Что такое дифференцированный ток
Дифференциальный ток: что это такое, определение, особенности, виды
Дифференциальный ток ( IΔ ) [residual current] (для устройства дифференциального тока) — это среднеквадратическое значение векторной суммы токов, протекающих через главную цепь устройства дифференциального тока [пункт 20.6, 1].
Примечание — Поскольку через главную цепь любого устройства дифференциального тока проходит не менее двух проводников, в главной цепи УДТ протекает не менее двух электрических токов.
Дифференциальный ток ( IΔ ) [residual current] (для электрической цепи) — это алгебраическая сумма значений электрических токов во всех проводниках, находящихся под напряжением, в одно и то же время в данной точке электрической цепи в электрической установке [пункт 20.7, 1].
Вышеприведенное примечание из пункта 20.7 ГОСТ 30331.1-2013 [1] очень грамотно, на мой взгляд, прокомментировал Харечко Ю.В. в своей книге [2]:
« Это примечание устанавливает эквивалентность между дифференциальными токами для УДТ и защищаемой им электрической цепи. Продекларированное равенство дифференциальных токов возможно только в тех электрических цепях переменного тока, в состав которых входят фазные и нейтральный проводники. Однако, учитывая запрет на применение PEN-проводников в электроустановках жилых и общественных зданий, торговых предприятий и медицинских учреждений, указанная эквивалентность будет распространяться на большинство вновь монтируемых и реконструируемых электроустановок зданий. Поскольку подавляющая часть электрических цепей в существующих электроустановках зданий выполнена проводниками, имеющими сечение меньше минимально допустимого сечения PEN-проводника – 10 мм 2 для медного и 16 мм 2 для алюминиевого, эти электрические цепи состоят только из фазных и нейтральных проводников. »
Дифференциальный ток не является электрическим током. Поэтому он не может представлять никакой опасности для человека.
Особенности для электрических цепей.
Далее Харечко Ю.В. рассказывает на примерах, чему равен дифференциальных ток:
Особенности для устройства дифференциального тока.
Обратимся к книге [2], в которой её автор Харечко Ю.В. определил основной фактор воздействующий на УДТ следующим образом:
« Основным фактором, воздействующим на устройство дифференциального тока и инициирующим его оперирование, является дифференциальный ток, который определен в нормативной документации как действующее значение векторной суммы токов, протекающих в главной цепи УДТ. Для определения дифференциального тока УДТ оснащено дифференциальным трансформатором, принцип действия которого проиллюстрирован на рис. 1. »
Дифференциальный трансформатор двухполюсного устройства дифференциального тока имеет две первичные обмотки, выполненные двумя проводниками главной цепи УДТ, и одну вторичную обмотку, к которой подключен расцепитель дифференциального тока.
« Под расцепителем дифференциального тока понимают расцепитель, вызывающий срабатывание УДТ с выдержкой времени или без нее, когда дифференциальный ток превышает заданное значение. »
Рассмотрим нормальные условия оперирования электрической цепи, когда отсутствуют какие-либо повреждения основной изоляции опасных частей, находящихся под напряжением. Через главную цепь УДТ не протекает ток замыкания на землю, поскольку в электрической цепи нет замыкания на землю.
В обоих проводниках главной цепи устройства дифференциального тока протекают электрические токи, равные по своему абсолютному значению току нагрузки Iн (смотрите примечание 1 ниже). То есть электрические токи I1 и I2, протекающие в первичных обмотках дифференциального трансформатора, равны между собой по абсолютному значению:
« Примечание 1. При отсутствии тока утечки. Если в электрической цепи протекает ток утечки, электрические токи, протекающие в фазном и нейтральном проводниках главной цепи УДТ, отличаются друг от друга приблизительно на величину тока утечки. »
Поскольку электрические токи, протекающие в главной цепи УДТ, направлены навстречу друг другу, их векторная сумма равна нулю.
Магнитные потоки Ф1 и Ф2, создаваемые электрическими токами I1 и I2 в сердечнике дифференциального трансформатора, также направлены навстречу друг другу и равны между собой по абсолютному значению. Поскольку указанные магнитные потоки взаимно компенсируют друг друга, суммарный магнитный поток в сердечнике дифференциального трансформатора равен нулю.
Следовательно, абсолютная величина электрического тока, который может протекать в электрической цепи, подключенной к вторичной обмотке дифференциального трансформатора, также будет равна нулю:
Поэтому в нормальных условиях расцепитель дифференциального тока не может инициировать срабатывание УДТ, которое, в свою очередь, не отключает присоединенные к нему внешние электрические цепи.
Рассмотрим оперирование электрической цепи в условиях повреждения основной изоляции опасной части, находящейся под напряжением и ее замыкания на землю, когда через главную цепь УДТ протекает ток замыкания на землю.
В условиях повреждения по одному из проводников главной цепи УДТ помимо тока нагрузки Iн протекает ток замыкания на землю IEF. Поэтому абсолютное значение электрического тока, протекающего в одной из первичных обмоток дифференциального трансформатора, превышает абсолютное значение электрического тока, который протекает в другой его первичной обмотке:
Следовательно, векторная сумма электрических токов, протекающих в главной цепи УДТ, будет отлична от нуля.
Магнитные потоки Ф1 и Ф2 в сердечнике дифференциального трансформатора, прямо пропорциональные электрическим токам I1 и I2, не равны между собой по абсолютному значению. Они не могут компенсировать друг друга. Поэтому суммарный магнитный поток в сердечнике дифференциального трансформатора отличен от нуля.
Следовательно, абсолютная величина электрического тока, который протекает в электрической цепи, подключенной к вторичной обмотке дифференциального трансформатора, также не равна нулю:
Поэтому в указанных условиях расцепитель дифференциального тока сработает под воздействием электрического тока Iр, побуждая устройство дифференциального тока разомкнуть свои главные контакты и отключить присоединенные к нему внешние электрические цепи.
Харечко Ю.В. подчеркивает особенности функционирования трехполюсных и четырехполюсных УДТ [2]:
« В трехфазных трехпроводных электрических цепях применяют трехполюсные устройства дифференциального тока, а в трехфазных четырехпроводных электрических цепях – четырехполюсные УДТ, которые оснащены дифференциальными трансформаторами, имеющими соответственно три и четыре первичные обмотки. Эти дифференциальные трансформаторы функционируют так же, как и дифференциальный трансформатор двухполюсного УДТ. Векторные суммы электрических токов, протекающих в главных цепях УДТ, они определяют с учетом запаздывания и опережения по фазе электрических токов в проводниках разных фаз, подключенных к УДТ. »
Таким образом, посредством определения дифференциального тока выполняют обнаружение и оценку тока замыкания на землю, например, через тело человека, прикоснувшегося к фазному проводнику. От токов замыкания на землю защищают и людей, и электроустановки зданий.
При замыкании на землю какой-либо токоведущей части дифференциальный ток практически равен току замыкания на землю. В нормальных условиях дифференциальный ток приблизительно равен току утечки, протекающему в электрической цепи.
Виды дифференциальных токов
Все многообразие дифференциальных токов, которые могут возникнуть в главной цепи устройства дифференциального тока бытового назначения, в стандартах ГОСТ IEC 61008-1-2020 [3] и ГОСТ IEC 61009-1-2020 [4] сведено к следующим двум видам: синусоидальному дифференциальному току и пульсирующему постоянному дифференциальному току.
Харечко Ю.В. в своей книге [2], на мой взгляд, максимально простым языком расписал особенности этих 2 видов дифференциального тока. Приведу основные цитаты:
« Синусоидальный дифференциальный ток имеет место в тех случаях, когда в электрических цепях переменного тока, которые подключены к устройству дифференциального тока, не применяют выпрямители, светорегуляторы, регулируемые электроприводы и аналогичные им устройства, существенно изменяющие форму синусоидального тока. Ток утечки и ток замыкания на землю в таких электрических цепях имеют форму, близкую к синусоиде. Такую же синусоидальную форму имеет и дифференциальный ток (рис. 2).
Рис. 2. Синусоидальный ток частотой 50 Гц (на основе рисунка 2 из [2] автора Харечко Ю.В.)
При использовании в электроустановках зданий выпрямителей, светорегуляторов, регулируемых электроприводов и аналогичных им устройств форма синусоидального тока в электрических цепях может существенно изменяться.
Если в каком-то электроприемнике в качестве дискретного регулятора потребляемой им мощности использован диод, в случае повреждения основной изоляции токоведущей части, подключенной после диода, может возникнуть ток замыкания на землю, который будет протекать только в течение половины периода (180° или 10 мс). Такой электрический ток в стандартах ГОСТ IEC 61008-1-2020 и ГОСТ IEC 61009-1-2020 назван пульсирующим постоянным током. Протекание пульсирующего постоянного тока в главной цепи устройства дифференциального тока существенно изменяет его характеристики по сравнению с синусоидальным током.
В электроустановках жилых зданий применяют большое число электроприемников, имеющих встроенные выпрямители. Все они характеризуются небольшими постоянными токами утечки, которые могут создавать суммарный (фоновый) постоянный ток утечки, протекающий через главную цепь устройства дифференциального тока. Протекание даже малого постоянного тока через первичную обмотку дифференциального трансформатора УДТ существенно изменяет (ухудшает) его характеристики. Поэтому в стандартах ГОСТ IEC 61008-1-2020 и ГОСТ IEC 61009-1-2020 учтена возможность протекания небольшого постоянного тока через главную цепь устройства дифференциального тока.
Пульсирующий постоянный ток определен в международных и национальных стандартах как волнообразные импульсы электрического тока длительностью (в угловой мере) не менее 150° за один период пульсации, следующие периодически с номинальной частотой и разделенные промежутками времени, в течение которых электрический ток принимает нулевое значение или значение, не превышающее 0,006 А постоянного тока.
Пульсирующий постоянный ток характеризуют также углом задержки тока, под которым понимают промежуток времени в угловой величине, в течение которого устройство фазового управления задерживает момент протекания электрического тока в электрической цепи. На рис. 3 и 4 показан пульсирующий постоянный ток при углах задержки тока α, равных 0°, 90° и 135°.
Рис. 3. Пульсирующий постоянный ток частотой 50 Гц без составляющей постоянного тока (на основе рисунка 3 из [2] автора Харечко Ю.В.) Рис. 4. Пульсирующий постоянный ток частотой 50 Гц с составляющей постоянного тока до 0,006 А включительно ((на основе рисунка 4 из [2] автора Харечко Ю.В.)
Появление в главной цепи устройства дифференциального тока пульсирующего постоянного тока существенно изменяет характеристики УДТ. Устройства дифференциального тока типа АС, которые рассчитаны на работу только при синусоидальном токе, не могут корректно функционировать при появлении пульсирующего постоянного тока. Поэтому в некоторых странах их применение в электроустановках зданий запрещено или существенно ограничено. Устройства дифференциального тока типа АС заменяют более современными УДТ типа A, которые предназначены для применения и при синусоидальном, и при пульсирующем постоянном токе.
В 2016 году был введен в действие ГОСТ IEC 62423-2013, который распространяется на УДТ типа F и типа B бытового назначения. УДТ типа F предназначены для защиты электрических цепей, к которым подключены частотные преобразователи. Они оперируют так же, как УДТ типа A, и дополнительно:
Устройства дифференциального тока типа B оперируют так же, как УДТ типа F, и дополнительно:
Таким образом, самые современные УДТ типа B корректно оперируют в электрических цепях переменного тока при протекании в них токов замыкания на землю различных форм, начиная от синусоидального тока частотой 50 Гц и заканчивая постоянным током. »
Что такое дифференциальный ток
Нередко возникают такие ситуации, когда происходит утечка электрического тока из цепи, не имеющей повреждений, какими-либо токопроводящими путями. Это явление известно, как дифференциальный ток, существующий при определенных условиях.
Свойства и причины дифференциального тока
Протекание тока не может происходить просто по воздуху, необходимо обязательное наличие электрического проводника. В большинстве случаев, в роли такого проводника выступает тело человека. Дифференциальный ток появляется в тех случаях, когда пробита изоляция кабеля или провода, при их некачественном соединении. В результате, когда происходит контакт тела с токопроводящими частями, существует реальная возможность получения серьезных электротравм, которые нередко приводят к летальному исходу.
Нормальная работа сети обеспечивается упорядоченным потоком электронов, передвигающихся по жилам в разные стороны, обеспечивая нулевую разницу силы тока в обеих проводах. При аварийном пробое, проводник замыкается на корпус, проводящий ток. Во время прикосновения происходит образование новой электрической цепи, где тело человека становится ее частью, после чего, начинает протекать дифференциальный ток.
Таким образом, в проводах возникает разница токов, равная величине уходящего тока. Основной причиной этого явления считается нарушение изоляции.
Борьба с дифференциальными токами
Дифференциальный ток, по своей природе, всегда являлся отрицательным фактором. Возникают негативные последствия, начиная от элементарных потерь электроэнергии и заканчивая возникновением пожаров.
Борьба с этим явлением успешно ведется с помощью специальных электротехнических устройств, представляющих собой дифференциальную защиту. Эти устройства оборудованы датчиком в виде дифференциального трансформатора, осуществляющего слежение за входящими и выходящими токами. При нормальном режиме работы в равном значении тока в проводах, никаких утечек не происходит.
При возникновении утечки, отслеживающая обмотка датчика зафиксирует разницу напряжения, передаваемого тому или иному устройству. В этом случае происходит срабатывание защиты и разрыв контактов между потребителем и источником электрической энергии. Далее происходит аварийное отключение, благодаря которому предотвращаются все негативные последствия.
Чтобы избежать подобных ситуаций, необходимо следить за состоянием электрических сетей, своевременно проводить их ремонт и обслуживание.
Дифференциальные токи электрической цепи
Что такое дифференциальные токи электрической цепи
Чтобы понять, что такое дифференциальный ток, ответим на другой вопрос, почему нас не бьет электрическим током. Ответ кажется простым, потому что, все жилы проводов покрытии изолирующими материалами. Этот так, но если вы встанете на изолирующий коврик и коснетесь токоведущей жилы, вас ударит током? Нет, не ударит. Почему? Потому, что коврик не дает замкнуться электрической цепи от токопроводящей жилы, через вас в землю.
Дифференциальный ток, это не физический процесс, а значение векторной суммы токов в цепи в среднеквадратичном значении. Часто, дифференциальный ток называют током повреждения. Физический процесс, который приводит к появлению дифференциального тока в цепи, называют утечкой тока.
При появлении тока утечки, дифференциальный ток может не появляться. Например, по каким либо причинам, появился ток утечки на металлический корпус стиральной машины, но корпус машины не заземлен и электрически изолирован, значит, дифференциального тока в цепи нет. Человек, касается корпуса стиральной машины и своим телом замыкает электрическую цепь, по которой и потечет дифференциальный ток, являющийся проявлением тока утечки. Если бы корпус стиральной машины был изначально заземлен, то сразу после появления тока утечки, появился дифференциальный ток, через корпус на землю, а УЗО отключило цепь от электропитания.
В чем разница между током утечки и дифференциальным током
Фактической разницы между током утечки и дифференциальным током электрической цепи нет. Дело в применении определений и понятий. Понятие ток утечки, относится к названию тока, который стекает с токоведущих частей цепи (жилы проводов, шины) на токопроводящие элементы цепи (металлические корпуса, трубы). Причем, в отличие от тока короткого замыкания, утечка тока происходит без явного повреждения цепи. Понятие дифференциальный ток, относится к физическим величинам и определяет действующее значение векторной суммы токов в цепи, где установлено УЗО (ВТД).
УЗО и ВДТ это разные аббревиатуры одного и того же устройства. УЗО – устройство защитного отключения (по МЭК RSD), ВДТ – выключатель дифференциального тока (по ГОСТ Р. 51326.1).
Появление тока утечки в цепи, не означает безусловное появление дифференциального тока. Для его появления, нужно замкнуть цепь корпуса на землю.
Стоит отметить, что часто на практике, дифференциальный ток называют током утечки, а ток утечки называют дифференциальным током.
Вывод
Появление в цепи токов утечки выражается в появлении дифференциальных токов повреждения цепи. Математически дифференциальные токи электрической цепи это разница (векторная) между токами от источника тока (выходной ток), и токами после приемника (обратный ток).
дифференциальные токи электрической цепи
Что такое отключающий дифференциальный ток
Отключающий дифференциальный ток, он же ток срабатывания, это значение дифференциального тока повреждения приводящего отключение УЗО (ВДТ).
Что такое неотключающий дифференциальный ток
Неотключающий дифференциальный ток, он же ток не срабатывания, значение дифференциального тока, допустимое в данной цепи и не приводящее к отключению УЗО (ВДТ).
На самом деле в цепях, где есть импульсные устройства, выпрямители, цифровые дискретные устройства регулирующие мощность, а это все современные бытовые приборы, есть фоновое значение дифференциальных токов (импульсных). Импульсные дифференциальные токи нельзя относить к токам повреждения, это рабочий фон. Именно поэтому все устройства защитного отключения имеют определенное значение тока срабатывания, ниже которого устройство срабатывать не будет.
Особенности дифференциального тока
Дифференциальный ток — тот, который проявляется утечкой при ситуации с отсутствием видимых повреждений на токопроводящих путях. Более подробная информация об определении, типе срабатывания по дифференциальному току, характеристиках, принципе работе и области применения далее.
Что это такое
Это векторная сумма токов в среднем квадратичном значении или физический процесс, приводящий к токовой утечке. Стоит отметить также, что это алгебраическое суммарное токовое значение всех токоведущих проводников, работающих в определенный период времени в электроцепи.
Обратите внимание! Согласно еще одному понятию дифференциального тока — это то, что видит устройство защитного отключения в сети или датчик и предотвращает из-за разрушительного воздействия на все электроприборы.
Характеристики
Номинальный отключающий дифференциальный ток имеет свою силу, напряжение, время действия, признаки появления и распространения. Кроме того, он обладает разрушительным действием. Это все, что можно причислить к характеристикам. Стоит указать, что для того чтобы он начал проникать в сеть или на тело человека, нужен проводник. Им может выступать как сам человек, так и энергия из пробитой кабельной изоляции или некачественного соединения провода.
Что касается вредного воздействия, то дифференциальный электроток приводит к образованию микротравм, летальному исходу и повреждению электрооборудования. Нормальная сетевая работа гарантируется с помощью упорядоченного потока электронов, которые двигаются по жилам и обеспечивают нулевую токовую силу в обоих проводниках.
Признаки или характеристика электротока
Как работает
Дифференциальный ток появляется благодаря свободным носителям и электрическому полю, появляющемуся при пробитой кабельной изоляции или некачественном проводном соединении. Движется по электрической проводке или полупроводниковым элементам в виде светодиодов и процессора. При этом проводником может выступать металл, а полупроводником — элемент кремния, германия, галия и прочего.
Какой номинальный ток отключения
Номинальным током отключения является то токовое значение, которое может быть выключено выключателем, если оно равно наибольшему значению рабочего напряжения. Это значение при сетевом коротком замыкании, которое отключает предохранитель. Как правило, эта цифра указывается на упаковке к дифференциальному автоматическому выключателю.
Область появления тока
Физиками точно не дано понятия дифференциального токового значения, поэтому оно максимально приближено к понятию короткого замыкания. Оно, в свою очередь, возникает из-за высокого напряжения, плохой изоляции электрических элементов, внешнего механического воздействия, наличия посторонних предметов в электрических проводниках и прямом ударе молнии. Появляется подобное явление, как в домашней, так и производственной сети. Сопровождается искрами, неприятным запахом и порчей электрооборудования.
Защита от дифференциального тока
Защититься от перенапряжения и всех неприятных признаков испорченной электропроводки и сети можно при помощи дифференциального автоматического выключателя или устройства защитного отключения. Оба они предназначены, для того чтобы защитить пользователей от поражения электротоком. Могут срабатывать при коротком замыкании. Как правило, работа первых аппаратов нацелена на устранения последствий при прямом соприкосновении, а работа вторых направлена на уничтожения неприятных ситуаций при косвенном соприкосновении электроэнергии.
То есть, в первом случае устройства непосредственно защищают человека от поражения электроэнергией, а во втором случае аппараты защищают электрооборудование и, тем самым, самого человека. Оба аппарата пропускают через себя напряжение и выдают нормальное токовое значение на выходе. Работают как с переменным, так и с постоянным электротоком. Бывают как однофазными, так и двух- и трехфазными.
Обратите внимание! Стоит указать, что по-другому защититься можно, делая правильно электропроводку и внимательно отслеживая работу сети.
В целом, дифференциальный ток — энергия, попадающая в землю или в иные токопроводящие элементы в электроцепи, не имеющей повреждений. Принцип работы основан на наличии электропроводника. Появляется он постоянно в результате электропробоя кабельного изоляционного диэлектрика. Защититься от него можно применением устройств дифференциальной защиты.
Чтобы током не убило. Всё про УЗО
Попробуем снова объять необъятное одним постом? На этот раз рассказ будет про УЗО.
У этого поста есть видеоверсия, для тех, кто любит слушать и смотреть:
Тысячи разобранных случаев, когда кто-то был убит электричеством, позволили инженерам выяснить некоторые закономерности и предпринять меры. А именно:
Выяснилось, что случаев смерти, когда человек умер от общения с напряжениями менее 50В почти нет. Низкое напряжение (с кучей оговорок) вполне себе безопасно. Кто лизал крону в детстве для определения заряда?) Использование низкого напряжения (12В, 24В, 36В и т.д.) хоть и дает практически полную безопасность, например в бассейне, для повсеместного использования не подходит. Если бы мы жили в альтернативной вселенной, где в домах вместо 230В всего 12В, то чайник бы кушал не 16А тока, а почти 300А, и подключался бы в розетку толстенным кабелем. А все потому что при снижении напряжения придется повышать ток, чтобы мощность прибора оставалась прежней. А большой ток требует толстых кабелей.
Ну и наконец, усреднив индивидуальные особенности, составили вот такой график зависимости силы тока, времени воздействия и последствий для человека. Да простят меня авторы, я его немного упростил для понимания:
UPD: картинка исправлена
Защита все-таки нужна
Поставим себя на место инженеров начала 20 века и попробуем изобрести устройство обнаружения дифференциального тока. Нам нужно обнаружить появление утечки величиной 30 мА, поскольку при меньших утечках, даже если она проходит через человека, особой опасности для жизни нет.
Возвращаемся в реальный мир. Почему могут быть ложные срабатывания
Ошибка монтажа, и где-то (например в одном из подрозетников) присутствует соединение рабочего нейтрального проводника N и заземляющего PE, или они перепутаны.
Противопожарные УЗО? Они все противопожарные!
Если открыть каталог производителей, можно заметить, что УЗО выпускаются на разные дифференциальные токи. Если с причиной выбора тока в 30 мА все понятно, с 10 мА тоже в принципе можно догадаться (еще более чувствительные устройства для более чуткой защиты), то зачем нужны устройства с током 100 мА и даже 300 мА? Человек же при таких токах умрет!
Такие УЗО часто называют «противопожарными», так как в силу большого дифференциального тока защиту человека от поражения электрическим током они обеспечивают слабо, а вот функцию защиты при повреждении изоляции все еще выполняют. Если изоляция будет нарушена и при контакте с другим проводником загорится электрическая дуга, то начнется обугливание изоляции и выделение тепла, что может поджечь горючие материалы вокруг. Если вам «повезет», и ток в дуге будет небольшим, то автоматический выключатель не сработает. А вот выделение тепла и температура могут быть достаточными для пожара. Конечно, потом огонь нарушит изоляцию, произойдет короткое замыкание и автоматический выключатель сработает, только огонь это уже не погасит.
Да будет срач!
Когда нельзя никому доверять
Производители некоторых устройств не могут полагаться, что покупатель адекватен и в его электрощите есть защита, поэтому добавляют свою.
В виде персонального УЗО для устройства в вилке или в виде коробочки на шнуре. Если покупатель подключит бойлер пластиковыми трубами, корпус не заземлит, то при потере герметичности ТЭНа электричество по воде в трубах и пойдет через человека в заземленную ванну. Такое УЗО защищает конкретно одно устройство, и в некоторых странах существуют нормативы, обязывающие добавлять УЗО на некоторые типы устройств. Как вы можете заметить, устройство также содержит кнопочку «тест» для проверки работоспособности защиты.
УЗО или диффавтомат? (ВДТ или АВДТ?)
Оно лишает гибкости проектировщиков, например поставить одно УЗО и несколько автоматов или наоборот, несколько УЗО и один автомат.
Оно усложняет поиск неисправности, так как обычно отсутствует индикация и сложно понять, почему оно отключилось (варианты: сработал тепловой расцепитель, электромагнитный расцепитель или электромагнит от дифференциального тока)
Запихивание нескольких устройств в компактный корпус всегда заставляет разработчиков идти на компромиссы.
На мой личный взгляд применение АВДТ оправдано только при апгрейде электрощитка, когда места внутри нет, а дифф. защиту хочется. Тогда можно вынуть автоматические выключатели шириной один модуль и воткнуть АВДТ шириной один модуль, и перекоммутировать провода. Щиток в таком случае расширять не придется. В остальных случаях, по моему мнению, предпочтительнее комбинация УЗО+автоматический выключатель.
Я умер. Почему УЗО не спасло?
Резюме
УЗО служит для защиты человека от поражения электрическим током, и отключится при опасных для жизни значениях тока утечки. При небольших, но неопасных токах вас будет щипать электричеством.
УЗО работает вне зависимости от наличия заземления, с той лишь разницей, что без заземления, при пробое на корпус УЗО отключится только когда ток с корпуса сможет утечь в землю через вас.
УЗО не панацея, и можно убиться, взяв в руки провода фазы и ноля. Но вариантов защиты лучше УЗО все равно не придумали.
Расширить и углубить
Если изложенной в посте информации вам мало (мое уважение!), то вот что стоит почитать:
В.К. Монаков УЗО. Теория и практика Москва, Издательство «Энергосервис», 2007 г.
Выжимка нормативных документов имеющих отношение к УЗО. Там же есть еще один документ заслуживающий внимания (http://www.uzo.ru/books/uzo.pdf)