Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°
ΠΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ°
ΠΠ»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π²Π΅ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅Π²Π° ΠΈ ΡΠΏΡΠ°Π²Π° | AB |.
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ°
Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π΄Π»Ρ ΠΏΠ»ΠΎΡΠΊΠΈΡ Π·Π°Π΄Π°Ρ
Π ΡΠ»ΡΡΠ°Π΅ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° a = < ax ; ay > ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π΄Π»Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ Π·Π°Π΄Π°Ρ
Π ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° a = < ax ; ay ; az > ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΡΠΈΠΌΠ΅ΡΡ Π·Π°Π΄Π°Ρ Π½Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ°
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π΄Π»Ρ ΠΏΠ»ΠΎΡΠΊΠΈΡ Π·Π°Π΄Π°ΡΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅: | a | = β 3 2 + (-4) 2 = β 9 + 16 = β 25 = 5.
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π΄Π»Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ Π·Π°Π΄Π°ΡΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅: | a | = β 2 2 + 4 2 + 4 2 = β 4 + 16 + 16 = β 36 = 6.
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π΄Π»Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ² Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ΠΉ 3
Π Π΅ΡΠ΅Π½ΠΈΠ΅: | a | = β 1 2 + (-3) 2 + 3 2 + (-1) 2 = β 1 + 9 + 9 + 1 = β 20 = 2β 5
ΠΡΠ±ΡΠ΅ Π½Π΅ΡΠ΅Π½Π·ΡΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π±ΡΠ΄ΡΡ ΡΠ΄Π°Π»Π΅Π½Ρ, Π° ΠΈΡ Π°Π²ΡΠΎΡΡ Π·Π°Π½Π΅ΡΠ΅Π½Ρ Π² ΡΠ΅ΡΠ½ΡΠΉ ΡΠΏΠΈΡΠΎΠΊ!
ΠΠΎΠ±ΡΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°ΡΡ Π½Π° OnlineMSchool.
ΠΠ΅Π½Ρ Π·ΠΎΠ²ΡΡ ΠΠΎΠ²ΠΆΠΈΠΊ ΠΠΈΡ
Π°ΠΈΠ» ΠΠΈΠΊΡΠΎΡΠΎΠ²ΠΈΡ. Π― Π²Π»Π°Π΄Π΅Π»Π΅Ρ ΠΈ Π°Π²ΡΠΎΡ ΡΡΠΎΠ³ΠΎ ΡΠ°ΠΉΡΠ°, ΠΌΠ½ΠΎΡ Π½Π°ΠΏΠΈΡΠ°Π½ Π²Π΅ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π», Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΎΠ½Π»Π°ΠΉΠ½ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ ΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΠΏΠ΅ΡΠ°ΡΠΈΠΈ Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ
ΠΠ°ΠΊ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΡΡ Π²Π΅ΠΊΡΠΎΡΡ (ΠΈ Π·Π°ΡΠ΅ΠΌ).
ΠΡ ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌ Π²Π°ΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ. ΠΠ°ΡΠΈΠ½Π°Π»ΠΈ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌΡΡΠ²Π° Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΡΠ΅ΠΏΠ΅ΡΡ ΡΠ΄Π΅Π»Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΡΠ°Π³.
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΡΡΠ»ΠΈ:
Π‘ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. ΠΠΎΡ ΠΎ Π½ΠΈΡ ΠΈ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡΠΈΠΌ.
ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ β Π²Π΅ΠΊΡΠΎΡΡ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΠ°ΡΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΠΈΡΠ»Π΅ Β«Π²Π΅ΠΊΡΠΎΡΠ°Β», Π½ΠΎ ΠΏΠΎ ΡΠ»ΠΎΠ²Π°ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ Β«Π²Π΅ΠΊΡΠΎΡΡΒ». ΠΡΠΎ ΡΠ°ΠΊΠΎΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΆΠ°ΡΠ³ΠΎΠ½, ΠΊΠ°ΠΊ Β«Π΄ΠΎΠ³ΠΎΠ²ΠΎΡΠ°Β», Β«Π±ΡΡ Π³Π°Π»ΡΠ΅ΡΠ°Β» ΠΈ Β«ΡΠ΅ΡΠ²Π΅ΡΠ°Β». ΠΡ Π±ΡΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Β«Π²Π΅ΠΊΡΠΎΡΡΒ», Π½ΠΎ Π΅ΡΠ»ΠΈ Π²Ρ ΠΎΠΊΠ°ΠΆΠ΅ΡΠ΅ΡΡ Π² ΠΏΠΎΡΡΠΊΠΎΠ²ΠΈΠ΄Π½ΠΎΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π±Π°ΡΠ΅, Π»ΡΡΡΠ΅ Π³ΠΎΠ²ΠΎΡΠΈΡΠ΅ Β«Π²Π΅ΠΊΡΠΎΡΠ°Β».
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅
ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠ΅ΡΡΡΠ΅ Π²Π΅ΠΊΡΠΎΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ Π»Π΅ΠΆΠ°Ρ Π² Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΈ ΠΏΠΎΠΊΠ° ΡΡΠΎ Π½Π΅ ΡΠ²ΡΠ·Π°Π½Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ. ΠΠ°ΡΠΈΡΡΠ΅ΠΌ ΡΡΠΈ Π²Π΅ΠΊΡΠΎΡΡ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΠΈΡ Π±ΡΠΊΠ²Π°ΠΌΠΈ X, Y, Z, K.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²Π΅ΠΊΡΠΎΡΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΡ ΠΈΠ· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠΈΡΠ΅Π». Π£ Π½Π°Ρ ΠΏΡΠΈΠΌΠ΅Ρ Ρ Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΡΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎΠΌ ΠΈ Π΄Π²Π° ΡΠΈΡΠ»Π°. ΠΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊ: X = (6, 4); Y = (3, β2); Z = (β7, β5); K = (β10, 4).
ΠΠ΅ΠΊΡΠΎΡΡ X, Y, Z, K Π² Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅
ΠΡΠ»ΠΈ Ρ Π½Π°Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΡΠΈΡΠ΅Π», ΡΠΎ ΡΡΠΈ ΡΠΈΡΠ»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎ ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΌΡ Π±Π΅ΡΡΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°, ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ Π΅Π³ΠΎ Ρ ΠΏΠ΅ΡΠ²ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ Π΄ΡΡΠ³ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈ ΡΠ°ΠΊ Π΄Π°Π»Π΅Π΅.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ Π²Π΅ΠΊΡΠΎΡΡ X ΠΈ Y.
X = (6, 4)
Y = (3, β2)
X + Y = (9, 2)
ΠΡΠΎΠ΄Π΅ ΠΏΡΠΎΡΡΠΎ: ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΡΠΎΠ±ΠΎΡΠΊΠΈ. Π’Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ Ρ Π»ΡΠ±ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΠΌΠ½ΠΈΡΠ΅, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ β ΡΡΠΎ Π½Π΅ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΡΡΠ΅Π»ΠΊΠ° Π² Π΄Π²ΡΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. ΠΠ½Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈ Π² Π΄Π΅ΡΡΡΠΈΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ β Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΡΠΎ Π½Π΅Π²Π°ΠΆΠ½ΠΎ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Ρ ΠΏΡΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ:
ΠΠ½ΡΡΠΈΡΠΈΠ²Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠ»Ρ ΠΈΠ½ΡΡΠΈΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΡ Ρ Π΄Π²ΡΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ. ΠΡ ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΠΈΡΠΎΠ²Π°ΡΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π° Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ, ΠΊΠ°ΠΊ Π±ΡΠ΄Π΅Ρ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ². ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π΅ΡΡΡ Π΄Π²Π° ΠΌΠ΅ΡΠΎΠ΄Π°: ΠΌΠ΅ΡΠΎΠ΄ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°.
ΠΠ΅ΡΠΎΠ΄ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°: ΡΡΠ°Π²ΠΈΠΌ Π²Π΅ΠΊΡΠΎΡΡ Π₯ ΠΈ Y Π² ΠΎΡΠ΅ΡΠ΅Π΄Ρ Π΄ΡΡΠ³ Π·Π° Π΄ΡΡΠ³ΠΎΠΌ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π±Π΅ΡΡΠΌ Π²Π΅ΠΊΡΠΎΡ Π₯, ΡΡΠ°Π²ΠΈΠΌ Π·Π° Π½ΠΈΠΌ Π²Π΅ΠΊΡΠΎΡ Y ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ Π½ΠΎΠ²ΡΠΉ Π²Π΅ΠΊΡΠΎΡ. ΠΠΎΠ²ΡΠΉ Π²Π΅ΠΊΡΠΎΡ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Π² Ρ Π²ΠΎΡΡΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π₯ ΠΈ Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΡΡΠ΅Π»ΠΊΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Y. ΠΡΠΎΡ Π²Π΅ΠΊΡΠΎΡ β ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²ΡΡΠ΅, ΡΡΠΎ ΡΡΠΎ ΡΠ΅Π±ΡΠ½ΠΎΡΠ΅ΠΊ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ².
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°: X = (6, 4); Y = (3, β2); Π₯ + Y = (9, 2)
Π§ΡΠΎΠ±Ρ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π²Π΅ΠΊΡΠΎΡΡ Π₯ ΠΈ Y Π² ΠΎΠ΄Π½Ρ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΠΎΡΠΊΡ. ΠΠ°Π»ΡΡΠ΅ ΠΌΡ Π΄ΡΠ±Π»ΠΈΡΡΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡΡ Π₯ ΠΈ Y, ΡΠΎΡΠΌΠΈΡΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ Π½ΠΎΠ²ΡΠΉ Π²Π΅ΠΊΡΠΎΡ. Π Π½ΠΎΠ²ΠΎΠΌ Π²Π΅ΠΊΡΠΎΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΠΌ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΠΎΡΠΊΡ Ρ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΄ΡΠ±Π»ΠΈΡΡΡΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² β ΡΡΡΠ΅Π»ΠΊΠ° ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°. ΠΠ»ΠΈΠ½Π° Π½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π₯ ΠΈ Y.
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π΄Π°ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. ΠΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΈΡΠ°ΠΉΡΠ΅ Π²Π°ΡΠΈΠ°Π½Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ΄ Π·Π°Π΄Π°ΡΡ.
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΠΆΠ½Π΅Π΅. Π§ΡΠΎΠ±Ρ Π²ΡΡΠ΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΡ, Π½ΡΠΆΠ½ΠΎ Β«ΡΠ°Π·Π²Π΅ΡΠ½ΡΡΡΒ» Π²ΡΡΠΈΡΠ°Π΅ΠΌΡΠΉ Π²Π΅ΠΊΡΠΎΡ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΡ Π΅Π³ΠΎ Ρ ΠΈΡΡ ΠΎΠ΄Π½ΡΠΌ. Β«Π Π°Π·Π²Π΅ΡΠ½ΡΡΡΒ» β ΡΠΎ Π΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²ΠΈΡΡ Π² ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ, Β«ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΠ²Β» Π·Π½Π°ΠΊΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΠ»ΡΡΠΈΡΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π²ΡΠΎΠ΄Π΅ ΡΠ°ΠΊΠΎΠΉ: Π₯ + (βY)
ΠΠ°Π»ΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠΎΡΠ°Π³ΠΎΠ²ΠΎ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅:
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°: X = (6, 4); βY = (β3, 2); X + (βY) = (3, 6) ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°: X = (6, 4); βY = (β3, 2); X + (βY) = (3, 6)
ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°
ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° β ΡΡΠΎ ΠΎΠ΄Π½ΠΎ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ ΠΎΡ ΠΊΠΎΠ½ΡΠΈΠΊΠ° Π΄ΠΎ ΡΡΡΠ΅Π»ΠΊΠΈ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΠ»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π΅Π»ΡΠ·Ρ ΠΏΡΡΠ°ΡΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ β ΡΡΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΈΡΠ΅Π», ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΡΡΠ΅Π»ΠΊΠΈ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΡΠΎΡΠΊΡ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ X = (6, 2), ΡΠΎ ΡΡΡΠ΅Π»ΠΊΠ° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² ΡΠΎΡΠΊΠ΅ 6 ΠΏΠΎ ΠΎΡΠΈ Π₯. ΠΠ»ΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: Π΅ΡΠ»ΠΈ Y = (6, 5), ΡΠΎ ΡΡΡΠ΅Π»ΠΊΠ° ΡΡΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² ΡΠΎΡΠΊΠ΅ 5 ΠΏΠΎ ΠΎΡΠΈ Y.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ² X ΠΈ Y. ΠΡΡΡΡ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΡΠΎΡΠΊΠ° 2 ΠΏΠΎ ΠΎΡΠΈ X ΠΈ ΡΠΎΡΠΊΠ° 2 ΠΏΠΎ ΠΎΡΠΈ Y. Π’Π°ΠΊ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π»Π΅Π³ΠΊΠΎ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ Π΄Π»ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ²:
X = 6 β 2 = 4
Y = 5 β 2 = 3
ΠΠ½ΠΎΠ³Π΄Π° ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ Π΄Π»ΠΈΠ½Ρ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠ²ΡΠ·Π°Π½ ΠΊ Π΄Π²ΡΠΌ Π΄ΡΡΠ³ΠΈΠΌ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌ. ΠΡΠΎ Π»Π΅Π³ΠΊΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ° β ΡΡΠΎ ΠΊΠΎΠ³Π΄Π° ΠΊΠ²Π°Π΄ΡΠ°Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΊΠ°ΡΠ΅ΡΠΎΠ². Π Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌΠΈ Π±ΡΠ΄ΡΡ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠ² X ΠΈ Y. ΠΡΠΏΠΎΠΌΠΈΠ½Π°Π΅ΠΌ ΡΠΊΠΎΠ»ΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΡΠΈΡΠ°Π΅ΠΌ:
|C|2 = 42 + 32 = 25
|C| = β25 = 5 ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π§ΡΠΎΠ±Ρ Π±ΡΠ»ΠΎ ΠΏΡΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ β ΠΏΠ΅ΡΠ΅Π½Π΅ΡΠΈΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ Π½Π° ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ
ΠΡΠΎ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π΄Π²ΡΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°. Π ΡΡΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΡ ΠΎΠΆΠ°Ρ: Π½ΡΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΡΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΡΡΠΌΠΌΡ.
Π ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠΎΡΠΌΡΠ»Π° Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»ΠΎΠΆΠ½Π΅Π΅, Π½ΠΎ ΠΏΠΎ ΡΡΡΠΈ ΡΠΎ ΠΆΠ΅: ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ Π²ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΡΡΠΎΠΉ ΡΡΠΌΠΌΡ.
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΡΠΈΡΠ»ΠΎ
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ Π΄Π»ΠΈΠ½Ρ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΡΠ»ΠΈ ΠΌΡ ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π²Π΅ΠΊΡΠΎΡ Π₯ Π½Π° ΡΡΠΈ, ΡΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠΌ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρ Π² ΡΡΠΈ ΡΠ°Π·Π°. ΠΡΠ»ΠΈ ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° ΠΌΠΈΠ½ΡΡ ΡΡΠΈ β ΡΠ²Π΅Π»ΠΈΡΠΈΠΌ Π΄Π»ΠΈΠ½Ρ ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΠΈΠΌ Π΅Π³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅.
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΡΠΈΡΠ»ΠΎ
ΠΠ»Ρ Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΡ ΡΠ°Π½ΡΡΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π°. ΠΠ΅Π»ΠΈΠΌ Π²Π΅ΠΊΡΠΎΡ Π₯ Π½Π° ΡΡΠΈ ΠΈ ΡΠΎΠΊΡΠ°ΡΠ°Π΅ΠΌ Π΄Π»ΠΈΠ½Ρ Π² ΡΡΠΈ ΡΠ°Π·Π°. ΠΠ΅Π»ΠΈΠΌ Π½Π° ΠΌΠΈΠ½ΡΡ ΡΡΠΈ β ΡΠΎΠΊΡΠ°ΡΠ°Π΅ΠΌ ΠΈ ΡΠ°Π·Π²ΠΎΡΠ°ΡΠΈΠ²Π°Π΅ΠΌ.
ΠΠ΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΡΠΈΡΠ»ΠΎ
ΠΠ° Π²ΡΠΎΠ΄Π΅ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΠΎ!
ΠΠΎΠΊΠ° Π½ΠΈΡΠ΅Π³ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ. ΠΠΎ Π΅ΡΠ»ΠΈ ΡΠ³Π»ΡΠ±Π»ΡΡΡΡΡ, Π²Ρ ΡΠ·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ:
Π§ΡΠΎ Π΄Π°Π»ΡΡΠ΅
Π ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ². Π§ΡΠΎΠ±Ρ Π½Π΅ ΡΠΊΡΡΠ°ΡΡ β ΠΏΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²ΡΡ Ρ ΠΠ½Π°ΡΡΠ°ΡΠΈΠ΅ΠΉ ΠΠΈΠΊΡΠ»ΠΈΠ½ΠΎΠΉ. ΠΠ½Π°ΡΡΠ°ΡΠΈΡ ΡΠ΅Π½ΡΠΎΡ-Π΄Π°ΡΠ°-ΡΠ°ΠΉΠ΅Π½ΡΠΈΡΡ Π² Π ΠΎΡΠ±Π°Π½ΠΊΠ΅ ΠΈ ΠΏΠΎ ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΡΡΠ²Ρ Π±Π»ΠΎΠ³Π΅Ρ Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎΠΉ ΠΈΡΡΠΎΡΠΈΠ΅ΠΉ.
ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°
ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° (ΠΈΠ»ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΠ»ΠΈ Π°Π±ΡΠΎΠ»ΡΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°) β ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡΠ΅Π³ΠΎ Π²Π΅ΠΊΡΠΎΡ.
Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ Π² ΡΠΎΡΠΊΠ΅ A(x1; y1) ΠΈ ΠΊΠΎΠ½ΡΠΎΠΌ Π² ΡΠΎΡΠΊΠ΅ B(x2; y2) Π΄Π»ΠΈΠ½Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΡΠΊΠ°ΠΌΠΈ:
Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΄Π»Ρ Π²Π΅ΠΊΡΠΎΡΠ°
(ΡΠΎ Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ°Π²Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΊΠΎΡΠ½Ρ ΠΈΠ· ΡΡΠΌΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΅Π³ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ).
ΠΠ°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ°:
2) ΠΡΠ»ΠΈ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ°, Π·Π½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΅Π³ΠΎ Π½Π°ΡΠ°Π»Π° ΠΈ ΠΊΠΎΠ½ΡΠ°, ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ°:
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄ΡΠΌ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρ:
ΠΠ»ΠΈΠ½Π° (ΠΌΠΎΠ΄ΡΠ»Ρ) Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΡΡΠ΄ Π±Π°Π·ΠΎΠ²ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ.
Π’ΡΠΈ Π²Π΅ΠΊΡΠΎΡΠ° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°ΡΠ½ΡΠΌΠΈ, Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈΠ»ΠΈ Π½Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ . ΠΡΠ»ΠΈ ΡΡΠ΅Π΄ΠΈ ΡΡΠ΅Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ Π½ΡΠ»Π΅Π²ΠΎΠΉ ΠΈΠ»ΠΈ Π΄Π²Π° Π»ΡΠ±ΡΠ΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½Ρ, ΡΠΎ ΡΠ°ΠΊΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΡ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°ΡΠ½Ρ.
ΡΠΎ Π΅ΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ°Π²Π΅Π½ ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΈΠ· ΡΡΠΌΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΅Π³ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΠ³Π»Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΠΈ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ΅ΡΠ΅Π· Ξ±, Ξ², Ξ³ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠΎΡΠΈΠ½ΡΡΡ ΡΡΠΈΡ ΡΠ³Π»ΠΎΠ² Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π΄Π»Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π°ΠΏΡΠ°Π²Π»ΡΡΡΠΈΠΌΠΈ, ΠΈ Π΄Π»Ρ Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅: ΠΠ΅ΡΠ½ΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΠΎΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π² Π½ΠΈΠΆΠ΅ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΠΏΡΠ½ΠΊΡΠ΅ 4.
ΠΡΡΡΡ Π² ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π·Π°Π΄Π°Π½Ρ Π²Π΅ΠΊΡΠΎΡΡ ΡΠ²ΠΎΠΈΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ. ΠΠΌΠ΅ΡΡ ΠΌΠ΅ΡΡΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π°Π΄ Π½ΠΈΠΌΠΈ: Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ (ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΠΈΡΠ»ΠΎ ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΠΎΡΡ ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΎΠΉ Π²Π΅ΠΊΡΠΎΡ); Π½Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ β ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² (ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅, Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅, ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅).
1. Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎ, ΡΠΎ Π΅ΡΡΡ Π΅ΡΠ»ΠΈ
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ Π΄Π²Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΠΏΠΎ Π΄Π²ΡΠΌ ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌ:
Π°) ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° β ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ Π½Π°ΡΠ°Π»ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΡΠΎΠΌ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΠΊΠΎΠ½ΡΠΎΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°; Π΄Π»Ρ ΡΡΠΌΠΌΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² β ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡ ΡΡΠΌΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ Π½Π°ΡΠ°Π»ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΡΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°-ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΠΊΠΎΠ½ΡΠΎΠΌ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ;
Π±) ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° (Π΄Π»Ρ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²) β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ ΡΡΡΠΎΠΈΡΡΡ Π½Π° Π²Π΅ΠΊΡΠΎΡΠ°Ρ -ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΊΠ°ΠΊ Π½Π° ΡΡΠΎΡΠΎΠ½Π°Ρ , ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ Π½Π°ΡΠ°Π»Ρ; Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΈΡΡ ΠΎΠ΄ΡΡΠ°Ρ ΠΈΠ· ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π½Π°ΡΠ°Π»Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠΎΠΉ Π²Π΅ΠΊΡΠΎΡΠΎΠ².
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ Π΄Π²Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΠΏΠΎ ΡΠΆΠ΅ ΡΠΏΠΎΠΌΡΠ½ΡΡΠΎΠΌΡ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ°Π·Π½ΠΎΡΡΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠ°Ρ ΠΊΠΎΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ², ΠΏΡΠΈΡΠ΅ΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΈΠ· ΠΊΠΎΠ½ΡΠ° Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ³ΠΎ Π² ΠΊΠΎΠ½Π΅Ρ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°.
ΠΡΠΈ Ξ»>0 β Π²Π΅ΠΊΡΠΎΡ ΡΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ; Ξ» ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ; | Ξ»|> 1 β Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π² Ξ» ΡΠ°Π·; | Ξ»| 1 β Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π² Ξ» ΡΠ°Π·.
4. ΠΡΡΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π·Π°Π΄Π°Π½Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½Π°Ρ ΠΏΡΡΠΌΠ°Ρ (ΠΎΡΡ l ), Π²Π΅ΠΊΡΠΎΡ Π·Π°Π΄Π°Π½ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ ΠΊΠΎΠ½ΡΠ° ΠΈ Π½Π°ΡΠ°Π»Π°. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΎΡΠ΅ΠΊ A ΠΈ B Π½Π° ΠΎΡΡ l ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ΅ΡΠ΅Π· A β ΠΈ B β.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ:
1) ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΠΎΡΡ l ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΠΈ ΠΎΡΡΡ, ΡΠΎ Π΅ΡΡΡ ;
2.) ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΠΎΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° (ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°), Π΅ΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Ρ ΠΎΡΡΡ ΠΎΡΡΡΡΠΉ (ΡΡΠΏΠΎΠΉ) ΡΠ³ΠΎΠ», ΠΈ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, Π΅ΡΠ»ΠΈ ΡΡΠΎΡ ΡΠ³ΠΎΠ» β ΠΏΡΡΠΌΠΎΠΉ;
3) ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΌΠΌΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π½Π° ΠΎΠ΄Π½Ρ ΠΈ ΡΡ ΠΆΠ΅ ΠΎΡΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ Π½Π° ΡΡΡ ΠΎΡΡ.
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ², ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π°Π΄ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ.
5. Π‘ΠΊΠ°Π»ΡΡΠ½ΡΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ (ΡΠΊΠ°Π»ΡΡ), ΡΠ°Π²Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½ ΡΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Ο ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ, ΡΠΎ Π΅ΡΡΡ
Π’Π΅ΠΎΡΠ΅ΠΌΠ° 2.2. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠΌ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΠΈ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π½ΡΠ»Ρ ΠΈΡ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅. ΠΠΎΠΏΠ°ΡΠ½ΡΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΡΡ ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ, ΡΠΎ Π΅ΡΡΡ
ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΠΈ Π½Π΅Π½ΡΠ»Π΅Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ :
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π½Π°Ρ ΠΎΠ΄ΡΡ ΡΠ°Π±ΠΎΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΈΠ»Ρ Π½Π° ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΠΏΡΡΠΈ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΡΠΈΡΠ»ΠΈΠΌ ΠΌΠΎΠ΄ΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ ΠΈΡ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ (2.3):
ΠΡΠΈΠΌΠ΅Ρ 2.10. ΠΠ°ΡΡΠ°ΡΡ ΡΡΡΡΠ΅Π²ΡΡ ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ΅ΡΡΡΡΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΠ½Π½Ρ ΡΠ²ΠΎΡΠΎΠ³Π°, Π·Π°Π΄Π°Π½Ρ Π² ΡΠ°Π±Π»ΠΈΡΠ΅ 2.2 (ΡΡΠ±.).
ΠΠ°ΠΊΠΎΠ²Π° ΠΎΠ±ΡΠ°Ρ ΡΠ΅Π½Π° ΡΡΠΈΡ ΡΠ΅ΡΡΡΡΠΎΠ², Π·Π°ΡΡΠ°ΡΠΈΠ²Π°Π΅ΠΌΡΡ Π½Π° ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΠ½Π½Ρ ΡΠ²ΠΎΡΠΎΠ³Π°?
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΠ΅ΠΉΡΡΠ²ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½Π½ΡΠ΅ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ 2.10, ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π½Π° ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ΅. ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π² MS Excel ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π‘Π£ΠΠΠΠ ΠΠΠΠ( ), Π³Π΄Π΅ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ Π°Π΄ΡΠ΅ΡΠ° Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠ² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΌΠ°ΡΡΠΈΡ, ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ. Π MathCAD ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΠΏΠ°Π½Π΅Π»ΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² Matrix
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, Π²ΡΡΠΈΡΠ°Ρ ΠΈΠ· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π΅Π³ΠΎ ΠΊΠΎΠ½ΡΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½Π°ΡΠ°Π»Π°
Π£Π³ΠΎΠ» Ο ΠΌΠ΅ΠΆΠ΄Ρ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ (2.29), ΡΠΎ Π΅ΡΡΡ
β ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌ ΠΈ ;
β Π²Π΅ΠΊΡΠΎΡΡ ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΡΠ°Π²ΡΡ ΡΡΠΎΠΉΠΊΡ (ΡΠΈΡ. 2.15).
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ (2.25) ΡΠ°ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Ρ 7 ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΉ
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ 1. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠΌ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ 2. ΠΠ΅ΠΊΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΡΡ ΡΠ°Π²Π½Ρ
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ 3. ΠΠ΅ΠΊΡΠΎΡΠ½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ
Π’Π°ΠΊΠΆΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
— ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ O , A , B ;
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ O ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΉΠ΄Π΅ΠΌ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ (2.32).
Π’Π΅ΠΎΡΠ΅ΠΌΠ° 2.6. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠΌ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°ΡΠ½ΠΎΡΡΠΈ ΡΡΠ΅Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π½ΡΠ»Ρ ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ
Π’Π΅ΠΎΡΠ΅ΠΌΠ° 2.7. ΠΡΠ»ΠΈ ΡΡΠΈ Π²Π΅ΠΊΡΠΎΡΠ° Π·Π°Π΄Π°Π½Ρ ΡΠ²ΠΎΠΈΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ, ΡΠΎ ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°, ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ ΠΈΠ· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠ²- ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΠΎ Π΅ΡΡΡ
ΠΠ±ΡΠ΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΠΏΠΈΡΠ°ΠΌΠΈΠ΄Ρ, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠΉ Π½Π° ΡΡΠΈΡ ΠΆΠ΅ Π²Π΅ΠΊΡΠΎΡΠ°Ρ , ΡΠ°Π²Π΅Π½
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ (2.36) ΠΎΠ±ΡΠ΅ΠΌ ΠΏΠΈΡΠ°ΠΌΠΈΠ΄Ρ, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠΉ Π½Π° Π²Π΅ΠΊΡΠΎΡΠ°Ρ ΡΠ°Π²Π΅Π½ (Π΅Π΄ΠΈΠ½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΌΠ°)
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΡΠΉ Π²ΠΎΠΏΡΠΎΡ ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠΎ Π±Π°Π·ΠΈΡΡ. ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
ΠΏΠΎΠ»ΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ΅ΡΠ΅Π· ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ
ΠΠΈΠ½Π΅ΠΉΠ½ΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΡ, Π΅ΡΠ»ΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ (2.37) Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π²ΡΠ΅
ΠΠ°Π·ΠΈΡΠΎΠΌ n β ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° En Π½Π°Π·ΡΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² n β ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΉ Π²Π΅ΠΊΡΠΎΡ n β ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π±Π°Π·ΠΈΡΠ° ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ ΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ n , Π΅ΡΠ»ΠΈ Π² ΡΡΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈΠ· n Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² (Π±Π°Π·ΠΈΡ) ΡΠ°ΠΊΠ°Ρ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π΅Π΅ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ.