Что такое индуктивный метод рассуждения
Характеристики и отличия индуктивного и дедуктивного метода (примеры)
индуктивный метод и дедуктивный метод это два противоположных подхода к исследованию. У каждого метода есть свои преимущества, и его использование будет зависеть от исследуемой ситуации, области, которую вы хотите изучить, или подхода, который вы хотите использовать..
Дедуктивное мышление работает, работая от самого общего к более конкретному. Вы можете начать думать о теории по интересующей теме. Тогда это сводится к некоторой конкретной гипотезе, которую вы хотите попробовать.
Со своей стороны, индуктивный метод работает противоположным образом: он начинается с наиболее специфичных для самых широких обобщений и теорий. В индуктивных рассуждениях мы начнем с некоторых наблюдений и конкретных мер, чтобы прийти к некоторым общим выводам.
Эти два метода очень разные и предлагают разные элементы при проведении расследования. По своей природе индуктивный метод позволяет быть более гибким и поддается исследованию, особенно в начале. Дедуктивный метод более закрыт по своей природе и более ориентирован на доказательство или подтверждение гипотез.
Хотя некоторые исследования, в частности, кажутся чисто дедуктивными, в качестве эксперимента, предназначенного для проверки гипотетических эффектов некоторого лечения или результата, большинство социальных исследований требуют как дедуктивного, так и индуктивного мышления..
Практически во всех исследованиях вероятно, что в какой-то момент к обоим процессам прибегали. Даже в самых закрытых экспериментах исследователи могут наблюдать закономерности в информации, которые могут привести их к разработке новых теорий.
Понятие индуктивного метода и дедуктивного метода
Индуктивный метод
Хотя заключение индуктивного аргумента является определенным, истинность этого вывода в индуктивном аргументе, вероятно, основана на предоставленных доказательствах..
Многие источники могут определить индуктивный метод как тот, в котором общие принципы получены из конкретных наблюдений.
В этом методе широкие обобщения сделаны из конкретных наблюдений, поэтому можно сказать, что он идет от конкретного к общему. Делается много наблюдений, воспринимается закономерность, делается обобщение и выводится объяснение или теория..
Этот метод также используется в научном методе; ученые используют его для формирования гипотез и теорий. Дедуктивное мышление позволяет им применять теории или предположения к конкретным ситуациям. Примером дедуктивного мышления может быть следующее:
Все известные биологические формы жизни зависят от существования жидкой воды. Поэтому, если мы обнаружим новую форму биологической жизни, это будет зависеть от существования жидкой воды..
Этот аргумент можно приводить каждый раз, когда обнаруживается биологический образ жизни, и он будет правильным. Однако было бы возможно, что в будущем будет биологический образ жизни, который не требует жидкой воды.
Типы индуктивного мышления
-обобщение
Обобщение исходит из предпосылки о выборке, из которой делается вывод о населении.
Эта предпосылка имеет уклон, так как она берет небольшую выборку из большей популяции.
Примеры обобщения
-Статистический силлогизм
Статистический силлогизм происходит от обобщения до вывода об индивидууме. Например:
Следовательно, существует вероятность того, что Q соответствует X.
Примеры статистического силлогизма
-Простая индукция
Он приходит из предпосылки небольшого образца к выводу о другом человеке:
Следовательно, есть вероятность, соответствующая Q, что у меня есть A.
Простые индукционные примеры
-Аргумент из аналогии
Этот процесс включает в себя учет общих свойств одной или нескольких вещей и вывод из этого, что они также имеют другие свойства. таким образом:
Таким образом, Q, вероятно, также имеет свойство х.
Примеры Аргумент из аналогии
-Случайный вывод
Случайный вывод делает вывод о причинно-следственной связи на основе условий существования эффекта.
Предпосылки о соотношении двух вещей могут указывать на причинно-следственную связь между ними, но для подтверждения должны быть установлены другие факторы.
Примеры причинного вывода
-прогнозирование
Вывод об индивидуальном будущем сделан из прошлого образца.
Примеры прогнозирования
Дедуктивный метод
В этом процессе рассуждение начинается с одного или нескольких утверждений, чтобы прийти к заключению. Вывод связывает помещение с выводами; Если все предпосылки верны, условия ясны и правила вычета используются, заключение должно быть верным.
При выводе мы начнем с общего аргумента или гипотезы и рассмотрим возможности прийти к конкретному и логическому выводу. Научный метод использует дедукцию для проверки гипотез и теорий.
