Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… расчётов Π² исслСдованиях, ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ, Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… ΠΏΡƒΡ‚Ρ‘ΠΌ Π΄Π°Π½Π½Ρ‹Ρ… часто Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠΊΠΈΠ΄ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½Ρ‹Π΅ вычислСния, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Π΅ с Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ, ΠΌΠΎΠ³ΡƒΡ‚ Π΄Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ направлСния дальнСйшСго изучСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ ΠΈΡ… Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΎΠΊ.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΈ гСомСтричСский смысл Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡƒΡΡ‚ΡŒ y = f (x) ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ свойства ΠΏΡ€Π΅Π΄Π΅Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ равСнство

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ПослС умноТСния ΠΎΠ±Π΅ΠΈΡ… частСй Π½Π° ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x, образуСтся тоТдСство:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π² ΠΏΡ€Π°Π²ΠΎΠΉ части записано слагаСмоС, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ бСсконСчно ΠΌΠ°Π»ΠΎΠΉ ΠΎΠ΄Π½ΠΎΠ³ΠΎ порядка с Ξ”x, Π΄Π°Π»Π΅Π΅ ΠΈΠ΄Π΅Ρ‚ слагаСмоС Π±ΠΎΠ»Π΅Π΅ высокого порядка.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 1

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f (x) ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка называСтся главная Ρ‡Π°ΡΡ‚ΡŒ Π΅Ρ‘ приращСния fβ€²(x)Ξ”x, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ dy (ΠΈΠ»ΠΈ d(f(x)).

Для наглядного прСдставлСния ΠΈ понимания опрСдСлСния рассматриваСтся ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x. Когда Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ сдвигаСтся ΠΏΠΎ построСнной прямой (ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅) Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠ°Π»ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ξ”x, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚ΠΎΠΆΠ΅ мСняСтся.

Π—Π½Π°Ρ‡ΠΈΡ‚, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, ΠΊΠΎΠ³Π΄Π° Π΅Ρ‘ абсцисса мСняСтся Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ξ”x.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 2

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΎΡ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка. Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ вводятся понятия Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² Π±ΠΎΠ»Π΅Π΅ высоких порядков.

Π€ΠΎΡ€ΠΌΡ‹ записи Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°

Для нахоТдСния Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ y = x, учитывая, Ρ‡Ρ‚ΠΎ x’ = 1, Π°, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ:

ΠžΡ‚ΡΡŽΠ΄Π° получаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Для Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка вводится ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ d 2 y.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Бвойства Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Ρ‚Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ свойства Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ², Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, для суммы, произвСдСния, частного ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Одним ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… свойств являСтся ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ (Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ) Ρ„ΠΎΡ€ΠΌΡ‹ записи, нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, являСтся Π»ΠΈ функция элСмСнтарной ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠ΅ΠΉ элСмСнтарных (слоТной). ЀактичСски,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡

Π—Π°Π΄Π°Ρ‡Π° β„–1

Найти Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π—Π°Π΄Π°Ρ‡Π° β„–2

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π’ ΠΏΠΎΠΌΠΎΡ‰ΡŒ студСнтам создан ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ввСсти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Π½Π°ΠΆΠ°Ρ‚ΡŒ ΠΊΠ½ΠΎΠΏΠΊΡƒ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°.

Если dx Π΅ΡΡ‚ΡŒ константа, Ρ‚ΠΎ для Π²Ρ‹ΡΡˆΠΈΡ… порядков ΠΈΠΌΠ΅Π΅Ρ‚ мСсто ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π­Ρ‚ΠΎΡ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ нСпосрСдствСнно ΠΈΠ· опрСдСлСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π—Π°Π΄Π°Ρ‡Π° β„–3

Найти d 2 y, Ссли y = cos2x ΠΈ x – нСзависимая пСрСмСнная.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Если x – функция ΠΎΡ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΄Ρ€ΡƒΠ³ΠΎΠΉ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ‚ΠΎ свойство инвариантности пСрСстаёт Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π—Π°Π΄Π°Ρ‡Π° β„–4

Найти d 2 y, Ссли y = x 2 ΠΈ x = t 3 + 1, t – нСзависимый Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

НСтрудно Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ y Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· t, Ρ‚ΠΎ получится Ρ‚ΠΎΡ‚ ΠΆΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚.

с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ точности ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ любой Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ зависимости.

Раскрыв Ξ”y, сдСлав ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ прСобразования, приходят ΠΊ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½Ρ‹Ρ… вычислСний:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π—Π°Π΄Π°Ρ‡Π° β„–5

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½ΠΎ arctg1,05.

ΠŸΡƒΡΡ‚ΡŒ f(x) = arctg x. Π’ΠΎΠ³Π΄Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΠΎΠ»Π½Ρ‹ΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° Π½Π΅ ограничиваСтся мноТСством Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΠ΄Π½ΠΎΠ³ΠΎ нСзависимого Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ зависимости ΠΎΡ‚ Π΄Π²ΡƒΡ… ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡ…ΠΎΠΆΠΈ, отличаСтся Π²ΠΈΠ΄ Π³Π»Π°Π²Π½ΠΎΠΉ части. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ нСсколько слагаСмых.

НапримСр, Ссли z = f(x;y) Ρ‚ΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ПослСднСС равСнство Π΅ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°. Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… сохраняСтся ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ построСния.

Если Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ приращСния Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ‚ΠΎ приходят ΠΊ ΠΏΠΎΠ½ΡΡ‚ΠΈΡŽ частных Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ².

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

Π’Ρ‹ΡΡˆΠ°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° позволяСт Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½ΠΎ ΠΎΠ±Ρ‰ΠΈΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ систСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ исчислСниСм, Π΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠΊΠΈΠ΄ΠΊΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜ΠΠ›

— главная линСйная Ρ‡Π°ΡΡ‚ΡŒ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

1) Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ функция y = f )Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π°Π·. Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…, Ссли ΠΎΠ½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π² Π½Π΅ΠΊ-Ρ€ΠΎΠΉ окрСстности этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Ссли сущСствуСт Ρ‚Π°ΠΊΠΎΠ΅ число А, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

(ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° Ρ…+Ах Π»Π΅ΠΆΠΈΡ‚ Π² упомянутой окрСстности) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΠΏΡ€ΠΈ ΠŸΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» матанализэтом А Ах обозначаСтся Ρ‡Π΅Ρ€Π΅Π· dy ΠΈ Π½Π°Π·. Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(Ρ…)Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…. Π”. dy ΠΏΡ€ΠΈ фиксированном Ρ…ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½ Ах, Ρ‚. Π΅. являСтся Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΎΡ‚ D Ρ…. Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ‡Π»Π΅Π½ a ΠΏΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» матанализявляСтся, Π² силу опрСдСлСния, бСсконСчно ΠΌΠ°Π»ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ высокого порядка ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с D Ρ… (ΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с dy, Ссли Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·). ИмСнно Π² этом смыслС Π”. ΠΈ Π½Π°Π·. Π³Π»Π°Π²Π½ΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΠΏΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·, Ρ‚. Π΅. функция, диффСрСнцируСмая Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² Π½Π΅ΠΉ. Ѐункция f(x)Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…Π² Ρ‚ΠΎΠΌ ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ‚ΠΎΠΌ случаС, Ссли ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅, Π½ΠΎ Π½Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠšΡ€ΠΎΠΌΠ΅ обозначСния dy ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ df(x);Ρ‚ΠΎΠ³Π΄Π° ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π΅ равСнство ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ах обозначаСтся Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Π΅Ρ€Π΅Π· dx ΠΈ Π½Π°Π·. Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ нСзависимого ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΈΡΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠžΡ‚ΡΡŽΠ΄Π° f(x)=dyldx, Ρ‚. Π΅. производная Ρ€Π°Π²Π½Π° ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ Π”. dy ΠΈ dx. Если А=0, Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΠΏΡ€ΠΈ Dx->0, Ρ‚. Π΅. Ау ΠΈ dy ΠΏΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π² случаС А Π½Π΅Ρ€Π°Π²Π½ΠΎ 0 эквивалСнтными бСсконСчно ΠΌΠ°Π»Ρ‹ΠΌΠΈ; этим, Ρ€Π°Π², Π½ΠΎ ΠΊΠ°ΠΊ ΠΈ простой структурой Π”. (Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ Ах), часто ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… вычислСниях, полагая Dy=dy ΠΏΡ€ΠΈ ΠΌΠ°Π»Ρ‹Ρ… D Ρ…. Если хотят, Π½Π°ΠΏΡ€., Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ f(x+Dx), зная f)(DxΠΌΠ°Π»ΠΎ), Ρ‚ΠΎ ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, Ρ‚Π°ΠΊΠΎΠ΅ рассуТдСниС ΠΈΠΌΠ΅Π΅Ρ‚ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ, Ссли ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈ этом a= DΡƒ-dy, Ρ‚. Π΅. Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ |a| совпадаСт с Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° TS.

2) ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ диффСрСнцируСмости ΠΈ Π”. СстСствСнным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ обобщаСтся Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ ΠΏΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. Напр., Π² случ. ΠΏ=2 Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ функция z=f(x, Ρƒ)Π½Π°Π·. Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ( Ρ…, Ρƒ )ΠΏΠΎ совокупности ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ…ΠΈ Ρƒ, Ссли ΠΎΠ½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π² Π½Π΅ΠΊ-Ρ€ΠΎΠΉ окрСстности этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π³Π΄Π΅ Аи Π’- Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΠΏΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·r=Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» матанализпрСдполагаСтся, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° ( Ρ…+D Ρ…, Ρƒ+Dy). ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ упомянутой окрСстности (см. рис. 2) ΠŸΡ€ΠΈ этом вводится ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΠΈ dz Π½Π°Π·. ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ, ΠΈΠ»ΠΈ просто Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x,Ρƒ). Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ( Ρ…, Ρƒ )(ΠΈΠ½ΠΎΠ³Π΄Π° с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ: «ΠΏΠΎ совокупности ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ…ΠΈ Ρƒ»). Для фиксированной Ρ‚ΠΎΡ‡ΠΊΠΈ ( Ρ…, Ρƒ )Π”. dz Π΅ΡΡ‚ΡŒ линСйная функция ΠΎΡ‚ Ах ΠΈ Ау;Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π°= Az-dz Π΅ΡΡ‚ΡŒ бСсконСчно малая Π±ΠΎΠ»Π΅Π΅ высокого порядка ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€. Π’ этом смыслС dz Π΅ΡΡ‚ΡŒ главная линСйная Ρ‡Π°ΡΡ‚ΡŒ приращСния Az.Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Если f(x, Ρƒ )Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ( Ρ…, Ρƒ), Ρ‚ΠΎ oΠ½ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π² Π½Π΅ΠΉ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡ Ах ΠΈ Ау нСзависимых ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, ΠΊΠ°ΠΊ ΠΈ Π² случаС ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ dx ΠΈ dΡƒ По этой ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

БущСствованиС ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π²ΠΎ ΠΎΠ±Ρ‰Π΅ говоря, Π½Π΅ Π²Π»Π΅Ρ‡Π΅Ρ‚ диффСрСнцируСмости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Π΄Π°ΠΆΠ΅ Ссли ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ Π·Π°Ρ€Π°Π½Π΅Π΅ Π΅Π΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ) здСсь Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ΡΡ аналогия с функциями ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ.

Если функция f(x, Ρƒ )ΠΈΠΌΠ΅Π΅Ρ‚ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ( Ρ…, Ρƒ )Ρ‡Π°ΡΡ‚Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΠΎ Ρ…, Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ fx(x, y)dx Π½Π°Π·. частным Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ ΠΏΠΎ Ρ…;Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, f’y(x, y)dy Π΅ΡΡ‚ΡŒ частный Π”. ΠΏΠΎ Ρƒ. Если функция Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ°, Ρ‚ΠΎ Π΅Π΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ Π”. Ρ€Π°Π²Π΅Π½ суммС частных Π”. ГСомСтричСски ΠΏΠΎΠ»Π½Ρ‹ΠΉ Π”. df(x0, Ρƒ 0 )Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚Ρ‹ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ плоскости повСрхности z-f(x, Ρƒ )Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ( Ρ… 0, Ρƒ 0, z0), Π³Π΄Π΅ z0=f(z0, Ρƒ 0 )(см. рис. 3).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π­Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Π² частности, Ρ‡Ρ‚ΠΎ Π½Π΅ всякоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» матанализс Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΌΠΈ А ΠΈ Π’ (вобласти D)являСтся Π² этой области ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π”. Π½Π΅ΠΊ-Ρ€ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. Π’ этом состоит Π΅Ρ‰Π΅ ΠΎΠ΄Π½ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с функциями ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ, Π³Π΄Π΅ любоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ A(x)dx с Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Π² Π½Π΅ΠΊ-Ρ€ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ (Ρ…). слуТит Π”. для Π½Π΅ΠΊ-Ρ€ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Adx+Bdy являСтся ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π”. Π½Π΅ΠΊ-Ρ€ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z=f(x, Ρƒ), Π² односвязной ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ области D, Ссли ( Ρ…, Ρƒ )ΠΈ Π’( Ρ…, Ρƒ )Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ Π² этой области ΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ А’ =Π’’ Π₯ ΠΈ ΠΏΡ€ΠΈ этом Π°) А’y ΠΈ Π’’ Ρ… Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ ΠΈΠ»ΠΈ Π±) ( Ρ…, Ρƒ) ΠΈ Π’( Ρ…, Ρƒ) Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ ΠΏΠΎ совокупности ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ…ΠΈ ΡƒΠ²ΡΡŽΠ΄Ρƒ Π² D(см. [7], [8]).

О Π”. Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎ Π”. Π²Ρ‹ΡΡˆΠΈΡ… порядков см. Ρ‚Π°ΠΊΠΆΠ΅ Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ исчислСниС.

3) ΠŸΡƒΡΡ‚ΡŒ функция f(x)ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π° Π½Π΅ΠΊ-Ρ€ΠΎΠΌ мноТСствС Π•Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ…- ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° этого мноТСства, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·Dy=АDx+a, Π³Π΄Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·ΠΏΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·; Ρ‚ΠΎΠ³Π΄Π° функция f(x)Π½Π°Π·. Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΏΠΎ мноТСству Π•Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…,a dy=AD Ρ… Π½Π°Π·. Π΅Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ» ΠΏΠΎ мноТСству Π•Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…. Π­Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ Π”. Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ. Разновидностями этого обобщСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π”. Π² ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° функция, ΠΈ аппроксимативный Π”. (см. Аппроксимативная Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ΅Ρ‚ΡŠ).

ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ вводится Π”. ΠΏΠΎ мноТСству для Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

4) ВсС эти опрСдСлСния диффСрСнцируСмости ΠΈ Π”. ΠΏΠΎΡ‡Ρ‚ΠΈ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‚ΡΡ соотвСтствСнно Π½Π° комплСксныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ комплСксныС Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, Π½Π° комплСксныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… комплСксных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. Π’ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΎΠ½ΠΈ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‚ΡΡ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ абстрактного пространства. МоТно Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΎ диффСрСнцируСмости ΠΈ Π”. Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мноТСства ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π½Π΅ΠΊ-Ρ€ΠΎΠΉ ΠΌΠ΅Ρ€Π΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ связано с Ρ‚Π°ΠΊΠΈΠΌΠΈ Π²Π°ΠΆΠ½Ρ‹ΠΌΠΈ матСматичСскими Ρ€Π°Π·Π΄Π΅Π»Π°ΠΌΠΈ ΠΊΠ°ΠΊ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ΅ исчислСниС ΠΈ тСсно связано с понятиСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НаиболСС часто Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» примСняСтся для ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… вычислСний, Π° Ρ‚Π°ΠΊΠΆΠ΅ для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ.

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это линСйная Ρ‡Π°ΡΡ‚ΡŒ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Говоря ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ бСсконСчно ΠΌΠ°Π»ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°.

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ открытия Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°

Π§Π°Ρ‰Π΅ всСго ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния принято ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ с ΠΈΠΌΠ΅Π½Π΅ΠΌ Исаака ΠΡŒΡŽΡ‚ΠΎΠ½Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ, этот Ρ„Π°ΠΊΡ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΎΡΠΏΠ°Ρ€ΠΈΠ²Π°ΡŽΡ‚ ΡƒΡ‡Ρ‘Π½Ρ‹Π΅ со всСго свСта.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Ρ†Π΅Π»ΠΎΠ³ΠΎ Π½ΠΎΠ²ΠΎΠ³ΠΎ направлСния Π² Π½Π°ΡƒΠΊΠ΅, ΡΡ‚ΠΎΠ»ΡŒ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ для Π΅Ρ‘ развития, Π±Ρ‹Π»ΠΎ Π±Ρ‹ ΠΎΡˆΠΈΠ±ΠΎΡ‡Π½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ заслугой Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΡ‡Ρ‘Π½ΠΎΠ³ΠΎ. Π˜Π·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ связывали с вычислСниСм ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ ΠΈ ΠΎΠ±ΡŠΡ‘ΠΌΠΎΠ² ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΠΈΠ³ΡƒΡ€. Π’Π°ΠΊΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΊΠ°ΠΊ извСстно, Ρ€Π΅ΡˆΠ°Π»ΠΈΡΡŒ Π΅Ρ‰Ρ‘ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° АрхимСда, поэтому Π΅Π³ΠΎ имя Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΡŽ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния.

Π’Π°ΠΊΠΆΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ Π½Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΠΊΡ€ΠΈΠ²Ρ‹ΠΌ. Π”Π°Π½Π½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»ΠΈ грСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π’ Ρ‚Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΡΡ‚ΠΎΠ»ΠΊΠ½ΡƒΠ»ΠΈΡΡŒ с Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π΅ смогли Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π² дальнСйшСм ΠΈ прСдставитСли Нового Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π”Π΅Π»ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ для опрСдСлСния направлСния прямой Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π·Π½Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ, Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈΠΌΠ΅Π΅Ρ‚ лишь ΠΎΠ΄Π½Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ соприкосновСния с ΠΊΡ€ΠΈΠ²ΠΎΠΉ. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ Π½Π°Ρ‚ΠΎΠ»ΠΊΠ½ΡƒΠ» ΡƒΡ‡Ρ‘Π½Ρ‹Ρ… Π½Π° ΠΌΡ‹ΡΠ»ΡŒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ кривая ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ нСсколько ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…. Π’ Ρ‚ΠΎ врСмя ΡƒΡ‡Π΅Π½Ρ‹Π΅ ΠΏΡ€ΠΈΡˆΠ»ΠΈ ΠΊ Π²Ρ‹Π²ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ прямая состоит Π½Π΅ ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ, Π° ΠΈΠ· ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² минимальной Π΄Π»ΠΈΠ½Ρ‹. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΠ½ΠΈ считали Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠΌ с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Ρ‚ΠΎΠΌΠ°Ρ€Π½ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π’ дальнСйшСм ΡƒΡ‡Ρ‘Π½Ρ‹Π΅ Нового Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡ€ΠΎΠ²Π΅Ρ€Π³Π»ΠΈ Π΄Π°Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ. Π’ этот ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΎΠ³Ρ€ΠΎΠΌΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π½Π°ΡƒΠΊΠΈ внёс Исаак ΠΡŒΡŽΡ‚ΠΎΠ½. Π£Ρ‡Π΅Π½Ρ‹ΠΉ сформулировал опрСдСлСния ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ основы Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ ΡƒΡ‡Ρ‘Π½Ρ‹Π΅ ΠΈ Π² наши Π΄Π½ΠΈ.

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ исчислСниС ΡˆΠΈΡ€ΠΎΠΊΠΎ примСняСтся Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½Π°ΡƒΠΊΠ°Ρ… для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.

ГСомСтричСский смысл Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°

ГСомСтричСский смысл Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ: Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, которая ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (x,y) ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ξ”Ρ…=dx.

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» являСтся Π³Π»Π°Π²Π½ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ приращСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. Π§Π΅ΠΌ мСньшС ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚Π΅ΠΌ большая доля приращСния приходится Π½Π° эту Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈ бСсконСчно ΠΌΠ°Π»ΠΎΠΌ Ξ”Ρ…, ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ€Π°Π²Π½Ρ‹ΠΌ Π΅Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρƒ. Π­Ρ‚ΠΎ свойство Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ для ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вычислСний ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… вычислСниях

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся Ρ‡Π°ΡΡ‚ΡŒΡŽ Π΅Π΅ приращСния, Ρ‚ΠΎ ΠΏΡ€ΠΈ бСсконСчно ΠΌΠ°Π»ΠΎΠΌ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΎΠ½ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠŸΡ€ΠΈ этом Ρ‡Π΅ΠΌ мСньшС ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Ρ‚Π΅ΠΌ Ρ‚ΠΎΡ‡Π½Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ Π΄Π°Ρ‘Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² для ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½Ρ‹Ρ… вычислСний.

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π°ΠΊΠΈΡ… вычислСний ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ Π·Π°Π΄Π°Ρ‡. ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½Ρ‹Π΅ вычислСния практичСски всСгда связаны с Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ.

ИспользованиС Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв содСрТат ΠΎΡˆΠΈΠ±ΠΊΡƒ, ΠΎΠ±ΡƒΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ Π½Π΅Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ².

Число, нСсколько ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰Π΅Π΅ ΠΈΠ»ΠΈ Ρ€Π°Π²Π½ΠΎΠ΅ этой нСточности, называСтся Β«ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽΒ».

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ измСряСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Β«ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽΒ».

Для ΠΎΡ†Π΅Π½ΠΊΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ исчислСниС.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ коэффициСнт \(A\) Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(S\) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ \(:\) \[A = 2.\] ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ для любой Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ справСдлива ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° :

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ \(A\) Π³Π»Π°Π²Π½ΠΎΠΉ части приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ \(\) Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ \(f’\left( <> \right)\) Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅, Ρ‚.Π΅. ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ \(\Delta y\) выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ \[ <\Delta y = A\Delta x + \omicron\left( <\Delta x>\right) > = > \right)\Delta x + \omicron\left( <\Delta x>\right).> \] Π Π°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ части этого равСнства Π½Π° \(\Delta x \ne 0,\) ΠΈΠΌΠ΅Π΅ΠΌ \[ <\frac<<\Delta y>><<\Delta x>> = A + \frac <<\omicron\left( <\Delta x>\right)>><<\Delta x>> > = > \right) + \frac <<\omicron\left( <\Delta x>\right)>><<\Delta x>>.> \] Π’ ΠΏΡ€Π΅Π΄Π΅Π»Π΅ ΠΏΡ€ΠΈ \(\Delta x \to 0\) ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ \(:\) \[ > \right) = \lim\limits_ <\Delta x \to 0>\frac<<\Delta y>><<\Delta x>> > = > \right).> \] Π—Π΄Π΅ΡΡŒ ΠΌΡ‹ ΡƒΡ‡Π»ΠΈ, Ρ‡Ρ‚ΠΎ для ΠΌΠ°Π»ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ \(\omicron\left( <\Delta x>\right)\) Π±ΠΎΠ»Π΅Π΅ высокого порядка малости, Ρ‡Π΅ΠΌ \(\Delta x,\) ΠΏΡ€Π΅Π΄Π΅Π» Ρ€Π°Π²Π΅Π½ \[\lim\limits_ <\Delta x \to 0>\frac <<\omicron\left( <\Delta x>\right)>><<\Delta x>> = 0.\] Если ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ \(dx\) Ρ€Π°Π²Π΅Π½ Π΅Π΅ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ \(\Delta x:\) \[dx = \Delta x,\] Ρ‚ΠΎ ΠΈΠ· ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ \[dy = A\Delta x = y’dx\] слСдуСт, Ρ‡Ρ‚ΠΎ \[y’ = \frac<><>,\] Ρ‚.Π΅. ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ².

На рисункС \(2\) схСматичСски ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Ρ€Π°Π·Π±ΠΈΠ²ΠΊΠ° приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(\Delta y\) Π½Π° Π³Π»Π°Π²Π½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ \(A\Delta x\) (Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ) ΠΈ Ρ‡Π»Π΅Π½ Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ порядка малости \(\omicron\left( <\Delta x>\right)\).

ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ \(MN\), провСдСнная ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(y = f\left( x \right)\) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ \(M\), ΠΊΠ°ΠΊ извСстно, ΠΈΠΌΠ΅Π΅Ρ‚ ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° \(\alpha\), тангСнс ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: \[\tan \alpha = f’\left( <> \right).\] ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π° \(\Delta x\) ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ \(A\Delta x.\) Π­Ρ‚ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, ΠΊΠ°ΠΊ Ρ€Π°Π· ΠΈ являСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠžΡΡ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ приращСния \(\Delta y\) (ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ \(N\)) соотвСтствуСт «Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ» Π΄ΠΎΠ±Π°Π²ΠΊΠ΅ с Π±ΠΎΠ»Π΅Π΅ высоким порядком малости ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ \(\Delta x\).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

ΠŸΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ способу ΠΈΡ… задания: явныС, нСявныС ΠΈ парамСтричСскиС.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f ( x ) ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ называСтся ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΊΠΎΠ³Π΄Π° послСднСС стрСмится ΠΊ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² достаточно ΠΌΠ°Π»ΠΎΠΉ окрСстности Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π°ΠΌΠΈ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ простыС ΠΈ явно Π·Π°Π΄Π°Π½Π½Ρ‹Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

БлСдствиС. Π’ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²Π° функция ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π°, Π½ΠΎ Π½Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ°. Π’Π°ΠΊ, функция y =| x | Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x =0 Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π°, Π½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти бСсконСчноС мноТСство ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… (рис. 3.6). Π’Π°ΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΈΠ·Π»ΠΎΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Π°Π½Π½Ρ‹ΠΉ случай ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ 3.9 Π½Π΅Π²Π΅Ρ€Π½ΠΎ.

Π‘Ρ€Π΅Π΄ΠΈ явных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ особоС мСсто Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, производная ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… находится с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.10. Если строго монотонная функция y = f ( x ) Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π₯, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π΅Π΅ производная Π½Π΅ обращаСтся Π² Π½ΡƒΠ»ΡŒ Π½Π° Π₯, Ρ‚ΠΎ обратная ΠΊ Π½Π΅ΠΉ функция x = Ο† ( y ) Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° этом ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, ΠΏΡ€ΠΈ этом:

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ:

Π‘Ρ€Π΅Π΄ΠΈ явных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ класс слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.11. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сначала ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ внСшнюю Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ, считая Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π·Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠΎ нСзависимому ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌΡƒ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ диффСрСнцирования ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.31) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ· Ρ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17), (3.19), (3.29) ΠΈΠΌΠ΅Π΅ΠΌ:

Π³Π΄Π΅ t – ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ нСслоТно ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3.9. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·.

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.32) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.18), (3.19) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Помимо Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ мСсто ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.12. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Данная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π° для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ-слагаСмых.

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ (3.33) ΠΈ (3.31) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17), (3.20), (3.23) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.13. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ-сомноТитСля Π½Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ плюс ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠΉ функции–сомноТитСля, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.34) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.22), (3.24) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.14. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ знамСнатСля Π΄Π°Π½Π½ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΠΈ, Π° Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ знамСнатСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ числитСля ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ числитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ знамСнатСля, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.35) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17), (3.29) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.31) диффСрСнцирования слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ (3.34) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ произвСдСния, с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17) ΠΈ (3.18) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΌΠ°Ρ‚Π°Π½Π°Π»ΠΈΠ·

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f ( x ) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x называСтся главная Ρ‡Π°ΡΡ‚ΡŒ приращСния этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, равная ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° (3.39) примСняСтся для вычислСния ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *