Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

АксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

Бпособ аксономСтричСского проСцирования состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ вмСстС с осями ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ эта систСма относится Π² пространствС, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ проСцируСтся Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ξ± (Рисунок 4.1).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Рисунок 4.1
НаправлСниС проСцирования S опрСдСляСт ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ аксономСтричСских осСй Π½Π° плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Ξ±, Π° Ρ‚Π°ΠΊΠΆΠ΅ коэффициСнты искаТСния ΠΏΠΎ Π½ΠΈΠΌ. ΠŸΡ€ΠΈ этом Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ Π½Π°Π³Π»ΡΠ΄Π½ΠΎΡΡ‚ΡŒ изобраТСния ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ опрСдСлСния ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°.
Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π½Π° РисункС 4.2 ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ построСниС аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ А ΠΏΠΎ Π΅Π΅ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ проСкциям.
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Рисунок 4.2
Π—Π΄Π΅ΡΡŒ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ k, m, n ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Ρ‹ коэффициСнты искаТСния ΠΏΠΎ осям OX, OY ΠΈ OZ соотвСтствСнно. Если всС Ρ‚Ρ€ΠΈ коэффициСнта Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой, Ρ‚ΠΎ аксономСтричСская проСкция называСтся изомСтричСской, Ссли Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π° коэффициСнта, Ρ‚ΠΎ проСкция называСтся димСтричСской, Ссли ΠΆΠ΅ kβ‰ mβ‰ n, Ρ‚ΠΎ проСкция называСтся тримСтричСской.
Если Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ проСцирования S пСрпСндикулярно плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Ξ±, Ρ‚ΠΎ аксономСтричСская проСкция носит названия ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ. Π’ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС, аксономСтричСская проСкция называСтся ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ.
Π“ΠžΠ‘Π’ 2.317-2011 устанавливаСт ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ аксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ:

НиТС приводятся ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Ρ€Π΅Ρ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто примСняСмых Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ аксономСтричСских ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ.
КаТдая такая проСкция опрСдСляСтся ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ осСй, коэффициСнтами искаТСния ΠΏΠΎ Π½ΠΈΠΌ, Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΈ направлСниями осСй эллипсов, располоТСнных Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ плоскостям. Для упрощСния гСомСтричСских построСний коэффициСнты искаТСния ΠΏΠΎ осям, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΎΠΊΡ€ΡƒΠ³Π»ΡΡŽΡ‚ΡΡ.

4.1. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

4.1.1. Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ проСкция

НаправлСниС аксономСтричСских осСй ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° РисункС 4.3.
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Рисунок 4.3 – АксономСтричСскиС оси Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ коэффициСнты искаТСния ΠΏΠΎ осям OX, OY ΠΈ OZ Ρ€Π°Π²Π½Ρ‹ 0,82. Но с Ρ‚Π°ΠΊΠΈΠΌΠΈ значСниями коэффициСнтов искаТСния Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π½Π΅ ΡƒΠ΄ΠΎΠ±Π½ΠΎ, поэтому, Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ коэффициСнты искаТСний. Π­Ρ‚Π° проСкция ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ выполняСтся Π±Π΅Π· искаТСния, поэтому, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ коэффициСнты искаТСний принимаСтся k = m = n =1. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² эллипсы, большая ось ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°Π²Π½Π° 1,22, Π° малая – 0,71 Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΉ окруТности D.

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ΅ оси эллипсов 1, 2 ΠΈ 3 располоТСны ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90ΒΊ ΠΊ осям OY, OZ ΠΈ OX, соотвСтствСнно.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ выполнСния изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ условной Π΄Π΅Ρ‚Π°Π»ΠΈ с Π²Ρ‹Ρ€Π΅Π·ΠΎΠΌ приводится Π½Π° РисункС 4.4.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Рисунок 4.4 – Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ‚Π°Π»ΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

4.1.2. ДимСтричСская проСкция

ПолоТСниС аксономСтричСских осСй проводится Π½Π° РисункС 4.5.

Для построСния ΡƒΠ³Π»Π°, ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½ΠΎΠ³ΠΎ 7ΒΊ10Β΄, строится ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΊΠ°Ρ‚Π΅Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΎΠ΄Π½Ρƒ ΠΈ восСмь Π΅Π΄ΠΈΠ½ΠΈΡ† Π΄Π»ΠΈΠ½Ρ‹; для построСния ΡƒΠ³Π»Π°, ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½ΠΎΠ³ΠΎ 41ΒΊ25Β΄ β€” ΠΊΠ°Ρ‚Π΅Ρ‚Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, соотвСтствСнно, Ρ€Π°Π²Π½Ρ‹ сСми ΠΈ восьми Π΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌ Π΄Π»ΠΈΠ½Ρ‹.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ искаТСния ΠΏΠΎ осям ОΠ₯ ΠΈ OZ k=n=0,94 Π° ΠΏΠΎ оси OY – m=0,47. ΠŸΡ€ΠΈ ΠΎΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΈΠΈ этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² принимаСтся k=n=1 ΠΈ m=0,5. Π’ этом случаС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ осСй эллипсов Π±ΡƒΠ΄ΡƒΡ‚: большая ось эллипса 1 Ρ€Π°Π²Π½Π° 0,95D ΠΈ эллипсов 2 ΠΈ 3 – 0,35D (D – Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ окруТности). На РисункС 4.5 большиС оси эллипсов 1, 2 ΠΈ 3 располоТСны ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90ΒΊ ΠΊ осям OY, OZ ΠΈ OX, соотвСтствСнно.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ условной Π΄Π΅Ρ‚Π°Π»ΠΈ с Π²Ρ‹Ρ€Π΅Π·ΠΎΠΌ приводится Π½Π° РисункС 4.6.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Рисунок 4.5 – АксономСтричСскиС оси Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Рисунок 4.6 – Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ‚Π°Π»ΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

