Что такое кислотные остатки

Кислотный остаток

Кислотный остаток — это анион, который является второй частью формулы сложного химического соединения. Они способны замещать определенное количество атомов или групп атомов. Ни у одного кислотного остатка нет свободных реакциоспособных электронов. Как правило, кислотный остаток состоит из атомов неметаллов.

Таблица самых распространенных кислотных остатков

Кислотный остатокВалентностьНазваниеТривиальное название кислоты
-ClIхлоридсоляная кислота
-NO3Iнитратазотная кислота
-SO4IIсульфатсерная кислота
-SO3IIсульфитсернистая кислота
-SIIсульфидсероводородная кислота
-SiO3IIсиликаткремниевая кислота
-CO3IIкарбонатугольная кислота
-PO4IIIортофосфатортофосфатная кислота
-NO2Iнитритнитритная кислота
-FIфторидплавиковая кислота
-IIиодидиодидная кислота
-BrIбромидбромидная кислота

Полезное

Смотреть что такое «Кислотный остаток» в других словарях:

кислотный остаток — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN acid residue … Справочник технического переводчика

кислотный остаток — rūgšties liekana statusas T sritis chemija apibrėžtis Rūgšties anijonas. atitikmenys: angl. acid residue rus. кислотный остаток … Chemijos terminų aiškinamasis žodynas

кислотный остаток — кислотный радикал … Cловарь химических синонимов I

кислотный радикал — кислотный остаток … Cловарь химических синонимов I

Эфиры сложные — (хим.) представляют собой сочетания спиртов с кислотами, происходящие путем выделения воды за счет водных остатков этих соединений. Названия [В немецкой химической литературе сложные Э. весьма целесообразно названы, по предложению Гмелина, особым … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Число координатное — химических соединений — Термин введен в науку А. Вернером, который предполагает, что ему удалось открыть закономерность, определяющую состав гидратов, аммиакатов (ср. Кобальтиаковые соединения), двойных (и простых, кислородсодержащих) солей и вообще неорганических и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Анион — Анион отрицательно заряженный ион. Характеризуется величиной отрицательного электрического заряда; например, Cl− однозарядный анион, а SO42− двузарядный анион. В электрическом поле анионы перемещаются к положительному… … Википедия

диазосоединения — органические соединения общей формулы RN2 (алифатические диазосоединения; R алкил) или ArN2X (ароматические диазосоединения; Ar арил, Х гидроксильная группа или кислотный остаток), из которых наиболее важны последние соли диазония.… … Энциклопедический словарь

ртутьорганические соединения — содержат в молекуле атом ртути, непосредственно связанный с углеродом. Известны ртутьорганические соединения типа R2Hg и RHgX, где R органический радикал, Х галоген, ОН, кислотный остаток. Применяются в органическом синтезе, как фунгициды.… … Энциклопедический словарь

соли — продукты замещения атомов водорода кислоты на металл или групп ОН основания на кислотный остаток. При полном замещении образуются средние, или нормальные, соли (NaCl, K2SO4 и др.), при неполном замещении атомов Н кислые (напр., NaHCO3), неполном … Энциклопедический словарь

Источник

Урок 23. Понятие о кислотах

В уроке 23 «Понятие о кислотах» из курса «Химия для чайников» познакомимся со сложными веществами — кислотами; узнаем об индикаторах и как они помогают человеку.

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

В тексте нашего учебника вам уже неоднократно встречалось слово «кислота». Много раз, конечно, вы слышали это слово и в повседневной жизни. При приготовлении пищи используются уксусная и лимонная кислоты, в домашней аптечке есть борная кислота, в аккумуляторы автомашин заливают серную кислоту и т. д. Отметим, что и в быту, и в производственной деятельности людей используются в основном водные растворы кислот. Познакомимся поближе с этими веществами.

Состав кислот

В большинстве случаев в состав молекул кислот входят только атомы неметаллов. На рисунке 97 представлены шаровые модели молекул некоторых кислот и их формулы. Что общего у этих молекул? Ответ прост — в них входят атомы водорода.

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Обратим внимание, что в состав молекулы хлороводорода, кроме атома водорода Н, входит атом хлора Cl, молекулы азотной кислоты — группа атомов NO3, молекулы серной кислоты — SO4, молекулы фосфорной кислоты — PO4.

Атом Cl, группы атомов NO3, SO4, PO4, а также другие атомы и группы атомов в составе кислот называют кислотными остатками.

Кислоты — сложные вещества, в состав которых входят атомы водорода, способные замещаться атомами металлов, и кислотные остатки.

Кислотные остатки в молекулах кислот соединены с атомами водорода в соответствии со своей валентностью. Как можно ее определить? Водород всегда одновалентен. Значит, если кислотный остаток в молекуле кислоты соединен с одним атомом водорода, то его валентность равна единице, если с двумя атомами — двум, а с тремя — трем.

При написании формул кислот сначала пишут атомы водорода, а потом кислотные остатки.

В таблице 8 представлены названия и формулы кислот, с которыми вы будете встречаться при изучении основ химии. Здесь же даны формулы кислотных остатков, которые входят в состав этих кислот, их валентность и названия.

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

При обычных условиях кислоты существуют в жидком и твердом агрегатных состояниях. Так, фосфорная кислота H3PO4 при комнатной температуре — твердое вещество. При этих же условиях серная кислота H2SO4 — это не имеющая запаха вязкая жидкость. Она почти в 2 раза тяжелее воды. Хлороводородная кислота HCl — раствор газа хлороводорода в воде. Она имеет еще и историческое название «соляная кислота». Раствор этой кислоты имеет характерный запах.

В большинстве случаев кислоты растворяются в воде. Исключение — кремниевая кислота H2SiO3. Водные растворы хлороводородной, серной и фосфорной кислот не имеют окраски. Безводная азотная кислота при хранении желтеет.

Поскольку в состав всех кислот входят атомы водорода, то кислоты обладают общими свойствами: 1) изменяют окраску некоторых органических веществ; 2) имеют кислый вкус (пробовать кислоты на вкус, как и любые другие вещества, запрещается — можно получить ожог полости рта!); 3) оказывают разъедающее действие на кожу человека, ткани, бумагу, древесину и другие материалы.

Меры предосторожности при работе с кислотами

Кислоты — едкие вещества. Попадание кислот на кожу или в глаза может привести к болезненным химическим ожогам. Обращаться с кислотами нужно очень осторожно. При работе с ними следует надевать специальные халаты, перчатки, очки. При попадании кислоты на кожу или в глаза ее необ ходимо немедленно смыть большим количеством воды, а затем пораженный участок промыть раствором питьевой соды. В случае необходимости следует обратиться в медпункт.

Понятие об индикаторах

Некоторые органические вещества изменяют свою окраску в присутствии кислот и ряда других веществ. Такие вещества называют индикаторами, что в переводе с латинского означает «указатель».

Индикаторы — это органические вещества, которые изменяют свою окраску в присутствии кислот и ряда других веществ.

На уроках химии для обнаружения в растворах кислот используют индикаторы лакмус, метиловый оранжевый (метилоранж), а также универсальный индикатор. Это полоска фильтровальной бумаги, пропитанная смесью индикаторов. Окраска индикаторов в воде показана на рисунке 98. Индикаторы изменяют свой цвет, если в растворе есть кислоты (рис. 99).

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

На заметку: В растворах кислот изменяют цвет сок краснокочанной капусты, вишни, черноплодной рябины, цветки фиалки и др.

Краткие выводы урока:

Надеюсь урок 23 «Понятие о кислотах» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Источник

Кислотный остаток

В электрическом поле анионы, будучи заряженными отрицательно, перемещаются к положительному электроду — аноду.