Примером дедуктивного аргумента является следующее:
Следовательно, индивид х смертелен.
Типы дедуктивного мышления
-Закон отрешенности
Сделано одно утверждение и предложена гипотеза (P). Вывод (Q) выводится из этого аргумента и его гипотезы:
По этой причине можно сказать, что:
Индуктивные рассуждения. Виды индуктивных рассуждений
Индуктивное рассуждение — это правдоподобное рас- суждение, в котором осуществляют переход от знания об отдельных предметах или части предметов определенного класса к общему знанию обо всем классе предметов.
Термин индукция происходит от латинского слова indue- tio и означает наведение.
Индуктивное рассуждение, как и любое рассуждение, состоит из посылок и заключения. В посылках индуктивных рассуждений содержится знание об отдельных предметах или части предметов определенного класса, а в заключении — знание обо всем классе предметов.
Выделяют несколько видов индуктивных рассуждений. Среди них чаще всего на практике используют:
Полная индукция — это индуктивное рассуждение, в котором на основании наличия признака у каждого предмета определенного класса делают вывод о наличии этого признака у всего класса предметов.
Индуктивные рассуждения такого типа применяют только в тех случаях, когда имеют дело с закрытыми классами предметов: количество предметов, входящих в них, должно быть конечным и легко поддаваться перечислению.
Схема рассуждения «полная индукция» имеет такой вид:
Класс А состоит из предметов at, а2. ап.
а2 имеет признак Р.
ап имеет признак Р.
Следовательно, весь класс предметов А имеет признак Р.
Перед аудиторской комиссией поставлено задание: проверить состояние финансовой дисциплины в филиалах банка N, которые расположены в г. Санкт-Петербурге. Известно, что таких филиалов — пять. Обычный способ проверки в данном случае — проанализировать деятельность каждого из пяти филиалов. Если не будет найдено ни одного нарушения, тогда аудиторская комиссия может сделать вывод, что все филиалы в Санкт-Петербурге придерживаются финансовой дисциплины.
Следует отметить, что полная индукция не является чисто индуктивным рассуждением, так как при ее помощи на основании истинных посылок можно получить истинное заключение. Это означает, что, используя схему рассуждения «полная индукция», человек может обосновать достоверное знание.
Неполная индукция — это индуктивное рассуждение, в котором на основании наличия признака у части предметов определенного класса делают вывод о наличии этого признака у всего класса предметов.
Схема рассуждения «полная индукция» имеет такой вид.
at имеет признак Р.
а2 имеет признак Р.
а; имеет признак Р._
Следовательно, весь класс предметов А имеет признак Р.
Чаще всего на практике используют такие виды неполной индукции:
— популярную индукцию (индукцию путем перечисления);
научную индукцию (индукцию путем отбора).
Популярная индукция — это индуктивное рассуждение, в котором путем перечисления устанавливают наличие признака у части предметов определенного класса и на этом основании делают вывод о его наличии у всего класса предметов.
Студенты первой и второй групп первого курса юридического факультета успешно сдали экзамен по логике. Следовательно, можно допустить, что и студенты других групп хорошо подготовились к экзамену и успешно его сдадут.
Научная индукция — это индуктивное рассуждение, в котором заключение делают на основании отбора необходимых и исключения случайных обстоятельств.
Обвиняемый признал факт хищения и дал показания, что он один вынес со склада товар. Проведенная проверка установила, что вынести такое количество товара одному человеку не но силам. В связи с этим следователь пришел к выводу, что в расхищении товаров принимали участие и другие люди. Это стало основанием для изменения квалификации деяния.
В научной индукции вывод делают на основании установления того, что наблюдаемый признак является существенным признаком исследуемых предметов. Простого перечисления наличия определенного признака у предметов тут недостаточно.
В связи с этим важное место в научной индукции занимают методы установления причинных связей, или каноны Милля (по фамилии английского логика Дж. Ст. Милля (1806—1873), который их сформулировал).
§ 1. Что такое индуктивное рассуждение?
§ 1. Что такое индуктивное рассуждение?
Нередко утверждается, что, в отличие от античной науки, которая была «индуктивной», современная наука является «дедуктивной». Согласно этой точке зрения, дедуктивный и индуктивный способы рассуждения являются противоположными. Считается, что дедуктивная логика исследует условия, при которых единичные (instantial) или частные суждения являются выводимыми из общих посылок. С другой стороны, считается, что индуктивная логика имеет дело с умозаключениями, позволяющими нам получать общие заключения из конкретных, или частных, суждений.
Как мы уже видели, определенная часть такого описания является ложной. Сущность дедуктивного вывода сводится не к получению частных заключений из общих посылок, а выведению тех заключений, которые с необходимостью следуют из посылок. При дедуктивном рассуждении ни одно заключение не может быть единичным, если хотя бы одна из посылок не является единичной. Теория газовых двигателей, т. е. набор общих суждений, не даст нам никакой информации о нашем автомобиле, если единичное суждение о том, что данный автомобиль обладает двигателем, не будет добавлено к посылкам.
Но как обстоят дела с индукцией? Существует ли отличительный вид умозаключения, в котором осуществляется переход от единичных к общим суждениям? Прежде чем определенно ответить на данный вопрос, следует провести некоторые различия.
1. Один из смыслов, в которых Аристотель использовал термин «индукция», заключался в обозначении мыслительного процесса, при котором в некоторой действительной ситуации или событии выделялось или идентифицировалось некоторое общее свойство или отношение. Наш первичный опыт является неясным, и наше внимание обращается к определенным общим качествам, в которых не замечаются какие-либо различия. Для младенца мир, вероятно, представляется «шумной и пестрой неразберихой», точно так же как и для неискушенного взгляда все деревья в лесу являются всего лишь деревьями, а для неискушенного слуха симфония – это всего лишь звук. Мы обращаем внимание на определенные абстрактные, или общие, свойства, такие как деревья или звук, и, рассматривая их как качественное целое, на которое мы реагируем, мы не усматриваем в них какой-либо структуры или порядка. Тем не менее, рассмотрев несколько примеров таких качественных цельностей, мы начинаем усматривать в них формальные закономерности. Представим себе Бойля, исследующего поведение некоторого газа при одной и той же температуре. Он может записать численные измерения объема газа при различных температурах в двух колонках следующим образом:
Рассмотрение и анализ этих чисел может позволить ему усмотреть в этих отдельных примерах проявление закона, согласно которому произведение давления и объема является неизменным.
Аристотель описывает данный процесс обнаружения общего правила в случае конкретного примера в своем известном фрагменте:
«Но хотя такая способность, очевидно, присуща всем животным, ибо они обладают прирожденной способностью различать, которая называется чувственным восприятием. Но хотя чувственное восприятие врожденно, однако у одних животных что-то остается от воспринятого чувствами, а у других не остается. Одни животные, у которых [ничего] не остается [от воспринятого чувствами], вне чувственного восприятия или вообще не имеют знания, или не имеют [знания] того, от чего не остается [никаких запечатлений]. Другие же, когда они воспринимают чувствами, что-то удерживают в душе. Если же таких [запечатлений] много, то возникает уже некоторое различие, так что из того, что остается от воспринятого, у одних возникает некоторое понимание, а у других нет.
Данный процесс представляет важный этап в обретении нами знания. У. Джонсон назвал индукцию, понимаемую таким образом, «интуитивной индукцией». Тем не менее, данный процесс нельзя назвать «умозаключением» даже при самом широком понимании этого термина. Данное рассуждение не относится к тому типу аргументов, которые можно разложить на посылки и заключение. Оно представляет ощущение наличия некоторых отношений и не может быть рассмотрено с точки зрения правил обоснованного умозаключения. Оно скорее представляет продвижение сознания на ощупь по направлению к знанию посредством выдвижения осторожных догадок. Интуитивная индукция, таким образом, не является противоположной дедукции, поскольку она вообще не является типом умозаключения, а обнаружение импликаций для определенного набора посылок, в свою очередь, также требует очень похожего процесса угадывания и продвижения на ощупь. Не может существовать логики или метода интуитивной индукции.
2. Аристотель и его последователи использовали термин «индукция» и в других смыслах. Допустим, мы хотим установить суждение «все президенты Соединенных Штатов были протестантами». В качестве оснований мы можем привести суждения «Вашингтон, Адамс, Джефферсон и т. д. были протестантами» и «Вашингтон, Адамс, Джефферсон и т. д. были президентами Соединенных Штатов». Данные основания не являются окончательными до тех пор, пока мы не будем знать, что суждение, конверсное относительно второго суждения, также является истинным, т. е. до тех пор, пока мы не будем знать, что истинным является суждение «все президенты Соединенных Штатов – это Вашингтон, Адамс, Джефферсон и т. д.». В таком случае данный аргумент можно будет представить следующим образом: «Вашингтон и т. д. были протестантами; все президенты Соединенных Штатов – это Вашингтон и т. д.; следовательно, все президенты Соединенных Штатов были протестантами».
Индукция в этом смысле означает установление общего суждения посредством исчерпывающего перечисления всех примеров, подпадающих под это общее суждение. Такая индукция называется «совершенной», или «полной». Совершенная индукция не противоположна дедукции. Как мы только что видели, совершенная индукция является примером дедуктивного аргумента. Заключение было установлено в результате строго силлогистического рассуждения.
Очевидно, что совершенная индукция возможна, только когда все примеры общего суждения уже известны и согласуются с этим суждением. Однако если бы общие суждения использовались, только если бы были заключениями в полной индукции, то они были бы полностью бесполезными для осуществления каких-либо выводов относительно неисследованных примеров. Они могли бы использоваться только в качестве мнемонических средств для напоминания нам о группе исследованных примеров, суммируемой нами. Более того, оправданное применение таких общих суждений всегда бы основывалось на круговом аргументе. Так, допустим, мы пришли к заключению: «Вудро Вильсон был протестантом» на основании суждений «все президенты Соединенных Штатов были протестантами» и «Вудро Вильсон был президентом Соединенных Штатов». Данный аргумент является правильным. Однако если мы рассмотрим основания для посылки «все президенты Соединенных Штатов были протестантами» и если это суждение установлено посредством полной индукции, то мы установим, что суждение «Вудро Вильсон был протестантом» является одной из посылок для рассматриваемого суждения. Следовательно, для установления истинности некоторого суждения в посылки помещается само это суждение.
3. Мы редко склонны выводить общее суждение с помощью полной индукции, поскольку количество примеров, подпадающих под общие суждения, обычно либо слишком велико, либо недостижимо в пространстве и времени. Существуют классы с неопределенным количеством возможных членов. Действительной проблемой для науки является открытие основания для обобщения в тех случаях, когда рассмотренные примеры представляют не все возможные примеры. Эта проблема стояла также и перед Аристотелем и всеми последующими логиками. Существует ли какая-либо противоположность между индукцией и дедукцией, если индукцию понимать именно таким образом?
Предположим, что мы подозреваем наличие связи между цветом волос у людей и их характером вследствие неудачного общения с профессором с рыжими волосами. Мы обнаруживаем, что рыжеволосые А, В, С, D имеют скверный характер. Мы заключаем, что все рыжеволосые индивиды обладают скверным характером. Похоже, что здесь имеет место индуктивное умозаключение, устанавливающее общее суждение на основе рассмотрения лишь нескольких примеров. Однако правильно ли доказано данное заключение? Разумеется, неправильно, если мы не знаем об истинности дополнительного суждения «все, что истинно относительно А, В, С, D, также истинно и относительно всех рыжеволосых людей». Однако в таком случае мы можем сформулировать данный аргумент в дедуктивной форме. Данное рассуждение на самом деле будет силлогистическим:
1. Все, что истинно относительно А, В, С, D, так же истинно и относительно всех рыжеволосых людей.
2. А, В, С, D присущ скверный характер.
3. Следовательно, скверный характер присущ всем рыжеволосым людям.
Таким образом, когда мы формулируем все посылки такого индуктивного аргумента, то обнаруживаем не только отсутствие противоположности между индукцией и дедукцией, но также и то, что указанный аргумент является примером необходимого вывода. Следовательно, ни один из смыслов, в которых может пониматься термин «индукция», не подразумевает противоположности дедуктивному рассуждению.
На данном этапе читатель может возразить, указав на то, что приведенный выше анализ не учитывает сущности индукции, которая связана с установлением материальной истинности общих суждений. Помогает ли нам на самом деле введение большей посылки, в нашем случае суждения 1, истинность которого нам неизвестна, установить истинность нашего заключения?
Данное возражение основано на здравой позиции. Ведь большинство людей считает, что индукция на самом деле является процессом обобщения, т. е. переходом от утверждения истинности некоторых наблюдаемых примеров к утверждению истинности всех возможных примеров, относящихся к определенному классу. Однако нам придется вновь напомнить, что в случае подобного обобщения задача логики будет заключаться лишь в исследовании весомости оснований для этого обобщения. Нас здесь интересует не сама по себе потребность людей в обобщении, существование которой не вызывает никаких сомнений, а вопрос о том, какое основание является окончательным, т. е. позволит доказать истинность общего суждения. Разумеется, многие наши обобщения ложны. Тот факт, что некоторые рыжеволосые обладают скверным характером, разумеется, не является достаточным основанием для выведения суждения о том, что таковым является характер всех рыжеволосых людей.
Силлогистическая форма обращает наше внимание на действительное условие, отличающее обоснованные обобщения от необоснованных. Этим условием является однородность класса, члены которого подверглись рассмотрению. В реальной ситуации анализа человеческого знания подобная однородность может быть установлена лишь с большей или меньшей вероятностью. Потребность людей в обобщении столь велика, что мы не всегда относимся снисходительно к тем, кто пытается нам указать на логическую неадекватность тех оснований, которые мы в обыденной установке используем для наших обобщений. Если мы не готовы рисковать и делать предположения относительно того, что находится за пределами уже известного нам, то мы никогда не сможем ничему научиться из опыта. Данная позиция является вполне здравой. Тем не менее, человечество порой страдает от поспешных обобщений, нередко возникающих в силу тех или иных предрассудков. Как бы то ни было, порядок проведения научного исследования требует, чтобы все обобщения, и даже те, которые не могут обрести окончательного доказательства, обладали наибольшей степенью вероятности.
Но как мы можем обеспечить наибольшую степень вероятности? Для этого нам потребуется знание определенной области, в которой осуществляется обобщение. Логика здесь может обеспечить нас только отрицательным правилом. Нам следует элиминировать ошибку отбора, т. е. ошибочное предположение о том, что присущее рассмотренным примерам (скажем, рыжеволосым людям) с необходимостью присуще всем возможным членам данного класса. Рассмотренные нами рыжеволосые люди могут обладать специфическими особенностями, например, быть уставшими, переработавшими, бедными и т. д., т. е. особенностями, которые они не будут разделять с другими членами класса рыжеволосых людей; их раздражительность может быть следствием именно этих специфических особенностей. У нас еще будет возможность подробнее рассмотреть правила, помогающие избежать ошибки отбора. На данном же этапе достаточно указать, что наша постановка индуктивного аргумента в силлогистическую форму позволяет привлечь внимание к реальным условиям, позволяющим получать обоснованные обобщения.
Следовательно, независимо от того, знаем мы об истинности суждений типа суждения 1 или нет, заключение в указанном типе аргумента логически зависит от этих суждений.
Индуктивные умозаключения являются доказательствами в той степени, в которой они согласуются с правилами обоснованного вывода. Нам также следует отметить, что мы зачастую даже не знаем, какие именно посылки послужат окончательным основанием для того или иного заключения. Это, однако, не изменяет того обстоятельства, что заключение логически зависит от этих неизвестных нам посылок. В этом отношении не существует различия между историей математики, считающейся исключительно дедуктивной наукой, и естественными науками, которые считаются индуктивными. Например, ошибочно считать, что такая наука, как геометрия, развивалась с течением времени, начиная от исходных аксиом, посредством доказывания теорем. Нам известно как раз обратное: многие из теорем планиметрии были известны уже Фалесу, жившему в VI веке до н. э. Великий вклад Евклида заключался не в открытии еще новых теорем, а в систематизации данной дисциплины посредством отыскания суждений (аксиом), на которых основывается геометрия. Сходным образом систематическое основание для открытий Галилея относительно падающих тел было разработано после того, как он получил свои результаты. Естественный порядок и порядок логической зависимости не совпадают с порядком, в котором мы осуществляем наши открытия.
Вернемся к возражениям читателя. При проведении индуктивного умозаключения обычно известны не все посылки, требующиеся для того, чтобы умозаключение было логическим. Нам неизвестно, проявляют ли рассмотренные примеры, на основе которых верифицируется общее суждение, свойства, присущие всему интересующему нас классу. Специфическая проблема индукции заключается в установлении того, в какой степени рассмотренные примеры являются репрезентативными. Следовательно, несмотря на то что индукция и дедукция не являются противоположными друг другу формами умозаключения, в дедукции, тем не менее, не рассматривается вопрос об истинности или ложности посылок, тогда как характерной особенностью индукции является рассмотрение именно этого вопроса. Поэтому индукция может рассматриваться как метод, с помощью которого устанавливается материальная истинность посылок. Подлинное различие лежит не между дедуктивным и индуктивным выводами, а между необходимыми и вероятностными умозаключениями, поскольку основания для общих суждений, описывающих факты, всегда являются лишь вероятностными.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Глава 6 ИНДУКТИВНОЕ УМОЗАКЛЮЧЕНИЕ
Глава 6 ИНДУКТИВНОЕ УМОЗАКЛЮЧЕНИЕ Общее в природе и обществе не существует самостоятельно, до и вне единичного, а единичное не существует без общего; общее существует в единичном, через единичное, то есть проявляется в конкретных предметах. Поэтому общее, существенное,
§ 4. Рассуждение по аналогии
§ 4. Рассуждение по аналогии Рассмотрим природу так называемого рассуждения по аналогии. Мы строим умозаключение по аналогии, когда говорим, что поскольку планеты Меркурий и Венера схожи с планетами Земля, Марс, Юпитер и Сатурн в том, что вращаются вокруг Солнца по
Рассуждение о «Критоне»
Рассуждение о «Критоне» Сыновнее повиновение отеческим законам есть безусловная обязанность каждого гражданина, хотя бы такое повиновение требовало его смерти. Испробовав законные пути убеждения, каждый должен подчиниться суду отечественному, хотя бы он и считал
Рассуждение о «Евтифроне»
Рассуждение о «Евтифроне» 1 Близ царского портика Сократ встречается с известным прорицателем Евтифроном. Сократ подвергнут уголовному преследованию Мелетом, который обвиняет его в развращении юношества: измышляя новых богов и отвергая старых, он виновен в нечестии.
2. Рассуждение о методе
2. Рассуждение о методе Для того чтобы разъяснить полемическое использование эпистемологического анархизма (для краткости ЭА), полезно рассмотреть следующие методологические позиции (некоторые из которых соответствуют методизму в понимании моих рецензентов):(А)
1. ЧТО ТАКОЕ МАТЕРИЯ? ЧТО ТАКОЕ ОПЫТ?
1. ЧТО ТАКОЕ МАТЕРИЯ? ЧТО ТАКОЕ ОПЫТ? С первым из этих вопросов постоянно пристают идеалисты, агностики, и в том числе махисты, к материалистам; со вторым — материалисты к махистам. Попытаемся разобраться, в чем тут дело.Авенариус говорит по вопросу о материи:«Внутри
Глава 1. Рассуждение психологов
Глава 1. Рассуждение психологов То, что у психологов сложности с рассудком, я показывал в предыдущей книге. Для них рассудок — один из типов работы логического мышления. Что такое логика, психологические словари не объясняют, предоставляя читателю самостоятельно сделать
Слой II. РАССУЖДЕНИЕ
Слой II. РАССУЖДЕНИЕ Я надеюсь, что даже на основании тех материалов, что были приведены в предыдущем слое, можно составить себе некоторое понятие о том, что же такое рассуждение. Боюсь, большинство людей именно такое понятие и имеет. Причем независимо от того, являются ли
Раздел 3. РАССУЖДЕНИЕ ФИЛОСОФОВ
Раздел 3. РАССУЖДЕНИЕ ФИЛОСОФОВ Понимают ли философы, что их главное орудие — это рассуждение? Как-то понимают, но не так уж уверенно и ясно. Философы, скорее, подозревают себя в том, что они мыслят. Им это нравится больше, наверное, потому что звучит красивей и выглядит
Глава 3. Рассуждение Декарта
Глава 3. Рассуждение Декарта Много людей участвовало в том, что историки назвали переходом к Новому времени. Эта смена времен началась еще в конце шестнадцатого века, но человеком, кому судьба судила быть лицом этого изменения человеческого духа, был Рене Декарт
Глава 10. Исходное рассуждение
Глава 10. Исходное рассуждение Я, безусловно, рассуждаю, когда строю логические фигуры. Но и когда я молюсь, я рассуждаю не менее определенно, потому что молюсь я, чтобы что-то получить для своей жизни.Как ни странно, но рассмотреть основу рассуждения в логике труднее, чем в
Глава 8. Живое рассуждение
Глава 8. Живое рассуждение Я знаю, что из всех предшествующих моих глав может сложиться впечатление, что я не принимаю логику и даже пытаюсь ее разрушить. Это совсем неверное впечатление.Я пытаюсь выделить из нее то, что относится к живому рассуждению. Это верно. Но не менее
Рассуждение (Raisonnement)
Рассуждение (Raisonnement) Умозаключение или, чаще, последовательная серия умозаключений. Рассуждать значит устанавливать истину (если рассуждение верно) посредством выстраивания упорядоченной цепочки других истин. На это можно возразить, что даже верное рассуждение может