тех или иных приложений. Однако типовая архитектура НРС-кластера выглядит примерно так, как показано на рисунке ниже.
Примеры реализации вычислительного кластера
В лаборатории вычислительного интеллекта создан вычислительный кластер для решения сложных задач анализа данных, моделирования и оптимизации процессов и систем.
Кластер представляет собой сеть из 11 машин с распределенной файловой системой NFS. Общее число ядер CPU в кластере – 61, из них высокопроизводительных – 48. Максимальное число параллельных высокоуровневых задач (потоков) – 109. Общее число ядер графического процессора CUDA GPU – 1920 (NVidia GTX 1070 DDR5 8Gb).
На оборудовании кластера успешно решены задачи анализа больших данных (Big Data): задача распознавания сигнала от процессов рождения суперсимметричных частиц, задача классификации кристаллических структур по данным порошковой дифракции, задача распределения нагрузки электросетей путем определения выработки электроэнергии тепловыми и гидроэлектростанциями с целью минимизации расходов, задача поиска оптимального расположения массива кольцевых антенн и другие задачи.
Архитектура вычислительного кластера
Другой вычислительный НРС-кластер дает возможность выполнять расчеты в любой области физики и проводить многодисциплинарные исследования.
Графические результаты расчета реактивного двигателя, полученные на НРС-клатере (источник: БГТУ «ВОЕНМЕХ»)
На рисунке показана визуализация результатов расчета реактивного двигателя, зависимость скорости расчетов и эффективности вычислений от количества ядер процессора.
Что такое кластер на жестком диске и на что влияет его размер
Наверняка, многие из нас слышали про кластер на жестком диске. Давайте попробуем разобраться, что это такое, и на что влияет его размер.
Немного теории
Кластером называется минимальная часть пространства на жестком диске, выделяемая системой для хранения там файлов. Используемый в операционной системе диск имеет организацию именно на основании кластера. В подавляющем большинстве случаев общий размер файла несколько меньше суммы размеров кластеров, в которых он хранится на винчестере.
Чтобы было понятнее, рассмотрим пример – если посмотреть в свойствах папки, мы увидим, что фактический размер, занимаемый ей на винчестере, больше реального.
Как это работает
Размер кластера (или, другими словами, размер единицы распределения) обычно задается при форматировании, и на эту величину обычно не обращают внимания, оставляя рекомендованное системой значение.
И если на нашем диске размер кластера будет 4 кБ (рекомендованный Windows), то минимальное физическое пространство, занимаемое файлом, будет равно размеру кластера – 4 кБ.
Два таких файла займут, соответственно, размер 8 кБ и т.д.
То есть, при выбранном большом размере кластера файлы малого объема будут занимать значительное место на диске. Но большой размер кластера имеет и другие преимущества – в частности увеличение производительности работы жесткого диска. При минимальном размере кластера количество неиспользуемого дискового пространства при хранении файлов малого объема будут меньше.
Файловая система
Величина доступного размера кластера зависит от файловой системы на жестком диске. Вы можете ознакомиться с поддерживаемыми размерами для разных файловых систем и версий Windows на официальном сайте Microsoft.
Проверить, какая файловая система у вас вы сможете в окне свойств диска, щелкнув по нему правой кнопкой мышки в Проводнике и выбрав «Свойства» из контекстного меню.
Вместо послесловия
Мы с вами коротко разобрались с кластерами на жестком диске и с влияет их размера на хранение данных. Как видите, универсальный совет об оптимальном размере кластера дать очень сложно – здесь нужно выбрать оптимальное значение в зависимости от конкретных потребностей. Ну а в большинстве случаев наверное стоит оставить значение, предложенное системой.
Эффективные кластерные решения
Для начала следует определить, на кого рассчитана статья, чтобы читатели решили, стоит ли тратить на нее время.
Потребность в написании этой статьи возникла после прочитанного семинара на выставке ENTEREX’2002 в городе Киеве. Именно тогда, в начале 2002-го я увидел, что интерес к теме кластерных систем значительно возрос по сравнению с тем, что наблюдалось всего пару лет назад.
Я не ставил себе целью на семинаре и в этой статье проанализировать варианты решения конкретных прикладных задач на кластерных системах, это отдельная и очень обширная тема. Я ставил себе задачу познакомить читателей с терминологией и средствами построения кластерных систем, а также показать, для каких задач полезен кластеринг. Для полного убеждения сомневающихся в статье приведены конкретные примеры реализации кластерных систем и мои контакты, по которым я готов отвечать по мере возможностей на вопросы, связанные с кластерными технологиями, а также принимать ваши замечания и советы.
Концепция кластерных систем
Впервые в классификации вычислительных систем термин «кластер» определила компания Digital Equipment Corporation (DEC).
По определению DEC, кластер — это группа вычислительных машин, которые связаны между собою и функционируют как один узел обработки информации.
Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.
Первые кластеры компании Digital были построены на машинах VAX. Эти машины уже не производятся, но все еще работают на площадках, где были установлены много лет назад. И наверное самое важное то, что общие принципы, заложенные при их проектировании, остаются основой при построении кластерных систем и сегодня.
Естественно, что при частных реализациях одни из требований ставятся во главу угла, а другие отходят на второй план. Так, например, при реализации кластера, для которого самым важным является быстродействие, для экономии ресурсов меньше внимания придают высокой готовности.
В общем случае кластер функционирует как мультипроцессорная система, поэтому, важно понимать классификацию таких систем в рамках распределения программно-аппаратных ресурсов.
Рисунок 2. Тесно связанная мультипроцессорная система
Рисунок 3. Умеренно связанная мультипроцессорная система
Рисунок 4. Слабо связанная мультипроцессорная система
Обычно на PC платформах, с которыми мне приходится работать, используются реализации кластерной системы в моделях тесно связанной и умеренно связанной мультипроцессорных архитектур.
Разделение на High Avalibility и High Performance системы
В функциональной классификации кластеры можно разделить на «Высокоскоростные» (High Performance, HP), «Системы Высокой Готовности» (High Availability, HA), а также «Смешанные Системы».
Смешанные системы объединяют в себе особенности как первых, так и вторых. Позиционируя их, следует отметить, что кластер, который обладает параметрами как High Performance, так и High Availability, обязательно проиграет в быстродействии системе, ориентированной на высокоскоростные вычисления, и в возможном времени простоя системе, ориентированной на работу в режиме высокой готовности.
Проблематика High Performance кластеров
Почти в любой ориентированной на параллельное вычисление задаче невозможно избегнуть необходимости передавать данные от одной подзадачи другой.
Таким образом, быстродействие High Performance кластерной системы определяется быстродействием узлов и связей между ними. Причем влияние скоростных параметров этих связей на общую производительность системы зависит от характера выполняемой задачи. Если задача требует частого обмена данными с подзадачами, тогда быстродействию коммуникационного интерфейса следует уделять максимум внимания. Естественно, чем меньше взаимодействуют части параллельной задачи между собою, тем меньше времени потребуется для ее выполнения. Что диктует определенные требования также и на программирование параллельных задач.
Основные проблемы при необходимости обмена данными между подзадачами возникают в связи с тем, что быстродействие передачи данных между центральным процессором и оперативной памятью узла значительно превышает скоростные характеристики систем межкомпьютерного взаимодействия. Кроме того, сильно сказывается на изменении функционирования системы, по сравнению с привычными нам SMP системами, разница в быстродействии кэш памяти процессоров и межузловых коммуникаций.
Быстродействие интерфейсов характеризуется двумя параметрами: пропускной способностью непрерывного потока даных и максимальным количеством самых маленьких пакетов, которые можно передать за единицу времени. Варианты реализаций коммуникационных интерфейсов мы рассмотрим в разделе «Средства реализации High Performance кластеров».
Проблематика High Availability кластерных систем
Сегодня в мире распространены несколько типов систем высокой готовности. Среди них кластерная система является воплощением технологий, которые обеспечивают высокий уровень отказоустойчивости при самой низкой стоимости. Отказоустойчивость кластера обеспечивается дублированием всех жизненно важных компонент. Максимально отказоустойчивая система должна не иметь ни единой точки, то есть активного элемента, отказ которого может привести к потере функциональности системы. Такую характеристику как правило называют — NSPF (No Single Point of Failure, — англ., отсутствие единой точки отказа).
При построении систем высокой готовности, главная цель — обеспечить минимальное время простоя.
Пренебрежение любым из указанных параметров, может привести к потере функциональности системы.
Давайте коротко пройдемся по всем трём пунктам.
Что касается обеспечения максимальной надежности, то она осуществляется путем использования электронных компонент высокой и сверхвысокой интеграции, поддержания нормальных режимов работы, в том числе тепловых.
Отказоустойчивость обеспечивается путем использования специализированных компонент (ECC, Chip Kill модули памяти, отказоустойчивые блоки питания, и т.п.), а также с помощью технологий кластеризации. Благодаря кластеризации достигается такая схема функционирования, когда при отказе одного из компьютеров задачи перераспределяются между другими узлами кластера, которые функционируют исправно. Причем одной из важнейших задач производителей кластерного программного обеспечения является обеспечение минимального времени восстановления системы в случае сбоя, так как отказоустойчивость системы нужна именно для минимизации так называемого внепланового простоя.
Много кто забывает, что удобство в обслуживании, которое служит уменьшению плановых простоев (например, замены вышедшего из строя оборудования) является одним из важнейших параметров систем высокой готовности. И если система не разрешает заменять компоненты без выключения всего комплекса, то ее коэффициент готовности уменьшается.
Смешанные архитектуры
Сегодня часто можно встретить смешанные кластерные архитектуры, которые одновременно являются как системами высокой готовности, так и высокоскоростными кластерными архитектурами, в которых прикладные задачи распределяются по узлам системы. Наличие отказоустойчивого комплекса, увеличение быстродействия которого осуществляется путем добавления нового узла, считается самым оптимальным решением при построении вычислительной системы. Но сама схема построения таких смешанных кластерных архитектур приводит к необходимости объединения большого количества дорогих компонент для обеспечения высокого быстродействия и резервирования одновременно. И так как в High Performance кластерной системе наиболее дорогим компонентом является система высокоскоростных коммуникаций, ее дублирование приведет к значительным финансовым затратам. Следует отметить, что системы высокой готовности часто используются для OLTP задач, которые оптимально функционируют на симметричных мультипроцессорных системах. Реализации таких кластерных систем часто ограничиваются 2-х узловыми вариантами, ориентированными в первую очередь на обеспечение высокой готовности. Но в последнее время использование недорогих систем количеством более двух в качестве компонент для построения смешанных HA/HP кластерных систем становится популярным решением.
Что подтверждает, в частности, информация агентства The Register, опубликованная на его страничке:
«Председатель корпорации Oracle объявил о том, что в ближайшее время три Unіх сервера, на которых работает основная масса бизнес-приложений компании, будут заменены на блок серверов на базе процессоров Іntеl под управлением ОС Lіnuх. Ларри Эллисон настаивает на том, что введение поддержки кластеров при работе с приложениями и базами данных снижает затраты и повышает отказоустойчивость.»
Средства реализации High Performance кластеров
Самыми популярными сегодня коммуникационными технологиями для построения суперкомпьютеров на базе кластерных архитектур являются:
Myrinet, Virtual Interface Architecture (cLAN компании Giganet — одна из первых коммерческих аппаратных реализаций), SCI (Scalable Coherent Interface), QsNet (Quadrics Supercomputers World), Memory Channel (разработка Compaq Computer и Encore Computer Corp), а также хорошо всем известные Fast Ethertnet и Gigabit Ethernet.
Рисунок 8. Скорость передачи непрерывного потока данных
Рисунок 9. Время передачи пакета нулевой длинны
Эти диаграммы (Рис. 8 и 9) дают возможность увидеть быстродействие аппаратных реализаций разных технологий, но следует помнить, что на реальных задачах и при использовании разнообразных аппаратных платформ параметры задержки и скорости передачи данных получаются на 20-40%, а иногда на все 100% хуже, чем максимально возможные.
Например, при использовании библиотек MPI для коммуникационных карточек cLAN и Intel Based серверов с шиной PCI, реальная пропускная способность канала составляет 80-100 MByte/sec, задержка — около 20 мксек.
Одной из проблем, которые возникают при использовании скоростных интерфейсов, например, таких как SCI является то, что архитектура PCI не подходит для работы с высокоскоростными устройствами такого типа. Но если перепроектировать PCI Bridge с ориентацией на одно устройство передачи данных, то эта проблема решается. Такие реализации имеют место в решениях некоторых производителей, например, компании SUN Microsystems.
Таким образом, при проектировании высокоскоростных кластерных систем и расчета их быстродействия, следует учитывать потери быстродействия, связанные с обработкой и передачей данных в узлах кластера.
Таблица 1. Сравнение высокоскоростных коммуникационных интерфейсов
Технология | Пропускная способность MByte/s | Задержка мксек/пакет | Стоимость карточки/свича на 8 портов | Поддержка платформ | Комментарий |
---|---|---|---|---|---|
Fast Ethertnet | 12.5 | 158 | 50/200 | Linux, UNIX, Windows | Низкие цены, популярная |
Gigabit Ethernet | 125 | 33 | 150/3500 | Linux, UNIX, Windows | Удобство модернизации |
Myrinet | 245 | 6 | 1500/5000 | Linux, UNIX, Windows | Открытый стандарт, популярная |
VI (сLAN от Giganet) | 150 | 8 | 800/6500 | Linux, Windows | Первая аппаратная промышленная реализация VI |
SCI | 400 | 1.5 | 1200/5000 * | Linux, UNIX, Windows | Стандартизирована, широко используется |
QsNet | 340 | 2 | N/A ** | True64 UNIX | AlphaServer SC и системы Quadrics |
Memory Channel | 100 | 3 | N/A | True64 UNIX | Используется в Compaq AlphaServer |
* аппаратура SCI (и программное обеспечение поддержки) допускает построение так называемых MASH топологий без использования коммутаторов
Одной интересной особенностью коммуникационных интерфейсов, которые обеспечивают низкие задержки, является то, что на их основе можно строить системы с архитектурой NUMA, а также системы, которые на уровне программного обеспечения могут моделировать многопроцессорные SMP системы. Преимуществом такой системы является то, что вы можете использовать стандартные операционные системы и программное обеспечение, ориентированное на использование в SMP решениях, но в связи с высокой, в несколько раз выше по сравнению с SMP задержкой междупроцессорного взаимодействия, быстродействие такой системы будет малопрогнозируемо.
Средства распараллеливания
По опыту пользователей высокоскоростных кластерных систем, наиболее эффективно работают программы, специально написанные с учетом необходимости межпроцессорного взаимодействия. И даже несмотря на то, что программировать на пакетах, которые используют shared memory interface или средства автоматического распараллеливания, значительно удобней, больше всего распространены сегодня библиотеки MPI и PVM.
Учитывая массовою популярность MPI (The Message Passing Interface), хочется немного о нём рассказать.
«Интерфейс передачи сообщений» — это стандарт, который используется для построения параллельных программ и использует модель обмена сообщениями. Существуют реализации MPI для языка C/C++ и Fortran как в бесплатных, так и коммерческих вариантах для большинства распространенных суперкомпьютерных платформ, в том числе High Performance кластерных систем, построенных на узлах с ОС Unix, Linux и Windows. За стандартизацию MPI отвечает MPI Forum (http://www.mpi-forum.org). В новой версии стандарта 2.0 описано большое число новых интересных механизмов и процедур для организации функционирования параллельных программ: динамическое управление процессами, односторонние коммуникации (Put/Get), параллельные I/O. Но к сожалению, пока нет полных готовых реализаций этой версии стандарта, хотя часть из нововведений уже активно используется.
Для оценки функциональности MPI, хочу представить вашему вниманию график зависимости времени вычисления задачи решения систем линейных уравнений в зависимости от количества задействованных процессоров в кластере. Кластер построен на процессорах Intel и системе межузловых соединений SCI (Scalable Coherent Interface). Естественно, задача частная, и не надо понимать полученные результаты как общую модель прогнозирования быстродействия желаемой системы.
На графике отображены две кривые, синяя — линейное ускорение и красная — полученное в результате эксперимента. То есть, в результате использования каждой новой ноды мы получаем ускорение выше, чем линейное. Автор эксперимента утверждает, что такие результаты получаются из-за более эффективного использования кэш памяти, что вполне логично и объяснимо. Если у кого возникнут мысли и идеи по этому поводу, буду благодарен, если вы ими поделитесь (мой e-mail: svv@ustar.kiev.ua).
Средства реализации High Availability кластеров
Архитектура без распределения ресурсов не использует общей системы хранения данных. При ее использовании каждый узел имеет свои дисковые накопители, которые не используются совместно узлами кластерной системы. Фактически, на аппаратном уровне разделяются только коммуникационные каналы.
Архитектура с общими дисками классически используется для построения кластерных систем высокой готовности, ориентированных на обработку больших объемов данных. Такая система состоит из общей системы хранения данных и узлов кластера, которые распределяют доступ к общим данным. При высокой мощности системы хранения данных, при работе с задачами, ориентированными на их обработку, архитектура с общими дисками является более эффективной. В этом случае не нужно держать несколько копий данных и в то же время, при выходе из строя узла, задачи могут быть мгновенно доступны для других узлов.
В случае, если в задаче удается логически разделить данные для того, чтобы запрос из некого подмножества запросов можно было бы обработать с использованиям части данных, то система без разделения ресурсов может оказаться более эффективным решением.
На мой взгяд интересной является возможность построения гетерогенных кластерных систем. Например, программное обеспечение Tivoli Sanergy разрешает строить системы, в которых возможно разделение доступа к данным между гетерогенными узлами. Такое решение может быть очень полезным в системах коллективной обработки видеоинформации или других данных в организации, где на одной платформе просто не существует требуемого спектра решений или же уже существует сформированный парк аппаратных и программных ресурсов, которые нужно использовать более эффективно.
Самыми популярными коммерческими системами сегодня являются двухузловые отказоустойчивые кластеры. Различают Активный-Активный (Active-Active) и Активный-Пассивный (Active-Passive) модели реализации отказоустойчивых кластерных систем в отношении распределения програмных ресурсов.
В модели Активный-Активный мы практически получаем вместе с отказоустойчивым решением — решение высокоскоростное, так как одна задача работает на нескольких серверах одновременно. Такой вариант реализован, например, в Oracle Prallel Server, MS SQL 2000, IBM DB2. То есть, реализация такой модели возможна лишь в случае написания прикладного программного обеспечения с ориентацией на функционирование в кластерном режиме (исключение составляют кластерные системы с разделением оперативной памяти). В модели Активный-Активный возможно масштабирование скорости работы задачи путем добавления нового узла, если конечно программным обеспечением поддерживается необходимое количество нод. Например, Oracle Parallel Server 8.0.5 поддерживает работу на кластере от 2-х до 6-ти узлов.
Очень часто пользователи встречаются с такой проблемой, когда нужно обеспечить отказоустойчивое функционирование уже готовых программных решений. К сожалению, модель Активный-Активный в таком случае не работает. Для подобных ситуаций используется модель, в которой обеспечивается миграция задач, выполнявшихся на узле, вышедшем из строя, на другие узлы. Таким образом, мы получаем реализацию Активный-Пассивный.
Учитывая то, что во многих случаях мы можем разбить одну задачу на несколько распределением зон ответственности, а также то, что в общем случае на предприятии нужно выполнять много разных задач, реализуется так называемая модель кластерной системы псевдо Активный-Активный.
Если вам нужно обеспечить отказоустойчивую работу нескольких программных ресурсов, то достаточно добавить в систему новый узел и запустить на кластере нужные вам задачи, которые в случае отказа этого узла перейдут на выполнение на другом узле. Такая модель реализована в программном обеспечении ReliantHA для ОС Caldera OpenUnix и Unixware, которое поддерживает кластеризацию от 2-х к 4-х узлам, в MSCS (Microsoft Cluster Service) и Linux Failover Cluster модели.
Система коммуникаций в отказоустойчивых кластерных системах может быть построена на таком же оборудовании, как и в высокоскоростных кластерах. Но в случае реализации архитектуры с разделяемым дисковым накопителем, возникает необходимость обеспечения высокоскоростного доступа к общей системе хранения данных. Эта задача имеет сегодня множество вариантов решений.
Если используется простейшая 2-х узловая модель, то доступ к дискам может быть построен через их прямое подключение к общей SCSI шине,
или с помощью автономной дисковой подсистемы со встроенным контролером SCSI to SCSI. В последнем случае диски подключаются ко внутренним независимым каналам дисковой подсистемы.
Вариант с использованием SCSI to SCSI дисковой подсистемы является более масштабируемым, функциональным и отказоустойчивым. Несмотря на то, что появляется еще один мостик между узлом и дисками, скорость такой системы обычно выше, так как мы получаем коммутируемый доступ к накопителю (ситуация похожа на использование концентратора и коммутатора в локальной сети). В отличие от варианта с разделением доступа к дискам на общей SCSI шине, отдельная независимая дисковая подсистема имеет также удобную возможность построения систем без точек отказа и возможность построения многоузловых конфигураций.
В последнее время начинает приобретать популярность новый последовательный интерфейс для протокола SCSI — FC (Fibre Channel). На базе FC строятся так называемые сети хранения данных — SAN (Storage Area Network).
Эти замечательные особенности Fibre Channel получил благодоря тому, что в его проектировании принимали участие специалисты в областях как канальных, так и сетевых интерфейсов, причем им удалось объединить в одном FC интерфейсе положительные черты обоих.
Для понимания значимости FC я приведу сравнительную табличку FC и параллельного SCSI интерфейса.
Таблица 2. Таблица сравнительных характеристик FC и параллельного SCSI интерфейса
Новый стандарт: 200MB/s & 400MB/s
Новый стандарт: 320MB/s
Fiber optic: 2-10km
Copper, differential: 25m
2 24 на коммутатор
Сегодня FC устройства стоят дороже, чем устройства с параллельным SCSI, но разница в цене в последнее время резко уменьшается. Диски и системы хранения данных уже практически равны по стоимости с параллельными SCSI реализациями, значительную разницу в стоимости обеспечивают только FC адаптеры.
Существует еще один очень интересный вариант реализации кластерной архитектуры — кластерная система с разделяемой памятью (в т.ч. оперативной) Shared Memory Cluster. Фактически этот кластер может функционировать как в модели умеренно связанной многопроцессорной системы, так и тесно связанной. Такая система, как уже говорилось в начале статьи, называется NUMA.
Кластер с разделяемой памятью использует программное обеспечение (кластерные сервисы), которое обеспечивает один образ системы (single system image), даже если кластер построен как архитектура без распределения ресурсов, которым его соответственно видит операционная система.
В завершение рассказа о кластерных системах высокой готовности, хочу привести статистику по простоям различных систем.
Приведены усредненные данные, а также данные, взятые из рекламных материалов одной из компаний производителей, поэтому их нужно воспринимать с некоторой долей критичности. Однако общая картина, которую они описывают, является вполне корректной.
Как видим, кластерные системы высокой готовности не являются панацеей при минимизации простоев. Если простой системы является чрезвычайно критичным, тогда следует использовать системы класса Fault Tolerant или Continuous Availability, системы такого класса имеют коэффициент готовности на порядок выше, чем системы класса High Availability.
Примеры проверенных решений
Так как успешность любой технологии доказывается примерами ее практического использования, я хочу показать конкретные варианты реализации нескольких наиболее важных, на мой взгляд, кластерных решений.
Сперва о высокоскоростных кластерах.
Одним из наиболее полезных, на мой взгляд, примеров является то, что первые места, да и вообще большинство мест 18-й редакции списка самых мощных суперкомпьютеров мира занимают системы IBM SP2 и Compaq AlphaServer SC. Обе системы являются массивно-параллельными вычислительными системами (MPP), которые структурно аналогичны High Performance кластерным решениям.
В IBM SP2 в качестве узлов используются машины RS/6000, соединенные коммутатором SP Switch2. Пропускная способность коммутатора — 500MB/s в одном направлении, величина задержки — 2.5 мксек.
Compaq AlphaServer SC. Узлы — 4-х процессорные системы типа Compaq AlphaServer ES45, соединенные с помощью коммуникационного интерфейса QsNet, параметры которого упоминались выше.
В том же суперкомпьютерном списке находятся машины, построенные на обычных Intel платформах и коммутаторах SCI и Myrinet и даже обычном Fast и Gigabit Ethernet. Причем как в первых двух вариантах, так и на высокоскоростных кластерных системах, построенных на рядовом оборудовании, для програмирования используются пакеты MPI.
Ну и напоследок хочется привести красивый пример масштабируемой кластерной системы высокой готовности. Аппаратная модель кластерного решения для отказоустойчивой высокоскоростной обработки базы данных IBM DB/2.
На этом все. Если у кого возникнут вопросы, советы или желание пообщаться — милости просим. Мои координаты вы найдете в конце статьи.