4.2 ΠšΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

4.2.1 Π€Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ димСтричСская проСкция

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ искаТСния ΠΏΠΎ оси OY Ρ€Π°Π²Π΅Π½ m=0,5 Π° ΠΏΠΎ осям OX ΠΈ OZ β€” k=n=1.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Рисунок 4.7 – АксономСтричСскиС оси Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ XOZ Π±Π΅Π· искаТСния. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ΅ оси эллипсов 2 ΠΈ 3 Ρ€Π°Π²Π½Ρ‹ 1,07D, Π° малая ось – 0,33D (D β€” Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ окруТности). Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ ось эллипса 2 составляСт с осью ОΠ₯ ΡƒΠ³ΠΎΠ» 7ΒΊ 14Β΄, Π° большая ось эллипса 3 составляСт Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ ΡƒΠ³ΠΎΠ» с осью OZ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ условной Π΄Π΅Ρ‚Π°Π»ΠΈ с Π²Ρ‹Ρ€Π΅Π·ΠΎΠΌ приводится Π½Π° РисункС 4.8.

Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· рисунка, данная Π΄Π΅Ρ‚Π°Π»ΡŒ располагаСтся Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΅Ρ‘ окруТности ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ XОZ Π±Π΅Π· искаТСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Рисунок 4.8 – Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ‚Π°Π»ΠΈ Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

4.3 ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ эллипса

4.3.1 ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡ эллипса ΠΏΠΎ Π΄Π²ΡƒΠΌ осям

На Π΄Π°Π½Π½Ρ‹Ρ… осях эллипса АВ ΠΈ Π‘D строятся ΠΊΠ°ΠΊ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°Ρ… Π΄Π²Π΅ концСнтричСскиС окруТности (Рисунок 4.9, Π°).

Одна ΠΈΠ· этих окруТностСй дСлится Π½Π° нСсколько Ρ€Π°Π²Π½Ρ‹Ρ… (ΠΈΠ»ΠΈ Π½Π΅Ρ€Π°Π²Π½Ρ‹Ρ…) частСй.

Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ дСлСния ΠΈ Ρ†Π΅Π½Ρ‚Ρ€ эллипса проводятся радиусы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ дСлят Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ. Π—Π°Ρ‚Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ дСлСния большой окруТности проводятся прямыС, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ АВ.

Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… прямых ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΌΠΈ эллипсу. На РисункС 4.9, Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° лишь ΠΎΠ΄Π½Π° искомая Ρ‚ΠΎΡ‡ΠΊΠ° 1.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Π° Π± Π²
Рисунок 4.9 – ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ эллипса ΠΏΠΎ Π΄Π²ΡƒΠΌ осям (Π°), ΠΏΠΎ Ρ…ΠΎΡ€Π΄Π°ΠΌ (Π±)

4.3.2 ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ эллипса ΠΏΠΎ Ρ…ΠΎΡ€Π΄Π°ΠΌ

Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ окруТности АВ дСлится Π½Π° нСсколько Ρ€Π°Π²Π½Ρ‹Ρ… частСй, Π½Π° рисункС 4.9,Π± ΠΈΡ… 4. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ 1-3 проводятся Ρ…ΠΎΡ€Π΄Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρƒ CD. Π’ любой аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ димСтричСской) ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ эти ΠΆΠ΅ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ коэффициСнта искаТСния. Π’Π°ΠΊ Π½Π° РисункС 4.9,Π± А1Π’1=АВ ΠΈ Π‘1 D1 = 0,5CD. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ А 1Π’1 дСлится Π½Π° Ρ‚ΠΎ ΠΆΠ΅ число Ρ€Π°Π²Π½Ρ‹Ρ… частСй, Ρ‡Ρ‚ΠΎ ΠΈ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ АВ, Ρ‡Π΅Ρ€Π΅Π· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ 1-3 проводятся ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, Ρ€Π°Π²Π½Ρ‹Π΅ соотвСтствСнным Ρ…ΠΎΡ€Π΄Π°ΠΌ, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌ Π½Π° коэффициСнт искаТСниС (Π² нашСм случаС – 0,5).

4.4 Π¨Ρ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° сСчСний

Π›ΠΈΠ½ΠΈΠΈ ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠΈ сСчСний (Ρ€Π°Π·Ρ€Π΅Π·ΠΎΠ²) Π² аксономСтричСских проСкциях наносятся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… плоскостях, стороны ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ аксономСтричСским осям (Рисунок 4.10: Π° – ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ; Π± – ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ
Π° Π±
Рисунок 4.10 – ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠΈ Π² аксономСтричСских проСкциях

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

АксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π² качСствС Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ°ΠΌ Π² Ρ‚Π΅Ρ… случаях, ΠΊΠΎΠ³Π΄Π° трСбуСтся ΠΏΠΎΡΡΠ½ΡΡŽΡ‰Π΅Π΅ наглядноС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡ‹ Π΄Π΅Ρ‚Π°Π»ΠΈ. Π’ Π“ΠžΠ‘Π’ 2.317-69 стандартизованы ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ аксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ располоТСниСм осСй.

ΠŸΠ Π―ΠœΠžΠ£Π“ΠžΠ›Π¬ΠΠ«Π• ΠŸΠ ΠžΠ•ΠšΠ¦Π˜Π˜

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ проСкция

Π›ΠΈΠ½ΠΈΠΈ ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠΈ сСчСний Π² аксономСтричСских проСкциях наносят ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… плоскостях, стороны ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ аксономСтричСским осям. Для изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠΈ ΠΏΠΎ плоскостям ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ Π½Π° рис. 2.

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° Π°ΠΊΡΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π² эллипсы (рис. 3).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ эллипсов Π² изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ окруТности ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ построСниСм ΠΎΠ²Π°Π»ΠΎΠ², Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΡ‡Π΅Ρ€Ρ‚Π°Π½ΠΈΠ΅ любого Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠ²Π°Π»Π° Π½Π΅ совпадаСт с ΠΎΡ‡Π΅Ρ€Ρ‚Π°Π½ΠΈΠ΅ΠΌ эллипса, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ ΠΆΠ΅ оси, хотя ΠΈ приблиТаСтся ΠΊ Π½Π΅ΠΌΡƒ. Один ΠΈΠ· способов построСния ΠΎΠ²Π°Π»Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ Π½Π° рис. 4.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ изобраТСния Π΄Π΅Ρ‚Π°Π»ΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ Π½Π° рис. 5.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

ДимСтричСская проСкция

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π¨Ρ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° сСчСний Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рис.7, Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ изобраТСния Π΄Π΅Ρ‚Π°Π»ΠΈ – Π½Π° рис. 9.

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° Π°ΠΊΡΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π² эллипсы (рис. 8).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

ΠšΠžΠ‘ΠžΠ£Π“ΠžΠ›Π¬ΠΠ«Π• ΠŸΠ ΠžΠ•ΠšΠ¦Π˜Π˜

Π€Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ изомСтричСская проСкция

Π¨Ρ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° сСчСний Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рис. 11, Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ выполнСния изобраТСния Π΄Π΅Ρ‚Π°Π»ΠΈ – Π½Π° рис.13.

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° Π°ΠΊΡΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π² окруТности, Π° окруТности, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ плоскостям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, – Π² эллипсы (рис. 12).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ изомСтричСская проСкция

Π¨Ρ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° сСчСний Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рис.15, Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ изобраТСния Π΄Π΅Ρ‚Π°Π»ΠΈ – Π½Π° рис. 17.

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° Π°ΠΊΡΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π² окруТности, Π° окруТности, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ плоскостям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, – Π² эллипсы (рис.16).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π€Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ димСтричСская проСкция

Π¨Ρ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ° сСчСний Π² ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рис.19, Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ изобраТСния Π΄Π΅Ρ‚Π°Π»ΠΈ – Π½Π° рис.21

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ проСкция

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΜΡ‡Π΅ΡΠΊΠ°Ρ проС́кция β€” это Ρ€Π°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒ аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π² ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ коэффициСнт искаТСния (ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ спроСктированного Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси, ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°) ΠΏΠΎ всСм Ρ‚Ρ€Ρ‘ΠΌ осям ΠΎΠ΄ΠΈΠ½ ΠΈ Ρ‚ΠΎΡ‚ ΠΆΠ΅. Π‘Π»ΠΎΠ²ΠΎ «изомСтричСская» Π² Π½Π°Π·Π²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈΡˆΠ»ΠΎ ΠΈΠ· грСчСского языка ΠΈ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«Ρ€Π°Π²Π½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€Β», отраТая Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Π² этой ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΌΠ°ΡΡˆΡ‚Π°Π±Ρ‹ ΠΏΠΎ всСм осям Ρ€Π°Π²Π½Ρ‹. Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π²ΠΈΠ΄Π°Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ это Π½Π΅ Ρ‚Π°ΠΊ.

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ проСкция ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² ΠΌΠ°ΡˆΠΈΠ½ΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ‡Π΅Ρ€Ρ‡Π΅Π½ΠΈΠΈ ΠΈ БАПР для построСния наглядного изобраТСния Π΄Π΅Ρ‚Π°Π»ΠΈ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€Π°Ρ… для Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ ΠΏΠ°Π½ΠΎΡ€Π°ΠΌ.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹Π΅ изомСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ [1]

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ (ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ) изомСтричСская проСкция

Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ аксономСтричСскиС оси ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΡƒΠ³Π»Ρ‹ Π² 120Β°, ось Z’ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ искаТСния (Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ) ΠΈΠΌΠ΅ΡŽΡ‚ числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, для упрощСния построСний ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ Π±Π΅Π· искаТСний ΠΏΠΎ осям, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ коэффициСнт искаТСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ Ρ€Π°Π²Π½Ρ‹ΠΌ 1, Π² этом случаС ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Π² Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈΡ€Π°Π·Π°.

ΠšΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ изомСтричСская проСкция

Ось Z’ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ осью X’ ΠΈ Z’ Ρ€Π°Π²Π΅Π½ 90Β°, ось Y’ с ΡƒΠ³Π»ΠΎΠΌ Π½Π°ΠΊΠ»ΠΎΠ½Π° 135Β° (допускаСтся 120Β° ΠΈ 150Β°) ΠΎΡ‚ оси Z’.

Π€Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ изомСтричСская проСкция выполняСтся ΠΏΠΎ осям X’, Y’ ΠΈ Z’ Π±Π΅Π· искаТСния.

ΠšΡ€ΠΈΠ²Ρ‹Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π±Π΅Π· искаТСний.

ΠšΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ изомСтричСская проСкция

Ось Z’ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ, ΠΌΠ΅ΠΆΠ΄Ρƒ осью Z’ ΠΈ осью Y’ ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Ρ€Π°Π²Π΅Π½ 120Β° (допускаСтся 135Β° ΠΈ 150Β°), ΠΏΡ€ΠΈ этом сохраняСтся ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ осями X’ ΠΈ Y’ Ρ€Π°Π²Π½Ρ‹ΠΌ 90Β°.

Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ Π±Π΅Π· искаТСния ΠΏΠΎ осям X’, Y’ ΠΈ Z’.

ΠšΡ€ΠΈΠ²Ρ‹Π΅, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости [2] ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π±Π΅Π· искаТСний.

Визуализация

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π²ΠΈΠ΄ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ, Π²Ρ‹Π±Ρ€Π°Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Π·ΠΎΡ€Π° Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ осСй x, y, ΠΈ z Π±Ρ‹Π»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ ΠΈ Ρ€Π°Π²Π½Ρ‹ 120Β°. К ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, Ссли Π²Π·ΡΡ‚ΡŒ ΠΊΡƒΠ±, это ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²ΠΈΠ² взгляд Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ ΠΊΡƒΠ±Π°, послС Ρ‡Π΅Π³ΠΎ ΠΏΠΎΠ²Π΅Ρ€Π½ΡƒΠ² ΠΊΡƒΠ± Π½Π° Β±45Β° Π²ΠΎΠΊΡ€ΡƒΠ³ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ оси ΠΈ Π½Π° Β±arcsin (tan 30Β°) β‰ˆ 35.264Β° Π²ΠΎΠΊΡ€ΡƒΠ³ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси. ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: Π½Π° ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΊΡƒΠ±Π° ΠΊΠΎΠ½Ρ‚ΡƒΡ€ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” всС Ρ€Ρ‘Π±Ρ€Π° Ρ€Π°Π²Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ всС Π³Ρ€Π°Π½ΠΈ Ρ€Π°Π²Π½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ.

ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ изомСтричСский Π²ΠΈΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, Π² Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΎΡ€Π΅ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… сцСн: Π½Π°Ρ‡Π°Π² с ΠΊΠ°ΠΌΠ΅Ρ€ΠΎΠΉ, Π²Ρ‹Ρ€ΠΎΠ²Π½Π΅Π½Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»Ρƒ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ осям, Π΅Ρ‘ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ²Π΅Ρ€Π½ΡƒΡ‚ΡŒ Π²Π½ΠΈΠ· Π½Π° β‰ˆ35.264Β° Π²ΠΎΠΊΡ€ΡƒΠ³ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси ΠΈ Π½Π° Β±45Β° Π²ΠΎΠΊΡ€ΡƒΠ³ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ оси.

Π”Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² рассмотрСнии Π²ΠΈΠ΄Π° кубичСской ΠΊΠΎΠΌΠ½Π°Ρ‚Ρ‹ с Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ ΡƒΠ³Π»Π° с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ взгляда Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ Π½ΠΈΠΆΠ½ΠΈΠΉ ΡƒΠ³ΠΎΠ». Ось x здСсь Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° диагонально Π²Π½ΠΈΠ· ΠΈ Π²ΠΏΡ€Π°Π²ΠΎ, ось y β€” диагонально Π²Π½ΠΈΠ· ΠΈ Π²Π»Π΅Π²ΠΎ, ось z β€” прямо Π²Π²Π΅Ρ€Ρ…. Π“Π»ΡƒΠ±ΠΈΠ½Π° Ρ‚Π°ΠΊΠΆΠ΅ отраТаСтся высотой ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ. Π›ΠΈΠ½ΠΈΠΈ, нарисованныС вдоль осСй, ΠΈΠΌΠ΅ΡŽΡ‚ ΡƒΠ³ΠΎΠ» 120Β° ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ прСобразования

Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ 8 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² получСния изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΉ ΠΎΠΊΡ‚Π°Π½Ρ‚ смотрит Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒ. Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈΠ² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈΠ½Π° плоскости ΠΏΡ€ΠΈ взглядС Π² ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΎΠΊΡ‚Π°Π½Ρ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ матСматичСски описано с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ† ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π’Π½Π°Ρ‡Π°Π»Π΅, ΠΊΠ°ΠΊ объяснСно Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ Визуализация, выполняСтся ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π²ΠΎΠΊΡ€ΡƒΠ³ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси (здСсь x) Π½Π° Ξ± = arcsin (tan 30Β°) β‰ˆ 35.264Β° ΠΈ Π²ΠΎΠΊΡ€ΡƒΠ³ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ оси (здСсь y) Π½Π° Ξ² = 45Β°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π—Π°Ρ‚Π΅ΠΌ примСняСтся ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ проСкция Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ x-y:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π”Ρ€ΡƒΠ³ΠΈΠ΅ сСмь Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ΠΎΠΌ ΠΊ противостоящим сторонам ΠΈ/ΠΈΠ»ΠΈ инвСрсиСй направлСния взгляда. [3]

ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΡ аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Как ΠΈ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… Π²ΠΈΠ΄Π°Ρ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π² аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π΅ выглядят большС ΠΈΠ»ΠΈ мСньшС ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ»ΠΈ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΠΎΡ‚ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»Ρ. Π­Ρ‚ΠΎ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ Π² Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ°Ρ… ΠΈ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π² спрайто-ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€Π°Ρ…, Π½ΠΎ, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ пСрспСктивной (Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ) ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΡ‰ΡƒΡ‰Π΅Π½ΠΈΡŽ искривлСния, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ наши Π³Π»Π°Π·Π° ΠΈΠ»ΠΈ фотография Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ ΠΈΠ½Π°Ρ‡Π΅.

Π­Ρ‚ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ Π»Π΅Π³ΠΊΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ситуациям, ΠΊΠΎΠ³Π΄Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ ΠΈ высоту Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ справа. Π’ этом изомСтричСском рисункС Π³ΠΎΠ»ΡƒΠ±ΠΎΠΉ ΡˆΠ°Ρ€ Π½Π° Π΄Π²Π° уровня Π²Ρ‹ΡˆΠ΅ красного, Π½ΠΎ это нСльзя ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ, Ссли ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° Π»Π΅Π²ΡƒΡŽ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ. Если выступ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ находится Π³ΠΎΠ»ΡƒΠ±ΠΎΠΉ ΡˆΠ°Ρ€, Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ Π½Π° ΠΎΠ΄ΠΈΠ½ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚ΠΎ ΠΎΠ½ окаТСтся Ρ‚ΠΎΡ‡Π½ΠΎ рядом с ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ находится красный ΡˆΠ°Ρ€, создавая ΠΎΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ иллюзию, Π±ΡƒΠ΄Ρ‚ΠΎ ΠΎΠ±Π° ΡˆΠ°Ρ€Π° Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅.

Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°, спСцифичная для изомСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ β€” ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния, какая сторона ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ. ΠŸΡ€ΠΈ отсутствии Ρ‚Π΅Π½Π΅ΠΉ ΠΈ для ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ пСрпСндикулярны ΠΈ соразмСрны, слоТно ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, какая сторона являСтся Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ, Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΈΠ»ΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ. Π­Ρ‚ΠΎ происходит ΠΈΠ·-Π·Π° ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρƒ ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°.

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ соврСмСнных ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€ ΠΈΠ·Π±Π΅Π³Π°ΡŽΡ‚ этого Π·Π° счёт ΠΎΡ‚ΠΊΠ°Π·Π° ΠΎΡ‚ аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ пСрспСктивного Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Ρ€Π΅Π½Π΄Π΅Ρ€ΠΈΠ½Π³Π°. Однако эксплуатация ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… иллюзий популярна Π² оптичСском искусствС β€” Ρ‚Π°ΠΊΠΎΠΌ, ΠΊΠ°ΠΊ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΈΠ· сСрии Β«Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹Β» Π­ΡˆΠ΅Ρ€Π°. Π’ΠΎΠ΄ΠΎΠΏΠ°Π΄ (1961) β€” Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ строСниС Π² основном изомСтричСскоС, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π±Π»Π΅ΠΊΠ»Ρ‹ΠΉ Ρ„ΠΎΠ½ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ. Π”Ρ€ΡƒΠ³ΠΎΠ΅ прСимущСство Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ‡Π΅Ρ€Ρ‡Π΅Π½ΠΈΠΈ Π΄Π°ΠΆΠ΅ Π½ΠΎΠ²ΠΈΡ‡ΠΊΠΈ Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡƒΠ³Π»Ρ‹ Π² 60Β° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ циркуля ΠΈ Π»ΠΈΠ½Π΅ΠΉΠΊΠΈ.

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ проСкция Π² ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€Π°Ρ… ΠΈ пиксСльной Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π’ области ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€ ΠΈ пиксСльной Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ аксономСтричСская проСкция Π±Ρ‹Π»Π° вСсьма популярна Π² силу лёгкости, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Π΅ спрайты ΠΈ плиточная Π³Ρ€Π°Ρ„ΠΈΠΊΠ° (Π°Π½Π³Π».) ΠΌΠΎΠ³Π»ΠΈ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для прСдставлСния Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΉ срСды β€” ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²ΠΎ врСмя пСрСмСщСния ΠΏΠΎ ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΌΡƒ полю ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π½Π΅ ΠΌΠ΅Π½ΡΡŽΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€, ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρƒ Π½Π΅ трСбуСтся ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ спрайты ΠΈΠ»ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ вычислСния, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для модСлирования Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ пСрспСктивы. Π­Ρ‚ΠΎ позволяло старым 8-Π±ΠΈΡ‚Π½Ρ‹ΠΌ ΠΈ 16-Π±ΠΈΡ‚Π½Ρ‹ΠΌ ΠΈΠ³Ρ€ΠΎΠ²Ρ‹ΠΌ систСмам (ΠΈ, ΠΏΠΎΠ·Π΄Π½Π΅Π΅, ΠΏΠΎΡ€Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ ΠΈΠ³Ρ€ΠΎΠ²Ρ‹ΠΌ систСмам) Π»Π΅Π³ΠΊΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ‚ΡŒ большиС Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Π΅ пространства. И хотя Π½Π΅Ρ€Π°Π·Π±Π΅Ρ€ΠΈΡ…Π° с Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ (см. Π²Ρ‹ΡˆΠ΅) ΠΈΠ½ΠΎΠ³Π΄Π° ΠΌΠΎΠ³Π»Π° Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ, Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΉ Π΄ΠΈΠ·Π°ΠΉΠ½ ΠΈΠ³Ρ€Ρ‹ способСн Π΅Ρ‘ ΡΠΌΡΠ³Ρ‡ΠΈΡ‚ΡŒ. Π‘ ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΎΠΌ Π±ΠΎΠ»Π΅Π΅ ΠΌΠΎΡ‰Π½Ρ‹Ρ… графичСских систСм аксономСтричСская проСкция стала Ρ‚Π΅Ρ€ΡΡ‚ΡŒ свои ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ.

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π² ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€Π°Ρ… ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ нСсколько отличаСтся ΠΎΡ‚ «истинной» изомСтричСской Π² силу ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ растровой Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ β€” Π»ΠΈΠ½ΠΈΠΈ ΠΏΠΎ осям x ΠΈ y Π½Π΅ ΠΈΠΌΠ΅Π»ΠΈ Π±Ρ‹ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎΠ³ΠΎ пиксСльного ΡƒΠ·ΠΎΡ€Π°, Ссли Π±Ρ‹ Ρ€ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡŒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ Π² 30Β° ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΠΈ. Π₯отя соврСмСнныС ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΡΡ‚Ρ€Π°Π½ΡΡ‚ΡŒ эту ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ сглаТивания, Ρ€Π°Π½Π΅Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Π°Ρ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»Π° Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΡƒΡŽ Ρ†Π²Π΅Ρ‚ΠΎΠ²ΡƒΡŽ ΠΏΠ°Π»ΠΈΡ‚Ρ€Ρƒ ΠΈΠ»ΠΈ Π½Π΅ располагала достаточной ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ процСссоров для Π΅Π³ΠΎ выполнСния. ВмСсто этого использовалась пропорция пиксСльного ΡƒΠ·ΠΎΡ€Π° 2:1 для рисования осСвых Π»ΠΈΠ½ΠΈΠΉ x ΠΈ y, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π΅Π³ΠΎ эти оси Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡŒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ arctan 0,5 β‰ˆ 26,565Β° ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΠΈ. (Π˜Π³Ρ€ΠΎΠ²Ρ‹Π΅ систСмы с Π½Π΅ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌΠΈ пиксСлями ΠΌΠΎΠ³Π»ΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΡƒΠ³Π»Π°ΠΌ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ изомСтричСскиС). ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ здСсь ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ… ΡƒΠ³Π»ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ осями (116,565Β°, 116,565Β°, 126,87Β°) Ρ€Π°Π²Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π°, Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ характСризуСтся ΠΊΠ°ΠΊ вариация димСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ. Однако Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ прСдставитСлСй сообщСств ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€ ΠΈ растровой Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ эту ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ «изомСтричСской пСрспСктивой». Π’Π°ΠΊΠΆΠ΅, часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹ Β«Π²ΠΈΠ΄ 3/4 (Π°Π½Π³Π».)Β» ΠΈ Β«2.5DΒ».

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ изомСтричСских ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΈΠ³Ρ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ

На протяТСнии 1990-Ρ… Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‡Π΅Π½ΡŒ ΡƒΡΠΏΠ΅ΡˆΠ½Ρ‹Π΅ ΠΈΠ³Ρ€Ρ‹ Π²Ρ€ΠΎΠ΄Π΅ Civilization II ΠΈ Diablo использовали Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ пСрспСктиву. Π‘ ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΎΠΌ 3D ускоритСлСй Π½Π° ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρ‹ ΠΈ ΠΈΠ³Ρ€ΠΎΠ²Ρ‹Π΅ консоли ΠΈΠ³Ρ€Ρ‹ с Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ пСрспСктивой Π² основном ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡ΠΈΠ»ΠΈΡΡŒ Π½Π° ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½ΡƒΡŽ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ вмСсто изомСтричСской пСрспСктивы. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ Π² ΠΏΡ€Π΅Π΅ΠΌΠ½ΠΈΡ†Π°Ρ… Π²Ρ‹ΡˆΠ΅Π½Π°Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΈΠ³Ρ€ β€” начиная с Civilization IV Π² этой сСрии ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ полная Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ. Diablo II, ΠΊΠ°ΠΊ ΠΈ Ρ€Π°Π½Π΅Π΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ пСрспСктиву, Π½ΠΎ ΠΎΠΏΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ примСняСт пСрспСктивноС ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ спрайтов Π½Π° расстоянии, получая псСвдо-Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΡƒΡŽ пСрспСктиву. [18]

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎΠ± аксономСтричСских проСкциях

НаглядныС изобраТСния ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ для пояснСния Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ΠΉ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΈ машин. По Π½ΠΈΠΌ Π»Π΅Π³Ρ‡Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, Ρ‡Π΅ΠΌ ΠΏΠΎ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΡƒ Π² Ρ‚Ρ€Ρ‘Ρ… Π²ΠΈΠ΄Π°Ρ….

Одним ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² наглядных ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ аксономСтричСскиС изобраТСния.

АксономСтрия Π² ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ с грСчСского ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ ΠΏΠΎ осям».

АксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡƒΡ‚Ρ‘ΠΌ проСцирования ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π»ΡƒΡ‡Π°ΠΌΠΈ

ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ связан с осями ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π  (рис. 103).

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, аксономСтричСская проСкция – это проСкция Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° ΠΎΠ΄Π½Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ наглядным, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π»ΡƒΡ‡ΠΈ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’ΠΎΠ³Π΄Π° Π½Π° плоскости Π  Π±ΡƒΠ΄ΡƒΡ‚, Ρ…ΠΎΡ‚ΡŒ ΠΈ с искаТСниями, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ всС Ρ‚Ρ€ΠΈ измСрСния ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°.

АксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π² зависимости ΠΎΡ‚ направлСния проСцирования дСлятся Π½Π° Π΄Π²Π° Π²ΠΈΠ΄Π°: ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅, ΠΊΠΎΠ³Π΄Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ проСцирования пСрпСндикулярно плоскости Π  (ΡƒΠ³ΠΎΠ» Ο†=90Β°), ΠΈ ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅, ΠΊΠΎΠ³Π΄Π° ΡƒΠ³ΠΎΠ» Ο†β‰ 90Β°.

Если ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π  Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… плоскостСй x,y,z, Ρ‚ΠΎ Π½Π° аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρƒ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° ΠΈΡΠΊΠ°ΠΆΠ°ΡŽΡ‚ΡΡ всС Ρ‚Ρ€ΠΈ Π΅Π³ΠΎ измСрСния. Если ΠΆΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π  ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π΄Π²ΡƒΠΌ осям ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ Ρƒ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° ΠΈΡΠΊΠ°ΠΆΠ°ΡŽΡ‚ΡΡ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ соотвСтствСнно ΠΏΠΎ Π΄Π²ΡƒΠΌ Π΅Π³ΠΎ измСрСниям ΠΈΠ»ΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ.

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° искаТСния опрСдСляСтся коэффициСнтом искаТСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ€Π°Π²Π΅Π½ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½Ρ‹ аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΊ Π΅Π³ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π»ΠΈΠ½Π΅. Π›ΡŽΠ±Π°Ρ аксономСтричСская проСкция ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Ρ€ΠΈ коэффициСнта искаТСния ΠΏΠΎ числу осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’ зависимости ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Ρ€Π°Π·Π½Ρ‹Π΅ ΠΎΠ½ΠΈ ΠΈΠ»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅, аксономСтричСскиС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ дСлят Π½Π° изомСтричСскиС (коэффициСнты искаТСния Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ всСм Ρ‚Ρ€Ρ‘ΠΌ осям) ΠΈ тримСтричСскиС (коэффициСнты искаТСния ΠΏΠΎ всСм осям Ρ€Π°Π·Π½Ρ‹Π΅).

Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ аксономСтрии. Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ. ДимСтрия

НаиболСС распространёнными Π²ΠΈΠ΄Π°ΠΌΠΈ аксономСтричСских ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ изомСтричСская проСкция (изомСтрия) ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ димСтричСская проСкция (димСтрия), основныС ΠΏΡ€Π°Π²ΠΈΠ»Π° построСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ стандартом.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ изомСтрия прСдставляСт собой Π°ΠΊΡΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ проСцирования, пСрпСндикулярным ΠΊ плоскости аксономСтричСских ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΏΠΎ всСм Ρ‚Ρ€Ρ‘ΠΌ осям коэффициСнтами искаТСния, Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ 0,82.

Оси ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (рис. 104Π°) ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΡƒΠ³Π»Ρ‹ 120Β°. Ось Z располоТСна Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ. Для упрощСния построСния коэффициСнт искаТСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ Ρ€Π°Π²Π½Ρ‹ΠΌ 1.

Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ этом получаСтся ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ, Π½ΠΎ Π²ΠΈΠ΄ Π΅Π³ΠΎ Π½Π΅ мСняСтся, Ρ‚.ΠΊ. сохраняСтся ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ всСх Π΅Π³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ².

На рис. 104Π± ΠΈ Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π΄Π²Π° способа построСния осСй Π² ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ димСтрия прСдставляСт собой Π°ΠΊΡΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ проСцирования, пСрпСндикулярным аксономСтричСской плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π  ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ коэффициСнтами искаТСния ΠΏΠΎ осям Ρ… ΠΈ z.

Ось Ρ… (рис. 105Π°) составляСт с Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ прямой ΡƒΠ³ΠΎΠ» 7Β°10β€², Π° ось Ρƒ – ΡƒΠ³ΠΎΠ» 41Β°25β€².

Ось z Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅. На рис. 105Π± ΠΏΠΎΠΊΠ°Π·Π°Π½ графичСский способ построСния осСй Π΄ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.

Π’ Π΄ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ коэффициСнты искаТСния ΠΏΠΎ осям Ρ… ΠΈ z Ρ€Π°Π²Π½Ρ‹ 0,94, Π° ΠΏΠΎ оси Ρƒ – 0,47. ΠŸΡ€ΠΈ построСниях ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ коэффициСнт ΠΎΠΊΡ€ΡƒΠ³Π»ΡΡŽΡ‚ Π΄ΠΎ 1, Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ – Π΄ΠΎ 0,5. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ осям ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ… ΠΈ z, ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽΡ‚ Π² Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π° Π΄Π»ΠΈΠ½Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… оси Ρƒ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ Π² Π΄Π²Π° Ρ€Π°Π·Π°.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ окруТности Π² аксономСтрии

Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ. Π˜Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ окруТностСй, располоТСнных Π² плоскостях ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΈΠ»ΠΈ Π² плоскостях, ΠΈΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ…, Π΅ΡΡ‚ΡŒ эллипсы (рис. 106).

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ΅ оси этих эллипсов Ρ€Π°Π²Π½Ρ‹ l,22DΠΎΠΊΡ€, Π° ΠΌΠ°Π»Ρ‹Π΅ 0,71DΠΎΠΊΡ€, Π³Π΄Π΅ DΠΎΠΊΡ€ – Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌΠΎΠΉ окруТности. Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ ось эллипсов всСгда пСрпСндикулярна ΠΊ Ρ‚ΠΎΠΉ аксономСтричСской оси, которая отсутствуСт Π² плоскости окруТности, Π° малая совпадаСт с этой осью ΠΈΠ»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π΅ΠΉ.

ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈ ΠΏΡ€ΠΈ построСнии ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ окруТности эллипс ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π·Π°ΠΌΠ΅Π½ΡΡŽΡ‚ Π±Π»ΠΈΠ·ΠΊΠΈΠΌ ΠΊ Π½Π΅ΠΌΡƒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠ²Π°Π»ΠΎΠΌ, Ρ‚.ΠΊ. построСниС ΠΎΠ²Π°Π»Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ‰Π΅.

НаиболСС простой способ построСния ΠΎΠ²Π°Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 107.

На рис. 108Π°,Π± построСны ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ окруТностСй, располоТСнных Π²ΠΎ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ плоскостях.

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, располоТСнныС Π²ΠΎ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости, ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² Π²ΠΈΠ΄Π΅ эллипсов с большой осью, Ρ€Π°Π²Π½ΠΎΠΉ 1,06DΠΎΠΊΡ€, Π° ΠΌΠ°Π»ΠΎΠΉ – 0,94DΠΎΠΊΡ€. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ΅ оси эллипсов, ΠΊΠ°ΠΊ ΠΈ Π² ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, пСрпСндикулярны ΠΊ Ρ‚ΠΎΠΉ аксономСтричСской оси, которая отсутствуСт Π² Π΄Π°Π½Π½ΠΎΠΉ плоскости, Π° ΠΌΠ°Π»Ρ‹Π΅ оси ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ этой оси.

Π”ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ окруТностСй (эллипсы) ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π·Π°ΠΌΠ΅Π½ΡΡŽΡ‚ ΠΎΠ²Π°Π»Π°ΠΌΠΈ, Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ осСй ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°Π²Π½Ρ‹ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… осСй эллипсов. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ этих ΠΎΠ²Π°Π»ΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рис. 110. На рис. 110Π° построСния понятны ΠΏΠΎ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΡƒ.

На рис. 110Π± строим оси Π΄ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρ…Ρ€, ΡƒΡ€, zΡ€. Π—Π°Ρ‚Π΅ΠΌ строим ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ оси ΡƒΡ€. ΠžΡ‚Π»ΠΎΠΆΠΈΠ² Π½Π° осях Ρ…Ρ€ ΠΈ zΡ€ радиус Π·Π°Π΄Π°Π½Π½ΠΎΠΉ окруТности, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ М, К, N, L, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ сопряТСния Π΄ΡƒΠ³ ΠΎΠ²Π°Π»Π°. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ М ΠΈ N ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ прямыС. Π’ пСрСсСчСнии этих прямых с осью ΡƒΡ€ ΠΈ пСрпСндикуляром ΠΊ Π½Π΅ΠΉ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ О1, О2, О3, О4. Из Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² O1 ΠΈ О3 опишСм Π΄ΡƒΠ³ΠΈ радиусом R1=О3 K, Π° ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² О2 ΠΈ О4 – Π΄ΡƒΠ³ΠΈ радиусом R2=О2M.

АксономСтричСскиС изобраТСния ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ²

ΠŸΡ€ΠΈΡΡ‚ΡƒΠΏΠ°Ρ ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ аксономСтричСской ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, слСдуСт Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π²ΠΈΠ΄ аксономСтрии, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΡƒΡŽ Π½Π°Π³Π»ΡΠ΄Π½ΠΎΡΡ‚ΡŒ изобраТСния. Π—Π°Ρ‚Π΅ΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ с систСмой ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, оси ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΡΠΎΠ²ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ с осями симмСтрии ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°. Волько послС этого ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΡΡ‚ΡƒΠΏΠΈΡ‚ΡŒ ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ аксономСтрии.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ аксономСтрии ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ с построСния аксономСтрии ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ (Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ). Π—Π°Ρ‚Π΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΡΡŽΡ‚ построСниСм Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ измСрСния всСх Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ.

На рис. 111 ΠΏΠΎΠΊΠ°Π·Π°Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ построСния ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° Ρ‡Π΅Ρ€Π΅Π· построСниС Π΅Π³ΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ.

На рис. 112 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ построСния ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π΄Π΅Ρ‚Π°Π»ΠΈ ΠΏΡƒΡ‚Ρ‘ΠΌ построСния Π΅Ρ‘ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ.

Для выявлСния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΡ‘Π½Π½ΠΎΠ³ΠΎ Π² аксономСтрии, Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Ρ€Π°Π·Ρ€Π΅Π·Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ условно Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Ρ‹Ρ€Π΅Π·Π°ΠΌΠΈ. ΠŸΡ€ΠΈ этом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π΄Π²Π΅ сСкущиС плоскости, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠ΅ с плоскостями симмСтрии ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° (рис. 113).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ рис. 111 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ рис. 112 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ изомСтрия Π΄Π΅Ρ‚Π°Π»ΠΈ рис. 113

Π›ΠΈΠ½ΠΈΠΈ ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠΈ сСчСний Π² аксономСтричСских проСкциях наносят ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… плоскостях. Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ аксономСтричСским осям (рис. 114).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *