Что такое источник эдс
Источники ЭДС и тока: основные характеристики и отличия
Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.
Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:
механической энергии вращения роторов генераторов;
протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;
теплоты в терморегуляторах;
магнитных полей в магнитогидродинамических генераторах;
световой энергии в фотоэлементах.
Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:
Электрический ток в металлическом проводнике
Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.
Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.
На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).
Схемы обозначения и вольт-амперные характеристики источников ЭДС
Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.
На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.
В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:
постоянного и переменного напряжения;
управляемые напряжением или током.
Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.
Схемы обозначения и вольт-амперная характеристика источника тока
Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.
Реальный источник тока отличается от идеального значением внутреннего сопротивления.
Примерами источника тока могут служить:
Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.
Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.
Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.
В различной литературе источники тока и напряжения могут обозначаться неодинаково.
Виды обозначений источников тока и напряжения на схемах
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое ЭДС (электродвижущая сила)
Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.
ЭДС с точки зрения гидравлики
Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение
Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.
Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…
Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.
Все то же самое можно сказать и про радиоэлемент конденсатор:
Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:
Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.
Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.
Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.
Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.
Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой — это уровень воды в водобашне. Полная башня — это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды — напряжение ноль.
ЭДС электрического тока
Как вы помните из прошлых статей, молекулы воды — это «электроны». Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне — это напряжение, а люди, которые тратят воду для своих нужд — это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток — это не что иное, как сила тока.
Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?
Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА! Можно назвать ее сокращенно ЭДС — Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.
Значит, в наших батарейках тоже есть такой «насос»? Есть, и правильней было бы его назвать «насос подачи электронов»). Но, конечно, так никто не говорит. Говорят просто — ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится «уровень воды» в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как «насос» не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.
Реальный источник ЭДС
Источник электрической энергии — это источник ЭДС с внутренним сопротивлением Rвн. Это могут быть какие-либо химические элементы питания, наподобие батареек и аккумуляторов
Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:
Где E — это ЭДС, а Rвн — это внутреннее сопротивление батарейки
Итак, какие выводы можно сделать из этого?
Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:
Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:
В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление. По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.
Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:
Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.
То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.
Идеальный источник ЭДС
Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.
Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:
В результате мы получили просто источник ЭДС. Следовательно, источник ЭДС — это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:
На практике идеального источника ЭДС не существует.
Типы ЭДС
— электрохимическая (ЭДС батареек и аккумуляторов)
— фотоэффекта (получение электрического тока от солнечной энергии)
— индукции (генераторы, использующие принцип электромагнитной индукции)
— пьезоЭДС (получение ЭДС от пьезоэлектриков)
ElectronicsBlog
Обучающие статьи по электронике
Электротехника часть 3 электрические цепи
Всем доброго времени суток. В прошлой статье я рассказал о таких понятиях, как электрический ток, напряжение, сопротивление и основополагающем законе постоянного тока – законе Ома. Но этого, несомненно, мало для полного понимания процессов и возникающих закономерностей при функционировании электронных схем. В дальнейших статьях я постепенно буду формировать целостную картину такой интересной области техники как электроника.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Составные части электрических цепей
Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.
Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также вспомогательных элементов, выполняющих разнообразные функции.
Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.
Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.
К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.
Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже
Принципиальная схема (слева) и схема её замещения (справа).
Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.
Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.
Источник ЭДС и источник тока
При анализе электрических цепей, часто используют понятие идеального элемента, то есть такого элемента, в котором сосредоточен только один параметр, в отличие от реального элемента, в котором кроме одного основного параметра имеют место быть паразитные параметры. Например, резистор можно представить в виде идеального сопротивления, однако в реальном резисторе присутствует как емкость (например, между выводами), так и индуктивность (в проволочном резисторе, где используется намотанная на керамический каркас проволока). То есть идеальные элементы используются для упрощения анализа электрической цепи.
Источники энергии в электрических цепях при анализе схем также упрощают, кроме того их делят на два типа: источники ЭДС и источники тока. Рассмотрим каждый из них в отдельности.
Идеальный источник ЭДС характеризуется тем, что напряжение на его выводах не зависит от протекающего через него тока, то есть внутри такого источника ЭДС отсутствуют пассивные элементы (сопротивление R, индуктивность L, емкость С), и поэтому падение напряжения на пассивных элементах отсутствует.
Таким образом, напряжение на его выводах равно ЭДС, а ток теоретически не имеет ограничения, то есть если замкнуть его выходные зажимы, то электрический ток должен быть бесконечно большим. Поэтому идеальный источник ЭДС можно рассматривать, как источник бесконечной мощности. Однако в реальности ток имеет конечное значение, так как падение напряжения на внутреннем сопротивлении при коротком замыкании выводов уравновешивает ЭДС источника. Таким образом, реальный источник ЭДС можно изобразить в виде идеального источника ЭДС с последовательно подключённым пассивным элементом, который ограничивает мощность, отдаваемую во внешнюю цепь.
Источники ЭДС: идеальный (слева) и реальный (справа).
Идеальный источник тока характеризуется тем, что ток протекающий через него не зависит от напряжения, которое присутствует на его выводах, то есть сопротивление внутри источника тока бесконечно велико и поэтому параметры внешних элементов электрической цепи не влияют на ток протекающий через источник.
Таким образом, при бесконечном увеличении сопротивления также увеличивается напряжение на выводах идеального источника тока, поэтому и мощность растёт до бесконечности, то есть получается источник бесконечной мощности. Так как в реальности мощность всё же конечна, то реальный источник тока изображается, как идеальный источник тока с параллельно подключенным пассивным компонентом, характеризующим внутренние параметры источника тока, и ограничивает мощность, отдаваемую во внешнюю цепь.
Источники тока: идеальный (слева) и реальный (справа).
Закон Ома для полной цепи
В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.
Закон Ома для полной цепи.
Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид
Проанализировав данное выражение можно прийти к следующим практически выводам:
При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВН
Следовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.
Схема для измерения источника энергии.
В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току
Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит
КПД источника энергии
Кроме внутреннего сопротивления RВН и ЭДС Е источник энергии характеризуется также коэффициентом полезного действия КПД при работе на конкретную нагрузку RН.
Коэффициентом полезного действия КПД источника энергии называется отношение мощности приёмника энергии (мощности нагрузки) или полезной мощности РН к мощности источника энергии Р. Как известно мощность выражается произведением напряжения на ток протекающий через источник энергии, то есть по отношению к источнику энергии это будет
где PBH – мощность потерь внутри источника энергии.
Таким образом, КПД будет равен
Из вышесказанного возникает резонный вопрос, при каком КПД в нагрузку отдается наибольшая мощность? Можно было бы предположить, что максимальная мощность в нагрузку поступает при КПД η = 1 или 100 %, однако в этом случае напряжение U на источнике питания равняется ЭДС Е, то есть ток в цепи равен нулю I = 0, а значит и мощность на нагрузке также равна нулю Р = 0
Данный режим называется режимом холостого хода.
Другой случай, когда КПД η = 0, в этом случае ток имеет максимальное значение и фактически ограничен лишь внутренним сопротивлением источника питания I = E/RBH. Следовательно, напряжение нагрузки равно нулю UH = 0 и мощность в нагрузке также нулевая Р = 0
Данный режим называется режимом короткого замыкания.
Не вдаваясь в длинные расчёты сказу сразу, что максимальная мощность на нагрузке выделяется при КПД η = 0,5 или 50 %, в этом случае напряжение на нагрузке равно падению напряжения на внутреннем сопротивлении источника питания UH = UBH, то есть сопротивление нагрузки равно внутреннему сопротивлению источника питания.
Данный режим называется режимом согласованной нагрузки.
В данном режиме работает большинство слаботочных устройств автоматики, телемеханики и электросвязи, где низкий КПД не влечёт значительных потерь энергии. Однако в мощных устройствах стараются проектировать устройства так чтобы КПД η = 0,95…0,98.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.