Что такое иммунитет растений
Н.И.Вавилов- основоположник науки об иммунитете растений
Также его заслуга в том, что он придал учению об иммунитете растений генотипических смысл. Иммунитет растений – результат эволюции. Если в результате эволюции растения приобрели гены устойчивости к патогенам, то патогены приобрели способность поражать устойчивость растений посредством появления новых физиологических рас.
Анализируя роль среды в проявлении иммунитета Н. И. Вавилов пришел к заключению, что наследственные различия сортов растений по иммунитету являются весьма постоянными и мало подвержены изменениям под влиянием факторов среды и не изменяются при перенесении сортов из одного района в другой. Ученый относительно физиологического иммунитета утверждал, что наследственность сильнее среды.
Основным фактором в формировании иммунитета растений является специализация паразитических организмов по родам и видам растений – хозяев. Иммунитет к узкоспециализированным паразитам в большей мере связан с генетической дифференциацией сортов. Слабая специализация паразита и генетическая однородность исходного материала определяют безнадежность поисков иммунного растения. Селекции на иммунитет должно предшествовать тщательное изучение специализации паразита и генетической дифференциации растения.
В то же время Н. И. Вавилов видел и серьезные трудности, с которыми связана селекция растений на иммунитет. К ним, прежде всего, относятся: невозможность скрещивания между собой сортов, резко различающихся по отношению к паразитам; трудность выделения из потомства гибридов растений, гомозиготных одновременно и по иммунитету, и по другим признакам. Еще больше затруднений представляет получение гибридов, одновременно иммунных к некоторым заболеваниям.
2. Ячевский, А. А. Перспективы современных фитопатологических исследований в области иммунитета и профилактики растений // Труды Всесоюзного съезда по генетике, селекции, семеноводству и племенному животноводству. – Т. 5. – 1930.
3.Вавилов, Н. И. Проблемы иммунитета культурных растений [Текст] / Н. И. Вавилов. – М.- Л., 1964.
Факторы устойчивости растений к болезням
Установлено, что устойчивость определяется суммарным действием защитных факторов на всех этапах патологического процесса. Все многообразие защитных факторов подразделяется на 2 группы: препятствующие внедрению патогена в растение (аксения); препятствующие распространению патогена в тканях растений (истинная устойчивость).
В первую группу входят факторы или механизмы морфологического, анатомического и физиологического характера.
Габитус растений и форма листьев также являются факторами, препятствующими начальным стадиям заражения. Так, сорта картофеля с рыхлым строением куста меньше поражаются фитофторозом, так как лучше проветриваются и инфекционные капли на листьях высыхают быстрее. На узкие листовые пластинки оседает меньше спор.
Роль строения органов растений можно проиллюстрировать на примере цветков ржи и пшеницы. Рожь очень сильно поражается спорыньей, в то время как пшеница — очень редко. Это объясняется тем, что у цветков пшеницы цветковые чешуи не раскрываются и споры возбудителя практически не проникают в них. Открытый тип цветения у ржи не препятствует попаданию спор.
Физиологические факторы. Быстрому внедрению возбудителей может препятствовать высокое осмотическое давление в клетках растений, скорость физиологических процессов, приводящих к затягиванию ран (образование раневой перидермы), через которые проникают многие патогены. Важна также скорость прохождения отдельных фаз онтогенеза. Так, возбудитель твердой головни пшеницы внедряется только в молодые проростки, поэтому сорта, дружно и быстро прорастающие, поражаются меньше.
К механическим преградам относятся клетки с толстыми оболочками или клетки, у которых в стенках откладывается лигнин — вещество, не поддающееся разрушению ферментами паразитов.
Отсутствие (или недостаток) в растительных тканях веществ, необходимых для развития патогена. Любая растительная ткань представляет собой питательный субстрат, на котором патоген способен паразитировать. Обычно наиболее сильно поражаются хорошо обводненные ткани, богатые растворимыми углеводами и аминокислотами. На определенных этапах онтогенеза, когда какое-либо вещество еще не синтезировано растением или оно уже претерпело изменения в процессе метаболизма, устойчивость к заболеваниям выше. Так, гриб Fu-sarium graminearum Schw. паразитирует на зерновых только при наличии в тканях таких сложных органических соединений, как холин и бетаин. Их больше всего содержится в пыльниках, поэтому колос поражается фузариозом после фазы цветения.
Ингибиторы. Это соединения, содержащиеся в растительных тканях или синтезированные в ответ на заражение, которые подавляют развитие патогенов. К ним относятся фитонциды — вещества различной химической природы, являющиеся факторами врожденного пассивного иммунитета. В большом количестве фитонциды вырабатываются тканями лука, чеснока, черемухи, эвкалипта, лимона и др.
Алкалоиды — азотсодержащие органические основания, образующиеся в растениях. Особенно богаты ими растения семейства бобовых, маковых, пасленовых, астровых и др. Например, соланин картофеля и томатин помидоров токсичны для многих возбудителей. Так, развитие грибов рода Fusarium тормозится соланином в разведении 1:105. Подавлять развитие возбудителей могут фенолы, эфирные масла и ряд других соединений. Все перечисленные группы ингибиторов всегда присутствуют в интактных (неповрежденных тканях).
Индуцированные вещества, которые синтезируются растением в процессе развития патогена, называют фитоалексинами. По химическому составу все они — низкомолекулярные вещества, многие из них
имеют фенольную природу. Установлено, что сверхчувствительная реакция растения на заражение зависит от скорости индукции фитоалексинов. Известны и идентифицированы многие фитоалексины. Так, из растений картофеля, зараженных возбудителем фитофтороза, выделены ришитин, любимин, фитуберин, из гороха — пизатин, из моркови — изокумарин. Образование фитоалексинов представляет типичный пример активного иммунитета.
К активному иммунитету относится также активизация ферментных систем растения, в частности окислительных (пероксидаза, поли-фенолоксидаза). Это свойство позволяет инактивировать гидролитические ферменты возбудителя болезни и обезвреживать им токсины.
Приобретенный, или индуцированный, иммунитет. Для повышения устойчивости растений к инфекционным болезням применяется биологическая и химическая иммунизация растений.
Биологическая иммунизация достигается обработкой растений ослабленными культурами патогенов или продуктами их жизнедеятельности (вакцинация). Ее применяют при защите растений от некоторых вирусных болезней, а также бактериальных и грибных патогенов.
Химическая иммунизация основана на действии некоторых химических веществ, в том числе и пестицидов. Ассимилируясь в растениях, они изменяют обмен веществ в направлении, неблагоприятном для возбудителей болезней. Примером таких химических иммунизаторов служат фенольные соединения: гидрохинон, пирогаллол, ортонитрофенол, паранитрофенол, которыми обрабатывают семена или молодые растения. Иммунизирующим свойством обладает ряд фунгицидов системного действия. Так, дихлорциклопропан защищает рис от пирикуляриоза благодаря усилению синтеза фенолов и образованию лигнина.
Известна иммунизирующая роль и некоторых микроэлементов, входящих в состав ферментов растений. Кроме того, микроэлементы улучшают поступление основных элементов питания, что благоприятно сказывается на устойчивости растений к болезням.
Генетика устойчивости и патогенности. Типы устойчивости
Устойчивость растений и патогенность микроорганизмов, как и все другие свойства живых организмов, контролируются генами, одним или несколькими, качественно отличающимися друг от друга. Наличие таких генов обусловливает абсолютный иммунитет к определенным расам патогена. Возбудители болезни, в свою очередь, имеют ген (или гены) вирулентности, позволяющий ему преодолевать защитное действие генов устойчивости. По теории X. Флора, на каждый ген устойчивости растения может выработаться соответствующий ген вирулентности. Это явление называют комплементарностью. При воздействии патогена, обладающего комплементарным геном вирулентности, растение становится восприимчивым. Если гены устойчивости и вирулентности некомплементарны, клетки растения локализуют возбудитель в результате сверхчувствительной реакции на него.
Например (табл. 4), согласно этой теории, сорта картофеля, имеющие ген устойчивости R,, поражаются только расой 1 возбудителя P. infestans или более сложной, но обладающей обязательно геном вирулентности 1 (1,2; 1,3; 1,4; 1,2,3) и т. д. Сорта, не имеющие генов устойчивости (г), поражаются всеми без исключения расами, в том числе и расой без генов вирулентности (0).
Гены устойчивости чаще всего доминантны, поэтому их сравнительно легко передать потомству при селекции. Гены сверхчувствительности, или R-гены, определяют сверхчувствительный тип устойчивости, которую называют также олигогенной, моногенной, истинной, вертикальной. Она обеспечивает растению абсолютную непоражаемость при воздействии на него рас без комплементарных генов вирулентности. Однако с появлением в популяции более вирулентных рас патогена устойчивость теряется.
Другой тип устойчивости — полигенная, полевая, относительная, горизонтальная, которая зависит от совокупного действия множества генов. Полигенная устойчивость в различной степени присуща каждому растению. При высоком ее уровне патологический процесс замедляется, что дает возможность растению расти и развиваться, несмотря на пораженность болезнью. Как любой полигенный признак, подобная устойчивость может колебаться под воздействием условий выращивания (уровень и качество минерального питания, влагообеспеченность, длина дня и ряд других факторов).
Полигенный тип устойчивости наследуется трансгрессивно, поэтому закрепить его путем селекции сортов проблематично.
Распространенным является сочетание сверхчувствительной и по-лигенной устойчивости в одном сорте. В этом случае сорт будет иммунным до появления рас, способных преодолевать моногенную устойчивость, после чего защитные функции определяет полигенная устойчивость.
Методы создания устойчивых сортов
В практике наиболее широко используются направленная гибридизация и отбор.
Гибридизация. Передача генов устойчивости от род ительских растений потомству происходит при межсортовой, межвидовой и межродовой гибридизации. Для этого в качестве родительских форм подбирают растения с желаемыми хозяйственно-биологическими характеристиками и растения, обладающие устойчивостью. Донорами устойчивости чаще бывают дикие виды, поэтому в потомстве могут появиться нежелательные свойства, которые устраняются при возвратных скрещиваниях, или беккроссах. Бейер ос сы повторяют до тех пор, пока все признаки
Секреты крепкого иммунитета: как повысить устойчивость растений к заболеваниям
Повышение устойчивости растений к заболеваниям – вот уж на самом деле «болезненный» вопрос. Исследования последних лет говорят о том, что от заболеваний погибает до 50% зеленых насаждений. Подобные процессы, протекающие под действием возбудителей или неблагоприятных факторов окружающей среды, способны нанести существенный урон садоводам, сельскохозяйственникам.
Как и животные, люди, зеленые насаждения обладают иммунитетом. Именно он может защитить от негативного влияния внешних факторов. Благодаря нему растения способны противостоять, а также не воспринимать недуги. Устойчивость иммунитета проявляется в том, что зеленые насаждения одного вида или разновидности способны не заражаться или активно противостоять болезням, перенося их в легкой форме. Ослабленные и поврежденные культуры, которые могут сохранить свои качества, отличаются природной выносливостью. Далеко не все существующие на сегодня растения способны самостоятельно справиться с подобной задачей.
Искусственный иммунитет приобретается растением в ходе его индивидуального развития. Устойчивость к болезни возникает под воздействием определенных факторов, поступающих извне. Также она появляется как следствие перенесенного недуга. В отличие от врожденного иммунитета, приобретенный не может передаваться по наследству.
Типы иммунитета
Помимо основного врожденного и искусственного иммунитета можно выделить ряд дополнительных разновидностей. Среди них следующие типы.
Полная характеристика того или иного вида зеленых насаждений позволяет сегодня более детально изучить его возможности в борьбе с заболеваниями. В результате садоводы могут выбрать оптимальный вариант решения проблемы, учитывая индивидуальность организма.
Проявление болезней: что нужно знать
Под воздействием недуга растительный организм терпит значительные изменения и потери. Могут нарушаться функции фотосинтеза и дыхания, циркуляции воды и питательных элементов. Отдельные органы зелени повреждаются или преждевременно погибают. Так как причины появления заболеваний отличаются друг от друга, то разделяют две группы недугов.
Чтобы жить – надо кушать. Любому растению следует правильно и качественно питаться для долгой жизни. Поэтому ни один год учеными тщательно изучается вопрос устойчивости зеленых насаждений к воздействию болезней, которое могло бы достигаться посредством химических, натуральных добавок. Сегодня усиление иммунитета – область, которая включает массу эффективных открытий.
Иммунизация растений химическим и биологическим путем
Химическая иммунизация – широко распространенный способ обеспечить зеленые насаждения жизненными силами. В нем используется три вида продукта.
Биологическая иммунизация включает в себя вакцинацию зеленых насаждений. Организмы обрабатываются возбудителями заболеваний или продуктами их жизнедеятельности. В вакцинах содержатся вытяжки, токсины и другие элементы для увеличения устойчивости к вредным напастям. В ходе мероприятий могут обрабатываться семена, опрыскиваться всходы или вводится уколы.
Отличительной чертой биологической иммунизации является то, что растение приобретает устойчивость только к одному патогену. Есть ситуации, когда вакцинация помогает организму увеличить защитные свойства по отношению еще к нескольким недугам.
Эффективность применения удобрений, микроэлементов или антиметаболитов определяется их правильным подбором, способом использования, сочетанием с другими элементами. Важную роль в борьбе с болезнями играет то, насколько верно будет подобрана дозировка препаратов, их доза, сроки обработки. При использовании того или иного способа иммунизации следует исходить из потребностей растений, учитывая их биологические особенности и характер заболевания.
Гибридизация и отбор – создание устойчивых сортов
Проверенный временем и эффективный способ обеспечить себя здоровыми зелеными насаждениями. Подбирается растение с качественными характеристиками, которое обладает высокой устойчивость к тому или иному недугу. Гибрид получается в результате скрещивание таких организмов в сорте, виде или роде.
Что касается отбора, то он является не менее полезным способом создания качественных сортов растений. Ничего сложно в нем нет. Садоводами выбираются наиболее здоровые, практически с идеальными внешними качествами растения. Берется один вид и в каждом его поколении находится самый удачный претендент. Таким образом, спустя какое-то время определенная разновидность растения может похвастаться здоровой, иммунизированной семьей.
Выносливость зеленых насаждений повышается за счет изменения их роста и условий жизни. Важен не только отбор и посадка высококачественных образцов. На всех стадиях развития растений правильно уделять должное внимание уходу за побегами. Не лишними станут и профилактические мероприятия, которые позволят избежать повреждений. В комплекс мероприятий входит и соблюдение санитарных норм.
Иммуномодуляторы или индукторы болезнеустойчивости
Современные реалии диктуют свои правила. Это касается и растениеводства. Сегодня популярно все натуральное, органическое и безопасное. Поэтому неудивительно, что в борьбе за здоровье зеленых насаждений ученые создали специальную категорию препаратов. В качестве их основы выступают все те же растения. Это достаточно новое направление, которое набирает популярность благодаря своей полезности и эффективности. Если химические препараты обладают биоцидным действием, то иммуномодуляторы не могут нанести вред окружающей среде. Они усиливают внутренние защитные механизмы зеленых насаждений, что приводит к повышению иммунитета.
Отличительной особенностью иммуномодуляторов является их способность не только обеспечивать надежную защиту от болезней, но и снижать загрязнение культур пестицидами. Подобная категория препаратов отлично справляется с детоксикацией. Способствуют разложению пестицидов, которые были применены ранее.
Индукторы болезнеустойчивости способны регулировать рост и развитие растений, помогают им бороться со стрессовыми ситуациями, стимулируют цветение и образование плодов, корней. Участвуют в образовании барьеров механического и химического типа, которые препятствуют распространению патогенов.
В состав иммуномодуляторов входят не только питательные и биологически активные вещества. Он может включать антибиотики растительного происхождения, йод, селен и другие полезные элементы, гормоны. В дополнение к основным функциям препараты могут выступать в качестве антисептика для грунта, что увеличивает защитные свойства. Наибольшую эффективность индукторы болезнеустойчивости смогут обеспечить, если использовать их в период вегетации растений.
Знания, полученные в ходе большого количества исследований, помогают сегодня определить процесс и характер взаимодействия растения и патогена. Благодаря этому есть возможность использовать самые разные приемы, целенаправленно и систематически создавать наиболее благоприятные условия для жизни. В этой среде растениям не составит труда проявлять защитные функции в полной мере. Комплексный подход – залог здоровья зеленых насаждений.
Иммунитет растений
Иммунитет — это невосприимчивость, и обусловлен он иммунной системой — очень сложной, призванной, с одной стороны, поддерживать постоянство клеточного состава организма, а с другой — отражать агрессию проникших или пытающихся проникнуть в организм патогенов: вирусов, грибов, бактерий и прочих болезнетворных организмов.
В данном случае, иммунитет рассматривается, как способность организма отличать чужеродный материал от своего.Наука об иммунитете — очень сложная наука, чтобы не «нагружать» читателей терминами, скажу лишь, что иммунитет возникает после контакта с патогенами.Он бывает приобретённый и наследственный (естественный), который также возникает после контакта, но передаётся по наследству.И вот тут главный момент для понимания, любой иммунитет может возникнуть, когда произошёл контакт организма и патогена, другими словами — переболевание организма в лёгкой форме, когда иммунная система организма выработала антитела против патогена (специфические белки против конкретного патогена).
На первый взгляд, кажется сложным это понять.Но, если организм не заболеет (в лёгкой форме), то и иммунитет не выработается, когда иммунитет (невосприимчивость) выработался, тогда организм никогда больше не заболеет или переболеет в лёгкой форме.Кстати, на этом принципе у людей и животных применяется вакцинация — введение ослабленных патогенов в организм с целью выработки иммунной системой организма невосприимчивости к данному заболеванию в дальнейшем.
До настоящего времени считалось, что иммунные системы растений и человека (а также животных) функционируют по совершенно различным законам.И основным аргументом в пользу данного мнения было отсутствие у растений специальных клеток, подобных нашим лимфоцитам (и др.) и специальных органов, вырабатывающих эти клетки.Разумеется, ничего похожего на нашу селезёнку и костный мозг у растений нет.Однако, по мере изучения и накопления знаний о природе болезнеустойчивости растений, различия в механизмах иммунитета растений и животных перестали казаться столь разительными.
Сейчас накапливается всё больше данных о сходстве между ними.Несмотря на то, что растения не вырабатывают специализированных клеток, в каждой растительной клетке есть элементы, отвечающие за иммунитет и борьбу с болезнетворными агентами.Например, сразу же после проникновения (прорастания) патогенного гриба даже в одну растительную клетку, растение начинает вырабатывать специальные вещества, быстро убивающие патогенный гриб (возбудителей фитофтороза, парши, фузариоза и др.).Сигналом к выработке этих веществ-антител служат особые вещества самого гриба, выделяемые им в результате его жизнедеятельности.Эти вещества-антигены выдают присутствие агрессора растению и оно начинает бороться.
Таким образом оказалось, что вещества, выполняющие сигнальную функцию и предупреждающие организм о проникновении чужака, имеют схожую химическую природу как у возбудителей болезней животных, так и у возбудителей болезней растений, при этом их воздействие и механизм антигенной реакции организмов одинаков.Из всего вышесказанного следует вывод, что существует сходство животных и растений в плане иммунной защиты.Но, если для человека и животных наукой придуманы вакцины, для создания иммунитета — ослабленные или мёртвые возбудители болезней, введением которых в организм (прививки) мы запускаем механизм выработки иммунитета — невосприимчивости, то как быть с растениями? Вакцин нет.
Но что может выполнять роль вакцин — ослабленных возбудителей?Что может их ослабить до выработки лишь иммунитета и уменьшить способность вызвать саму болезнь?Нет, не химические яды, которыми мы «залили» сады, убивая всё живое: полезных микроорганизмов и болезнетворных одновременно.Что мы этим добились? Уменьшения болезней? Напротив, их расцвет! Вы спросите, почему?
Потому что, обрабатывая химикатами бездумно и бесконтрольно, не соблюдая дозировок, а действуя по принципу «чем больше, тем лучше», мы, сами того не желая, создали очень устойчивые формы возбудителей болезней, как растений, так человека и животных, которых не убивают уже даже самые сильные химикаты.А «наука» придумывает всё новые и новые более «сильные» и тем более страшные, вместо того, чтобы стать истинной наукой и вернуться к силам Природы и естественным природным процессам выработки иммунитета растениями в этой естественной природной среде.
Многих сейчас рассмешило это замечание и напрасно.Опыт показывает, что растения, выращенные на специально созданных грунтах по Природной технологии, с применением биокомпостов: червекомпостов, ЭМ-компостов и грибных, богатых разнообразной полезной микрофлорой, менее подвержены различным грибковым и бактериальным заболеваниям и вовсе не болеют как в открытом, так и закрытом грунте (теплицы).Растения же, выращенные на предварительно подвергнутых термической обработке или пролитых «безобидной марганцовкой» грунтах (где полностью или частично уничтожена полезная и болезнетворная микрофлора), чувствуют себя комфортно в начальный период роста, однако очень подвержены болезням с течением времени, затем заболевают, отстают в росте и часто погибают.
Почему такое происходит?
Растение выросло в «стерильных» условиях. У него не было контакта с ослабленным возбудителем болезни, иммунитет не выработался и, при первом же контакте с «усиленным» возбудителем, растение заболевает серьёзно и быстро, не успев выработать иммунитет.Именно полезная микрофлора компостов ослабляет болезнетворную способность возбудителей болезней, а иногда и вовсе их «убивает» своими выделениями — антибиотиками.Получается, «благими» намерениями, хим. обработками мы сами себе создаём западню, убиваем наших помощников (полезных микробов) и усиливаем болезнетворное воздействие патогенных.Следует не «стерилизовать» почву кипятком, пропариванием, хим. обработками, а «оживлять» её внесением в грунты биокомпостов, обогащая её полезной микрофлорой.
И тут возникает второй, очень важный для понимания момент: этим самым мы не убиваем всё живое в таких почвах, а создаём разумное равновесие сил по Природной «технологии» между болезнетворными и полезными микроорганизмами.
Этим самым, под действием полезной микрофлоры, мы ослабляем болезнетворные «способности» у патогенов, превращая их в своего рода вакцины, которые, контактируя с растениями, не вызывают у них заболевания, а лишь создают так называемый «напряжённый» иммунитет, очень сильный и стойкий. Возбудители болезней будут присутствовать в саду, но они не смогут принести вреда растениям, потому что не смогут вызвать заболевания.
То есть, надо не «убивать врагов», а укреплять здоровье самих растений созданием стойкого иммунитета и повышением уровня питания за счёт гумусного Природного.После открытия наукой вирусов, грибов и бактерий, долгое время считали, что именно они являются основной причиной болезней.
Но теперь-то мы знаем, что возбудители — это всего лишь возможная причина болезни. А заболеем мы или нет, а также наши растения, во многом зависит от нас самих. И мы, и растения живём в мире, который буквально кишит микробами. Именно микроорганизмы являются истинными хозяевами нашей планеты, в прямом и переносном смысле этого слова.
Если бы они сами по себе были причиной болезни, то мы болели бы постоянно, как и растения. Но этого не происходит.Болезнь возникает только тогда, когда организм человека и растений сам потерял способность сопротивляться неблагоприятным факторам окружающей среды, мы говорим «иммунитет ослаблен».
Из-за высокой адаптационной способности микроорганизмов целая эпоха производства пестицидов (и других химикатов) привела лишь к появлению огромного количества новых болезнетворных микроорганизмов, абсолютно устойчивых к десяткам и сотням химикатов.
Кроме того, оказалось, что сами отравляющие вещества, чрезвычайно долго сохраняющиеся в природе, являются токсичными и для человека.А из-за того, что невозможно создать ядохимикаты, воздействующие только на болезнетворные виды микроорганизмов, применение пестицидов привело к уничтожению также и полезной почвенной микрофлоры, улучшающей питание растений (гумус) и способствующей адаптации к неблагоприятным внешним условиям (создание иммунитета).Использование механизмов повышения иммунитета самих растений является реальной альтернативой химическим средствам борьбы.
Наиболее простой и эффективный способ иммунизации растений ослабленными видами болезнетворных микроорганизмов состоит в использовании биокомпостов (червекомпоста, ЭМ-компоста, грибного) для горшечной культуры и закрытого грунта и элементов Природного земледелия в открытом грунте.Поэтому Природное земледелие и его элементы (биокомпосты) являются основным фактором иммунизации растений, поддержания иммунитета, а также непосредственной защитой от патогенов ризосферной (прикорневой) почвенной микрофлорой.
Пора «проснуться» от невежества лженауки, рекомендующей использование пестицидов, прекратить уничтожать всё живое на планете Земля и вернуться к Природному земледелию, способному возродить былую экологию планеты и былое здоровье растений и животных, и самого Человека.