Содержание

Кислотный остаток [ | ]

Анион в сложном неорганическом соединении называется (но не всегда, например это неверно для воды или оксидов металлов) кислотным остатком. Анионы, например, можно выделить в формулах неорганических кислот и солей (Na2SO4, HNO3); в них они пишутся на втором месте (после катиона). Для почти всех кислотных остатков существует соответствующая кислота: например, SO4 2– — «остаток» серной кислоты, Cl – — соляной кислоты. Многие кислоты существуют только в растворах, например, угольная кислота, но её соли (карбонаты) известны. Некоторые кислоты (формулы которых можно искусственно выписать) не существуют (даже в растворах), но формально им приписываются соли, которые существуют и устойчивы. Например, это так для фосфид-иона (P 3– ), который дает соли (фосфиды), не имеющие существующей кислоты. Такие ионы не называются кислотными остатками. Таким образом, не всякий анион является кислотным остатком. А именно, к ним не относится ион кислорода в оксидах, гидроксильный ион в воде, или ионы в солях, не имеющие реально существующей прототипной кислоты. В последнем случае отнесение соединения к классу солей является традицией. Также традицией обусловлено не отнесение воды к классу кислот. То есть строго логически непротиворечивое определение кислоты, кислотного остатка и соли затруднительно.

Источник

Химические свойства кислот, их классификация и реакции

Общие свойства кислот. Классификация

Кислоты — класс сложных химических веществ, состоящих из атомов водорода и кислотных остатков.

В первую очередь кислоты делятся на:

Свойства карбоновых кислот подробно разбираются в статье Карбоновые кислоты (ссылка на статью)

В зависимости от количества атомов водорода, которые могут замещаться в химических реакциях различают:

Не смотря на то, что в уксусной кислоте четыре атома водорода, три из них принадлежат кислотному остатку и в реакциях замещения не участвуют. Соответственно, уксусная кислота — одновалентная.

Свойства неорганических кислот также зависят от наличия в их составе кислорода и делятся на

Растворы кислот способны диссоциировать и проводить электрический ток т.е. являются электролитами. В зависимости от степени диссоциации делятся на:

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Химические свойства кислот

1. Диссоциация

При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.

Многоосновные кислоты диссоциируют ступенчато.

НРО 2- 4 ↔ Н + + PО З- 4 (третья ступень)

2. Разложение

Кислородсодержащие кислоты разлагаются на оксиды и воду.

Бескислородные на простые вещества

3. Реакция с металлами

Кислоты реагируют лишь с теми металлами, что стоят в ряду активности до кислорода. В результате взаимодействия образуется соль и выделяется водород.

Найти ряд активности можно на последней странице электронного учебника «Химия 9 класс» под редакцией В. В. Еремина.

Бдительные ученики могут сказать: «Золото стоит в ряду активности металлов после водорода, а с „царской водкой“ реагирует. Как же так?»

Из всех правил есть исключения.

Поскольку в состав азотной кислоты входит азот со степенью окисления +5, а в состав серной — сера со степенью окисления +6, то с металлами реагируют не ионы водорода, а более сильные окислители. Образуется соль, но не происходит выделения водорода.

4. Реакции с основаниями

В результате образуются соль и вода, происходит выделение тепла.

Реакции такого типа называются реакциями нейтрализации. Простейшая реакция, которую можно провести на собственной кухне — гашение соды столовым уксусом или 9%раствором уксусной кислоты.

5. Реакции кислот с солями

Вспомним, когда мы разбирали ионные уравнения ( ссылка на статью), одним из условий протекания реакций было образование в ходе взаимодействия нерастворимой соли, выделение летучего газа или слабо диссоциирующего вещества — например, воды. Те же условия сохраняются и для реакций кислот с солями.

6. Реакция кислот с основными и амфотерными оксидами

В ходе реакции образуется соль и происходит выделение воды.

7. Восстановительные свойства бескислородных кислот

Если в окислительных реакциях первую скрипку играет водород, то в восстановительных реакциях основная роль принадлежит анионному остатку. В результате реакций образуются свободные галогены.

Физические свойства кислот

При нормальных условиях (Атмосферное давление = 760 мм рт. ст. Температура воздуха 273,15 K = 0°C) кислоты чаще жидкости, хотя встречаются и твердые вещества: например ортофосфорная H3PO4 или кремниевая H2SiO3.

Некоторые кислоты представляют собой растворы газов в воде: фтороводородная-HF, соляная-HCl, бромоводородная-HBr.

Кислотные свойства кислот в ряду HF → HCl → HBr → HI усиливаются.

Для некоторых кислот (соляная, серная, уксусная) характерен специфический запах.

Благодаря наличию ионов водорода в составе, кислоты обладают характерным кислым вкусом.

Химическая лаборатория не ресторан, и в целях безопасности существует жесткий запрет на опробование на вкус химических веществ.

Как же можно определить кислота в пробирке или нет?

В 1300 году был открыт лакмус, и с тех пор алхимикам и химикам не пришлось рисковать своим здоровьем, пробуя на вкус содержимое пробирок. Запомните, что лакмус в кислой среде краснеет.

Вторым широко используемым индикатором является фенолфталеин.

Простой мнемонический стишок поможет запомнить, как ведут себя индикаторы в разных средах.

Индикатор лакмус — красный
Кислоту укажет ясно.
Индикатор лакмус — синий,
Щёлочь здесь — не будь разиней,
Когда ж нейтральная среда,
Он фиолетовый всегда.
Фенолфталеиновый — в щелочах малиновый
Но несмотря на это в кислотах он без цвета.

Источник

Классы неорганических веществ. Гидроксиды, кислоты, соли

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Классы неорганических веществ

Все вещества делятся на простые (элементарные) и сложные. Простые вещества состоят из одного элемента, в состав сложных входит два или более элементов. Простые вещества, в свою очередь разделяются на металлы и неметаллы.

Металлы отличаются характерным «металлическим» блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.

Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.

Сложные вещества делят на органические, неорганические и элементоорганические. Неорганическая химия охватывает химию всех элементов периодической системы. Свойства органических соединений существенно отличаются от свойств неорганических, а элементоорганические соединения, с учетом их специфики, занимают промежуточное положение. С классификацией органических и элементоорганических соединений удобнее познакомиться при изучении соответствующих разделов химии, посвященных этим соединениям.

Неорганические вещества разделяются на классы либо по составу (двухэлементные, или бинарные, соединения и многоэлементные соединения; кислородсодержащие, азотосодержащие и т.п.), либо по химическим свойствам, т.е. по функциям (кислотно-основным, окислительно-восстановительным и т.д.), которые эти вещества осуществляют в химических реакциях, – по их функциональным признакам.

К важнейшим бинарным соединениям относятся любые соединения только двух различных элементов. Например, бинарными соединениями азота и кислорода являются: N2O, NO, N2O3, NO2, N2O5; бинарные соединения меди и серы: Cu2S, CuS, CuS2. В формулах бинарных соединений металлы всегда предшествуют неметаллам: SnCl2, Al3N. Если бинарное соединение образовано двумя неметаллами, то на первом месте ставится символ того элемента, который располагается левее в следующей последовательности:

B, Si, C, As, P, H, Te, Se, S, I, Br, Cl, N, O, F.

Если бинарное соединение состоит из двух металлов, то первым указывается металл, располагающийся в большом периоде раньше (от начала периода). Если оба металла находятся в одной группе, то первым указывается элемент с большим порядковым номером.

Бинарные соединения подразделяются на классы в зависимости от типа неметалла (табл. 1.2.), а остальные бинарные соединения относят к соединениям между металлами – интерметаллидам.

Таблица 3. Классы бинарных соединений от типа неметалла

КлассНеметаллПример формулы соединенияНазвание
ГалогенидыF, Cl, Br, INaClХлорид натрия
ОксидыOFeOОксид железа (II)
ХалькогенидыS, Se, TeZnSСульфид цинка
ПниктогенидыN, P, AsLi3NНитрид лития
ГидридыHCaH2Гидрид кальция
КарбидыCSiCКарбид кремния
СилицидыSiFeSiСилицид железа
БоридыBMg3B2Борид магния

Их названия образуются из латинского корня названия неметалла с окончанием «ид» и русского названия менее электроотрицательного элемента в родительном падеже (табл. 3). Если менее электроотрицательный элемент может находиться в разных окислительных состояниях, то после его названия в скобках указывают римскими цифрами его степень окисления. Так, Cu2O – оксид меди (I), CuO- оксид меди (II), CO – оксид углерода (II), CO2 – оксид углерода (IV), SF6 – фторид серы (VI). Можно также вместо степени окисления указывать с помощью греческих числительных приставок (моно-, ди-, три-, тетра-, пента-, гекса- и т.д.) стехиометрический состав соединения: СО – монооксид углерода (приставку «моно» часто опускают), СО2 – диоксид углерода, SF6 – гексафторид серы, Fe3O4 – тетраоксид трижелеза. Для отдельных бинарных соединений сохраняют традиционные названия: Н2О – вода, NН3 – аммиак, РН3 – фосфин.

Оксиды.

Оксиды – сложные вещества, бинарные соединения, состоящие из двух элементов, один из которых является кислород. Атомы кислорода в оксидах связаны ионно или ковалентно с атомами электро­положительного элемента и не связаны друг с другом. Например:

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Оксиды образуют почти все химические элементы. При образовании названия к слову оксид добавляется название элемента в родительном падеже. Если элемент проявля­ет переменную степень окисления, то ему соответствует несколько оксидов. В таких слу­чаях при названии оксидов указывается степень окисления римской цифрой в скобках: Fe +2 O –оксид железа (II), Fe +3 2 O3 – оксид железа (III), S +4 O2 – оксид серы (IV), S +6 О3– ок­сид серы (VI) и др.

По химическим свойствам оксиды можно разделить на солеобразующие (их большинст­во) и несолеобразующие (безразличные). Примером несолеобразующих оксидов могут служить такие, как NO, N2O. Они не образуют солей. Солеобразующие оксиды подразде­ляются на кислотные, основные и амфотерные.

К кислотным относят оксиды типичных неметаллов (SО3, N2O5, CO2, P2O5, Сl2O7), а также оксиды некоторых металлов в их высшей степени окисления (СrO3, V2O5, Mn2O7 и др.). Этим оксидам соответствуют кислоты.

Основные оксиды – это оксиды типичных металлов: Na2O, MgO, BaO, CuO, Fe2O3 и др. Им соответствуют гидроксиды (основания).

К амфотерным относятся оксиды некоторых металлов: ZnO, Al2O3, SnO, Сr2O3, РbО и др. Они обладают одновременно свойствами кислотных и основных оксидов. В данной ра­боте амфотерные оксиды и гидроксиды не рассматриваются.

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

1.Большинство кислотных оксидов взаимодействуют с водой, образуя кислоты:

Оксид кремния (IV) SiO2, а так же кислотные оксиды некоторых металлов (WO3, MoO3) не взаимодействуют с водой. Из основных оксидов в воде растворимы только окси­ды щелочных (Li2O, Na2O, K2O) и щелочноземельных металлов (СаО, SrO, BaO), при этом образуются соответствующие гидроксиды:

Оксиды остальных металлов с водой не реагируют и соответствующие им гидроксиды получают косвенным путем.

2. Кислотные оксиды взаимодействуют с гидроксидами и их растворами, образуя соль и воду:

Основные оксиды взаимодействуют с кислотами, также образуя соль и воду:

3.Взаимодействие кислотных оксидов с основными приводит к образованию солей:

Кислоты.

Кислоты – это электролиты, диссоциирующие в водных растворах с образованием только катионов водорода.

Кислоты по своему химическому составу могут быть кислородными (HNO3, HNO2, H2SO4, Н2СО3 и др.) бескислородными (Н2S, НСl, HF, HBr, HCN) и др. Названия кислородных кислот происходят от названия кислотообразователя (центрального атома). Например, Н2СО3 – угольная кислота.

В тех случаях, когда элемент в одной и той же степени окисления образует несколько кислородных кислот, отличающихся между собой количеством атомов водорода и кисло­рода, к названию кислот добавляются приставки: мета – (наименьшее количество атомов водорода и киcлорода): орто – (наибольшее количество атомов водорода и кислорода). На­пример, НРО3 метафосфорная кислота, Н3РO4 ортофосфорная кислота.

Некоторые кислотообразующие элементы при одной и той же степени окисления обра­зуют несколько кислот, молекулы которых отличаются числом атомов кислотообразовате­ля. Эти кислоты называются изополикислотами. В названии кислоты содержится при­ставка из русского числительного, показывающая число атомов кислотообразователя в ее молекуле. Например: Н2S2О7 – двусерная кислота; Н2B4O7 – четырехборная кислота; H4P2O7 двуфосфорная кислота; Н2Сr2О7 – двухромовая кислота.

Таблица 4. Названия наиболее часто употребляемых кислот и кислотных остатков

Формулы кислотыНазвание кислотыФормула

остатка

Название кислотного остатка
Кислородные кислоты
HNO2АзотистаяNO‾2Нитрит-ион
HNO3АзотнаяNO‾3Нитрат-ион
НВО2МетаборнаяBO‾2Метаборат-ион
Н3ВО3ОртоборнаяВО 3 ‾3Ортоборат-ион
H2SiO3МетакремневаяSiO 2‾ 3Метасиликат-ион
H2SiO4ОртокремневаяSiO 4‾ 4Ортосиликат-ион
H2MnO4МарганцовистаяMnO 2‾ 4Манганат-ион
HMnO4МарганцеваяMnO‾4Перманганат-ион
HAsO2МетамышьяковистаяAsO‾2Метаарсенит-ион
H3AsO4ОртомышьяковаяAsO 3 ‾4Ортоарсенит-ион
H2SO3СернистаяSO 2‾ 3Сульфит-ион
HSO‾3Гидросульфит-ион
H2SO4СернаяSO 2 ‾4Сульфат-ион
HSO‾4Гидросульфат-ион
H2CO3УгольнаяCO3 2‾Карбонат-ион
HCO‾3Гидрокарбонат-ион
НРO3МетафосфорнаяРО‾3Метафосфат-ион
Н3РO4ОртофосфорнаяРО 3 ‾4Ортофосфат-ион
НРО 2‾ 4Гидроортофосфат-ион
Н2РО‾4Дигидроортофосфат-ион
HClOХлорноватистаяClO‾Гипохлорит-ион
НсlО4ХлорнаяСlO‾4Перхлорит-ион
Бескислородные кислоты
НСlХлороводородная (соляная)Хлорид-ион
HFФтороводородная (плавиковая)F ‾Фторид-ион
НВгБромоводороднаяВг‾Бромид-ион
HIИодоводороднаяI ‾Иодид-ион
H2SсероводороднаяS 2 ‾Сульфид-ион
HS‾Гидросульфид-ион

Названия бескислородных кислот образуются от названия неметалла – кислотообразователя с добавлением слова – водородная. Например: НСl – хлороводородная (соляная) ки­слота; H2S – сероводородная кислота.

Кроме того, кислоты подразделяются по числу водород-ионов, способных “отщеплять­ся” при диссоциации, на одноосновные (НСl, НNО3, СН3СООН), двухосновные (Н24, Н2СО3, H2S) и многоосновные (Н3РО4, Н3ВО3, Н4P2O7). Анион, который остается после отщепления от молекулы кислоты одного или более водород-иона называется кислот­ным остатком. Заряд кислотного остатка определяется числом отнятых водород-ионов.

Основность килоты зависит от количества кислотных остатков, соответствующих дан­ной кислоте. Так, одноосновным кислотам соответствует один кислотный остаток:

Двух- и многоосновные кислоты диссоциируют ступенчато, т. е. их молекулы последо­вательно отщепляются по одному водород – иону, и этим кислотам соответствуют два или более кислотных остатка. Так, молекулы серной кислоты в первую очередь, диссоциируют по уравнению:

Отщепление второго водород – иона идет по уравнению:

Ортофосфорная кислота Н3 РО4 диссоциирует в три ступени и имеет три кислотных ос­татка:

Следует отметить, что для многоосновных кислот вторая и третья ступени

диссоциа­ции протекают в гораздо меньшей степени, чем первая.

Ступенчатая диссоциация кислот подтверждается наличием кислых солей. Каждый ки­слотный остаток способен образовать соль с катионом металла, т. е. основность кислоты показывает, сколько солей соответствует данной кислоте.

HSO4 – – гидросульфат – ион

HPO4 2 – – гидроортофосфат – ион

H2PO4 – – дигидроортофосфат – ион

Получение кислот

2. Взаимодействие солей с кислотами (наиболее распространенный способ).

При помощи этих реакций можно получить более слабую или более летучую кислоту, чем исходная.

3. Взаимодействие некоторых неметаллов с водородом:

Водные растворы таких соединений являются кислотами.

Для всех кислот характерны следующие реакции.

1. Все кислоты взаимодействуют с гидроксидами (основаниями): H2SO4 + 2NaOH = Na2SO4 + 2Н2О;

Или в ионной форме:

2Н + + MgO = Mg 2+ + Н2О

3. Разбавление кислоты (кроме азотной и азотистой) реагируют с активными металлами, выделяя водород:

4.Кислоты вступают в реакцию обмена с солями, в результате чего образуется либо нерастворимая соль, либо слабая кислота, либо газ:

Гидроксиды.

Гидроксиды – это электролиты, которые при диссоциации в водных растворах обра­зуют только анионы гидроксила. Например:

Количество гидроксид-ионов в молекуле гидроксида определяется степенью окисления металла. Международные названия оснований происходят от слова гидроксид с добавле­нием названия металла в родительном падеже. Если металл проявляет переменную степень окисления и может образовать два или три гидроксида, то при названии гидроксида указы­вается его степень окисления римской цифрой в скобках. Например:

NaOH – гидроксид натрия; Bа (ОН)2 – гидроксид бария ; Fe (ОН)2 – гидроксид железа (II); Fe (ОН)з – гидроксид железа (Ш); Sn (ОН)2 гидроксид олов (II); Sn (ОН)4 – гидроксид олов (IV).

Гидроксиды, имеющие в составе молекул по два или более гидроксид-ионов называ­ются многокислотными. Они диссоциируют ступенчато:

Ва (ОН) 2 ↔ ВаОН + + ОН‾

Ступенчатые диссоциации гидроксидов подтверждается наличием основных солей, в состав которых входят основные остатки, содержащие гидроксид-ионы. Каждый основной остаток способен образовать соль с кислотным остатком, т. е. кислотность гидроксида по­казывает, сколько типов солей может образовать данный гидроксид.

Основные остатки называются по названию металла с добавлением слова – ион. Напри­мер: Na + – натрий-ион, Ва 2+ барий-ион. Если металл проявляет переменную степень окисления, то величина заряда его иона указывается римской цифрой в скобках. Например: Fe 2+ – железо (П)-ион; Fe 3+ – железо (Ш)-ион и т. д.

В случае сложных катионов к названию металла добавляются приставки гидроксо-, ди-гидроксо-, тригидроксо-, характеризующие в основном остатке наличие одного, двух или трех гидроксид-ионов. Например:

ВаОН + гидроксобарий-ион;

FeOH 2+ гидроксожелезо (Ш)-ион;

Fe(OH) + 2 гидроксожелезо (Ш)-ион.

В основу классификации гидроксидов положена их растворимость в воде. Гидроксиды, растворимые в воде, называются щелочами. Это гидроксиды щелочных и щелочноземель­ных металлов: LiOH, NaOH, КОН, Са(ОН)2, Sr(ОН)2, Ва(ОН)2. В промышленности гидроксиды щелочных металлов получают электролизом расплавом солей этих металлов, а в лабораторных условиях – взаимодействием этих металлов или их оксидов с водой. На­пример:

Или в ионной форме:

Щелочи в растворах почти полностью диссоциируют на ионы. Они относятся к силь­ным электролитам и в ионных уравнениях записываются в виде ионов.

Большинство гидроксидов в воде практически не растворимы. Их получают действием щелочей на водные растворы соответствующих солей. Например:

FeCl3 + 3NaOH = ↓ Fe (ОН)3 + 3NaCl

Или в ионной форме:

Общие свойства класса гидроксидов (действие на индикаторы, взаимодействие с ки­слотами, солями, оксидами) обусловлены наличием в их растворах гидроксид-ионов. Наи­более характерными для гидроксидов являются следующие реакции:

1. Гидроксиды (растворимые и нерастворимые основания) реагируют с кислотами.

Или в ионной форме:

2. Щелочи реагируют с кислотными оксидами:

Или в ионной форме:

3. Щелочи реагируют с растворами солей металлов, образуя нерастворимые гидроксиды:

Или в ионной форме:

Соли.

Соли – это электролиты, образующие при диссоциации в водных растворах катионы основных остатков и анионы кислотных остатков.

Названия солей образуется из названия кислотных остатков (в именительном падеже) и названия основного остатка (в родительном). Например: NaCl – хлорид натрия, MgSO4 сульфат магния, Fe (NO3)3 нитрат железа (III), KHSO4 гидросульфат калия, FeOHCl хлорид гидроксожелеза (П), NaH2PO4 дигидроортофосфат натрия.

Получение солей

Важнейшие способы получения солей рассмотрены при изложении основных химиче­ских свойств оксидов, кислот и гидроксидов. Отметим ряд других методов.

1. Взаимодействие между двумя солями. Реакции этого типа протекают до конца, если один из продуктов выпадает в осадок:

2. Взаимодействие металла с неметаллом. Таким путем получают соли бескислород­-ных кислот:

3. Термическое разложение солей:

В зависимости от состава различают средние (нормальные) (КСl, MgSO4), кислые (КНСО3, NaHS), основные (FeOHCl2, MgOHNO3) соли.

Любую соль можно представить как продукт взаимодействия гидроксида и кислоты (реакция нейтрализации). Например:

В данной реакции участвует одинаковое количество гидроксид-ионов и водород-ионов (2ОН‾ и 2Н + ). Получается средняя соль Na2SO4 сульфат натрия. Если гидроксида взять меньше, чем требуется для полной нейтрализации кислоты (т. е. водород–ионов), то получается кислая соль NaHSO4 – гидросульфат натрия:

Таким образом, кислые соли – продукты неполного замещения водорода кислоты на катионы металла. Они образуются только двух- и многоосновными кислотам (у этих ки­слот по два и более кислотных остатка). Так, например, ортофосфорная кислота может дать одну среднюю соль и две кислые соли (в зависимости от количества взятого гидро­ксида):

Или в ионной форме:

Одноосновные кислоты, которым соответствует только один кислотный остаток, не об­разуют кислых солей.

Кислые соли можно перевести в средние, добавляя в их растворы соответствующие гидроксиды:

Или в ионной форме:

Основные соли содержат в своем составе гидроксид–ионы исходного основания, не замещенные на кислотные остатки. Они образуются при взаимодействии кислоты с избыт­ком гидроксида (основания). Например:

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Или в ионной форме:

Основные соли образуются только многокислотными гидроксидами. Так, например, гидроксид железа (III) Fe(OH)3 при взаимодействии с кислотой может образовывать одну сред­нюю и две основные соли:

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Однокислотные гидроксиды (NaOH, КОН) не образуют основных солей, так как этим гидроксидам соответствует только один основный остаток.

Перевод основных солей в средние осуществляют добавлением соответствующих ки­слот. Например:

Или в ионной форме:
MgOH + + H + ↔ Mg 2+ + H2O;
CuOH + + H + ↔ Cu 2+ + H2O

Все соли, за небольшим исключением HgCl2, CdCl2, относятся к сильным электроли­там и в водных растворах полностью диссоциируются на катионы основных остатков и анионы кислотных остатков.

Диссоциация средних солей протекает полностью в одну стадию:

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато:

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Однако степень диссоциации на второй и третьей ступенях очень мала. Поэтому рас­твор кислой соли содержит лишь незначительное количество водород–ионов.

Основные соли диссоциируют также ступенчато. Например:

Что такое кислотные остатки. Смотреть фото Что такое кислотные остатки. Смотреть картинку Что такое кислотные остатки. Картинка про Что такое кислотные остатки. Фото Что такое кислотные остатки

Однако диссоциация на второй и третьей ступенях настолько мала, что гидроксид-ионов в растворах основных солей практически нет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *