Что такое динамические измерения

Классификация и основные характеристики измерений

Классификация измерений:

1. По признаку точности — равноточные и неравноточные измерения.

Равноточные измеренияопределенное количество измерений любой величины, произведенных аналогичными по точности средствами измерений в одинаковых условиях.

Неравноточные измеренияопределенное количество измерений любой величины, произведенных отличными по точности средствами измерений и (или) в различных условиях.

Методы обработки равноточных и неравноточных измерений несколько отличаются. Поэтому перед тем как начать обработку ряда измерений, обязательно нужно проверить, равноточные измерения или нет.

Это осуществляется с помощью статистической процедуры проверки по критерию согласия Фишера.

2. По числу измерений — однократные и многократные измерения.

Однократное измерениеизмерение, произведенное один раз.

Многократное измерениеизмерение одного размера величины, результат этого измерения получают из нескольких последующих однократных измерений (отсчетов).

Во многих случаях, особенно в быту, производятся чаще всего однократные измерения. Как пример, измерение времени по часам как правило делают однократно. Однако при некоторых измерениях для убеждения в правильности результата однократного измерения может быть недостаточно. Поэтому часто и в быту рекомендуется проводить не одно, а несколько измерений. Например, ввиду нестабильности артериального давления человека при его контроле целесообразно проводить два или три измерения и за результат принимать их медиану. От многократных измерений двукратные и трехкратные измерения отличаются тем, что их точность не имеет смысла оценивать статистическими методами.

3. По характеру изменения измеряемой величины — статические и динамические измерения.

Динамическое измерениеизмерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

Статическое измерениеизмерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений — не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

4. По цели измерения — технические и метрологические измерения.

Технические измеренияизмерения с целью получения информациио свойствах материальных объектов, процессов и явлений окружающего мира.

Их производят, как пример, для контроля и управления экспериментальными разработками, контроля технологических параметров продукции или всевозможных производственных процессов, управления транспортными потоками, в медицине при постановке диагноза и лечении, контроля состояния экологии и др.

Технические измерения проводят, как правило, при помощи рабочих средств измерений. Однако нередко к проведению особо точных и ответственных уникальных измерительных экспериментов привлекают эталоны.

Метрологические измеренияизмерения для реализации единства и необходимой точности технических измерений.

• воспроизведение единиц и шкал физических величин первичными эталонами и передачу их размеров менее точным эталонам;

• калибровку средств измерений;

• измерения, производимые при калибровке или поверке средств измерений;

• другие измерения, выполняемые с этой целью (например, измерения при взаимных сличениях эталонов одинакового уровня точности) или удовлетворения других внутренних потребностей метрологии (например, измерения с целью уточнения фундаментальных физических констант и справочных стандартных сведений о свойствах материалов и веществ, измерения для подтверждения заявленных измерительных возможностей лабораторий).

Метрологические измерения проводят при помощи эталонов.

Очевидно, что продукция, предназначенная для потребления (промышленностью, сельским хозяйством, армией, государственными органами управления, населением и др.) создается с участием технических измерений. А система метрологических измерений — это инфраструктура системы технических измерений, необходимая для того, чтобы последняя могла существовать, развиваться и совершенствоваться.

5. По используемым размерам единиц — абсолютные и относительные измерения.

Относительное измерениеизмерение отношения величины к одноименной величине, занимающее место единицы. Например, относительным измерением является определение активности радионуклида в источнике методом измерения ее отношения к активности радионуклида в ином источнике, аттестованном как эталонная мера величины.

Противоположным понятием является абсолютное измерение.

При проведении этого измерения в распоряжении экспериментатора не имеется единицы измеряемой величины. По этому приходится ее воспроизводить непосредственно в процессе измерений.

Это возможно двумя способами:

• получать «непосредственно из природного мира», т.е. воспроизводить его на основе использования физических законов и фундаментальных физических констант (такое измерение в международном словаре метрологических терминов VIM [11] называется фундаментальным измерением);

• воспроизводить единицу на основании известной зависимости между нею и единицами других величин.

И связи с этим можно определить абсолютное измерение следующим образом:

Как пример, измерение силы с помощью динамометра будет относительным измерением, а ее измерение путем использования физической константы g (ускорение всемирного тяготения) и мер массы (основной величины SI) — абсолютным.

Внедрение и метрологическое обеспечение относительных измерений, как правило, являются наилучшим решением многих измерительных задач, поскольку они являются более простыми, точными и надежными, чем абсолютные измерения.

Абсолютные измерения в том смысле, которому больше соответствует понятие «фундаментальное измерение», на практике должны применяться в виде исключения. Их сфера применения — независимое воспроизведение основных единиц SI и открытие новых физических закономерностей.

6. По способу получения результата измерений — совокупные, совместные, косвенные и прямые измерения.

Прямое измерениеэто измерение, проведенное при помощи средства измерений, хранящего единицу или шкалу измеряемой величины. Как пример, измерение длины изделия штангенциркулем, электрического напряжения вольтметром и т.п.

Косвенное измерениеизмерение, когда значение величины определяют на основании результатов прямых величин, функционально связанных с искомой.

Совокупные измерения — когда проводят измерения одновременно нескольких однородных величин, когда значения этих величин находят путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

Классический пример совокупных измерений — калибровка набора гирь по одной эталонной гире, проводимая путем измерений различных сочетаний гирь этого набора,и решения полученных уравнений.

Совместные измерения — проводимые одновременно измерения двух или нескольких разнородных величин для определения зависимости между ними.

Другими словами, совместные измерения — это измерения зависимостей между величинами.

Примером совместных измерений является измерение температурного коэффициента линейного расширения (ТКЛР). Оно проводится путем одновременных измерений изменения температуры образца испытываемого материала и соответствующего приращения его длины и последующей математической обработки полученных результатов измерений.

Следует также различать область, вид и подвид измерений.

Под областью измерений понимают совокупность измерений физических величин, свойственных какой-то области техники или науки и имеющих свою специфику.

В настоящее время выделяют следующие области измерений:

• измерения пространственно-временных величин;

• механические измерения (в том числе измерения кинематических и динамических величин, механических свойств материалов и веществ, механических свойств и форм поверхностей);

• измерения теплоты (термометрия, измерения тепловой энергии, теплофизических свойств веществ и материалов);

• электрические и магнитные измерения (измерения электрических и магнитных полей, параметров электрических цепей, характеристик электромагнитных волн, электрических и магнитных свойств веществ и материалов);

• аналитические (физико-химические) измерения;

• оптические измерения (измерения величин физической оптики, когерентной и нелинейной оптики, оптических свойств веществ и материалов);

• акустические измерения (измерения величин физической акустики и акустических свойств веществ и материалов);

• измерения в атомной и ядерной физике (измерения ионизирующих излучений и радиоактивности, а также свойств атомов и молекул).

Вид измерений — это часть области измерений, которая имеет свои специфические особенности и которая отличается однородностью измеряемых величин.

Например, в области магнитных и электрических измерений возможно выделить измерения электрического сопротивления, электрического напряжения, ЭДС, магнитной индукции и т.д.

Подвид измерений — это часть вида измерений, которая выделяется спецификой измерений однородной величины (по диапазону, размеру величин, условиям измерений и др.).

Например, в измерениях длины выделяют измерения как больших длин (десятки, сотни и тысячи километров), так и малых и сверхмалых длин.

Источник

Динамические измерения

Классификация и основные характеристики измерений

Измерение физических величин

Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации) [3].

Принцип измерений — физическое явление или эффект, положенное в основу измерений.

Метод измерений — приём или совокупность приёмов сравнения

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КР-02069639-200400-18-13
Разраб.
Романов Р.И.
Руковод.
Н. Контр.
Зав. каф.
Мусин И.Н.
Проверил
Разина И.С.
Классификация и основные характеристики измерений
Лит.
Листов
КНИТУ, ТОМЛП, гр.7101-41

измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Примеры: 1.В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути, сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров детали).

2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчет [4].

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам.

1. По признаку точности — равноточные и неравноточные измерения.

Равноточные измерения — определенное количество измерений любой величины, произведенных аналогичными по точности средствами измерений в одинаковых условиях.

Неравноточные измерения — определенное количество измерений любой величины, произведенных отличными по точности средствами измерений и (или) в различных условиях.

Методы обработки равноточных и неравноточных измерений несколько отличаются. Поэтому перед тем как начать обработку ряда измерений, обязательно нужно проверить, равноточные измерения или нет.

Это осуществляется с помощью статистической процедуры проверки по критерию согласия Фишера.

2. По числу измерений — однократные и многократные измерения.

Однократное измерение — измерение, произведенное один раз.

Во многих случаях, особенно в быту, производятся чаще всего однократные измерения. Как пример, измерение времени по часам как правило делают однократно. Однако при некоторых измерениях для убеждения в правильности результата однократного измерения может быть недостаточно. Поэтому часто и в быту рекомендуется проводить не одно, а несколько измерений. Например, ввиду нестабильности артериального давления человека при его контроле целесообразно проводить два или три измерения и за результат принимать их медиану. От многократных измерений двукратные и трехкратные измерения отличаются тем, что их точность не имеет смысла оценивать статистическими методами.

3. По характеру изменения измеряемой величины — статические и динамические измерения.

Динамическое измерение — измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой

величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КР-02069639-200400-18-13
Романов Р.И.

Статическое измерение — измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на

протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали.

4. По цели измерения — технические и метрологические измерения.

Технические измерения— измерения с целью получения информации о

свойствах материальных объектов, процессов и явлений окружающего мира.

Их производят, как пример, для контроля и управления экспериментальными разработками, контроля технологических параметров продукции или всевозможных производственных процессов, управления транспортными потоками, в медицине при постановке диагноза и лечении, контроля состояния экологии и др.

Что такое динамические измерения. Смотреть фото Что такое динамические измерения. Смотреть картинку Что такое динамические измерения. Картинка про Что такое динамические измерения. Фото Что такое динамические измерения

Технические измерения проводят, как правило, при помощи рабочих средств измерений. Однако нередко к проведению особо точных и ответственных уникальных измерительных экспериментов привлекают эталоны.

Метрологические измерения— измерения для реализации единства и необходимой точности технических измерений.

• воспроизведение единиц и шкал физических величин первичными эталонами и передачу их размеров менее точным эталонам;

• калибровку средств измерений;

• измерения, производимые при калибровке или поверке средств измерений;

• другие измерения, выполняемые с этой целью (например, измерения при взаимных сличениях эталонов одинакового уровня точности) или удовлетворения других внутренних потребностей метрологии (например,

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КР-02069639-200400-18-13
Романов Р.И.

измерения с целью уточнения фундаментальных физических констант и справочных стандартных сведений о свойствах материалов и веществ, измерения для подтверждения заявленных измерительных возможностей лабораторий).

Метрологические измерения проводят при помощи эталонов.

Очевидно, что продукция, предназначенная для потребления (промышленностью, сельским хозяйством, армией, государственными органами управления, населением и др.) создается с участием технических измерений. А система метрологических измерений — это инфраструктура системы технических измерений, необходимая для того, чтобы последняя могла

существовать, развиваться и совершенствоваться.

5. По используемым размерам единиц — абсолютные и относительные

Относительное измерение — измерение отношения величины к одноименной величине, занимающее место единицы. Например, относительным измерением является определение активности радионуклида в источнике методом измерения ее отношения к активности радионуклида в ином источнике, аттестованном как эталонная мера величины.

6. По способу получения результата измерений — совокупные, совместные, косвенные и прямые измерения.

Прямое измерение— это измерение, проведенное при помощи средства измерений, хранящего единицу или шкалу измеряемой величины. Как пример, измерение длины изделия штангенциркулем, электрического напряжения вольтметром и т.п.

Косвенное измерение— измерение, когда значение величины определяют на основании результатов прямых величин, функционально связанных с искомой.

Совокупные измерения — когда проводят измерения одновременно нескольких однородных величин, когда значения этих величин находят путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

Классический пример совокупных измерений — калибровка набора гирь по одной эталонной гире, проводимая путем измерений различных сочетаний гирь этого набора, и решения полученных уравнений.

Совместные измерения — проводимые одновременно измерения двух или нескольких разнородных величин для определения зависимости между ними.

Примером совместных измерений является измерение температурного коэффициента линейного расширения (ТКЛР). Оно проводится путем одновременных измерений изменения температуры образца испытываемого материала и соответствующего приращения его длины и последующей математической обработки полученных результатов измерений.

Следует также различать область, вид и подвид измерений.

Под областью измерений понимают совокупность измерений физических величин, свойственных какой-то области техники или науки и имеющих свою специфику.

В настоящее время выделяют следующие области измерений:

• измерения пространственно-временных величин;

• механические измерения (в том числе измерения кинематических и динамических величин, механических свойств материалов и веществ, механических свойств и форм поверхностей);

• измерения теплоты (термометрия, измерения тепловой энергии, теплофизических свойств веществ и материалов);

• электрические и магнитные измерения (измерения электрических и магнитных полей, параметров электрических цепей, характеристик электромагнитных волн, электрических и магнитных свойств веществ и

• аналитические (физико-химические) измерения;

• оптические измерения (измерения величин физической оптики, когерентной и нелинейной оптики, оптических свойств веществ и материалов);

• акустические измерения (измерения величин физической акустики и акустических свойств веществ и материалов);

• измерения в атомной и ядерной физике (измерения ионизирующих излучений и радиоактивности, а также свойств атомов и молекул).

Вид измерений — это часть области измерений, которая имеет свои специфические особенности и которая отличается однородностью измеряемых величин.

Например, в области магнитных и электрических измерений возможно выделить измерения электрического сопротивления, электрического напряжения, ЭДС, магнитной индукции и т.д.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КР-02069639-200400-18-13
Романов Р.И.

Подвид измерений — это часть вида измерений, которая выделяется спецификой измерений однородной величины (по диапазону, размеру величин, условиям измерений и др.).

Например, в измерениях длины выделяют измерения как больших длин (десятки, сотни и тысячи километров), так и малых и сверхмалых длин.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КР-02069639-200400-18-13
Разраб.
Романов Р.И.
Руковод.
Н. Контр.
Зав. каф.
Мусин И.Н.
Проверил
Разина И.С.
Динамические измерения
Лит.
Листов
КНИТУ, ТОМЛП, гр.7101-41

Глава 2. Статические и динамические измерения физических величин

Динамическое измерение — измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени.

Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени [6].

Признаком, по которому измерение относят к статическому или динамическому, является динамическая погрешность при данной скорости или частоте изменения измеряемой величины и заданных динамических свойствах СИ. Предположим, что она пренебрежимо мала (для решаемой измерительной задачи), в этом случае измерение можно считать статическим. При невыполнении указанных требований оно является динамическим.

Статические и динамические погрешности относятся к погрешностям

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КР-02069639-200400-18-13
Разраб.
Романов Р.И.
Руковод.
Н. Контр.
Зав. каф.
Мусин И.Н.
Проверил
Разина И.С.
Статические измерения
Лит.
Листов
КНИТУ, ТОМЛП, гр.7101-41

результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *