Что такое делить нацело

Математика. 5 класс

Конспект урока

Перечень вопросов, рассматриваемых в теме:

— деление натуральных чисел;

— свойства деления натуральных чисел.

Деление – это математическое действие, обратное умножению.

Делимое – это число, которое делят.

Делитель – это число, на которое делят.

Частное – результат деления.

Делить на нуль нельзя.

Любое натуральное число а делится на 1 и само на себя:

Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.

Теоретический материал для самостоятельного изучения

Давайте вспомним, что нам уже известно об операции деления. Пусть у нас есть натуральные числа a и b, причём а больше b или равно b (a ≥ b). Говорят, что а делится на b нацело, если существует натуральное число с, при умножении которого на b получается а: a = b ∙ c.

Обычно слово «нацело» в этой фразе опускается. При этом записывают: a : b = с и называют а – делимым, b – делителем, с – частным.

Любое натуральное число а делится на 1 и само на себя:

так как а ∙ 1 = а, 1 ∙ а = а.

Например, 14 делится на 1 и на 14.

14 : 1 = 14, 14 : 14 = 1

При делении ноля на любое натуральное число получается ноль: 0 : а = 0, потому что 0 ∙ а = 0.

Запомните: делить на нуль нельзя!

Любое натуральное число а делить на нуль нельзя, потому что не существует такого числа с, для которого выполнялось бы равенство а : 0 = с (так как с ∙ 0 = 0 ≠ а). Принято считать, что нуль на нуль делить нельзя.

Для деления чисел из двух и более цифр (знаков) применяют деление уголком.

Вспомним, как делить уголком, на примере.

Для начала запишем делимое и делитель уголком:

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Начнём делить 392 на 28 следующим образом.

Во-первых, определим неполное частное. Для этого слева направо сравниваем цифры делимого и делителя.

Рассмотрим цифру 3. Она меньше 28 – значит, нужно взять ещё одну цифру из делимого. 39 больше 28, следовательно, это неполное частное.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Ставим точку в частном (под уголком делителя).

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Посчитаем, сколько цифр осталось в делимом, после неполного частного. У нас после 39 стоит только одна цифра – 2. Значит, и в результат добавляем ещё одну точку.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Приступаем к делению: 28 помещается в 39 только один раз, поэтому ставим первой цифрой ответа единицу и вычитаем 28 из 39.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

После вычитания в остатке получилось 11, это меньше, чем 28, поэтому к 11 дописываем 2.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

112 делится на 28. Получаем 4. Записываем полученный результат второй цифрой в ответе.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

В остатке получился нуль – значит, числа разделились нацело. Таким образом, 392 : 28 = 14.

Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.

Сначала одновременно умножим 50 и 25 на 2. Получим:

Теперь разделим 50 и 25 на 5. Получим:

В обоих случаях ответ оказался одинаковым. Значит, свойство частного верно.

Если каждое из натуральных чисел a и b делится на натуральное число с, то верно равенство:

(a+ b) : c = a : c + b : c.

Убедимся в правдивости данного свойства на примере.

Вычислим выражение: 124 : 4 + 36 : 4.

Рассмотрим два способа решения.

1 способ. Выполним деление и сложим результаты.

124 : 4 + 36 : 4 = 31 + 9 = 40.

2 способ. Заметим, что у нас есть общий делитель – 4. Вынесем его за скобки. Получим:

(124 + 36) : 4 = 160 : 4 = 40.

В обоих случаях у нас получился один и тот же ответ. Значит, свойство верно.

Разбор решения заданий тренировочного модуля

№ 1. Вычислите 812 : 14 = _____.

Решение: выполним деление уголком.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

№ 2. Найдите неизвестный множитель х из равенства: 15 ∙ х = 195.

Выберите верный ответ: х = 3; х = 13; х = 25; х = 15.

Решение: чтобы найти неизвестный множитель, надо произведение поделить на известный множитель, то есть:

Источник

Математика. 5 класс

Конспект урока

Перечень вопросов, рассматриваемых в теме:

— деление натуральных чисел;

— свойства деления натуральных чисел.

Деление – это математическое действие, обратное умножению.

Делимое – это число, которое делят.

Делитель – это число, на которое делят.

Частное – результат деления.

Делить на нуль нельзя.

Любое натуральное число а делится на 1 и само на себя:

Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.

Теоретический материал для самостоятельного изучения

Давайте вспомним, что нам уже известно об операции деления. Пусть у нас есть натуральные числа a и b, причём а больше b или равно b (a ≥ b). Говорят, что а делится на b нацело, если существует натуральное число с, при умножении которого на b получается а: a = b ∙ c.

Обычно слово «нацело» в этой фразе опускается. При этом записывают: a : b = с и называют а – делимым, b – делителем, с – частным.

Любое натуральное число а делится на 1 и само на себя:

так как а ∙ 1 = а, 1 ∙ а = а.

Например, 14 делится на 1 и на 14.

14 : 1 = 14, 14 : 14 = 1

При делении ноля на любое натуральное число получается ноль: 0 : а = 0, потому что 0 ∙ а = 0.

Запомните: делить на нуль нельзя!

Любое натуральное число а делить на нуль нельзя, потому что не существует такого числа с, для которого выполнялось бы равенство а : 0 = с (так как с ∙ 0 = 0 ≠ а). Принято считать, что нуль на нуль делить нельзя.

Для деления чисел из двух и более цифр (знаков) применяют деление уголком.

Вспомним, как делить уголком, на примере.

Для начала запишем делимое и делитель уголком:

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Начнём делить 392 на 28 следующим образом.

Во-первых, определим неполное частное. Для этого слева направо сравниваем цифры делимого и делителя.

Рассмотрим цифру 3. Она меньше 28 – значит, нужно взять ещё одну цифру из делимого. 39 больше 28, следовательно, это неполное частное.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Ставим точку в частном (под уголком делителя).

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Посчитаем, сколько цифр осталось в делимом, после неполного частного. У нас после 39 стоит только одна цифра – 2. Значит, и в результат добавляем ещё одну точку.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Приступаем к делению: 28 помещается в 39 только один раз, поэтому ставим первой цифрой ответа единицу и вычитаем 28 из 39.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

После вычитания в остатке получилось 11, это меньше, чем 28, поэтому к 11 дописываем 2.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

112 делится на 28. Получаем 4. Записываем полученный результат второй цифрой в ответе.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

В остатке получился нуль – значит, числа разделились нацело. Таким образом, 392 : 28 = 14.

Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.

Сначала одновременно умножим 50 и 25 на 2. Получим:

Теперь разделим 50 и 25 на 5. Получим:

В обоих случаях ответ оказался одинаковым. Значит, свойство частного верно.

Если каждое из натуральных чисел a и b делится на натуральное число с, то верно равенство:

(a+ b) : c = a : c + b : c.

Убедимся в правдивости данного свойства на примере.

Вычислим выражение: 124 : 4 + 36 : 4.

Рассмотрим два способа решения.

1 способ. Выполним деление и сложим результаты.

124 : 4 + 36 : 4 = 31 + 9 = 40.

2 способ. Заметим, что у нас есть общий делитель – 4. Вынесем его за скобки. Получим:

(124 + 36) : 4 = 160 : 4 = 40.

В обоих случаях у нас получился один и тот же ответ. Значит, свойство верно.

Разбор решения заданий тренировочного модуля

№ 1. Вычислите 812 : 14 = _____.

Решение: выполним деление уголком.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

№ 2. Найдите неизвестный множитель х из равенства: 15 ∙ х = 195.

Выберите верный ответ: х = 3; х = 13; х = 25; х = 15.

Решение: чтобы найти неизвестный множитель, надо произведение поделить на известный множитель, то есть:

Источник

Деление натуральных чисел

Подобно тому, как вычитание является обратным действием для сложения, так и для умножения существует свое обратное арифметическое действие.

Рассмотрим задачу. В школьной столовой раздали 90 яблок по 3 яблока каждому ученику класса. Сколько учеников учатся в этом классе?

Если бы нам было известно количество учеников в классе и количество яблок, которое получил каждый из них, то общее число яблок мы узнали бы, умножив число учеников на число яблок, доставшееся каждому. То есть, количество учеников – это первый сомножитель, количество яблок – второй сомножитель, а сколько яблок раздали – это произведение.

Деление – это арифметическое действие, которое состоит в нахождении одного из сомножителей при помощи данного произведения и второго сомножителя.

Делимое – это число, которое мы делим на другое. Это то самое произведение, которое нам дано.

Делитель – это число, на которое мы делим делимое. Это данный нам один из множителей.

Частное – это результат действия деление, то есть, искомый нами второй сомножитель.

На записи действие деление обозначается: двоеточием ( \(\textcolor <:>\) ), знаком обелюс ( \(\textcolor <\div>\) ), горизонтальной чертой или косой чертой ( \(\textcolor \) ).

Так, решение нашей задачи можно записать следующими способами:

При записи от руки действие деление принято записывать в виде двоеточия, обелюс применяется в печатной литературе, косая черта, которая по-другому называется слеш, – при записи на компьютере, а горизонтальная черта используется при записи деления в виде обыкновенной дроби.

Итак, разделить число a на число b – это значит найти такое число c, которое при умножении его на число b дает в результате числа a.
То есть: \(\textcolor \) , если \(\textcolor \) .

Компоненты действия деление:

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Деление с остатком и неполное частное

К примеру, если мы захотим раздать все 37 яблок поровну между пятью детьми, то у нас это сделать не получится. Мы сможем раздать (использовать из всего количества яблок) только по 7 яблок каждому ( \(\textcolor <7\cdot 5=35>\) ), и у нас останется 2 яблока ( \(\textcolor <37-35=2>\) ).

Итак, деление с остатком – это нахождение такого наибольшего целого числа, умножив которое на делитель, мы получим число, максимально близкое к делимому, но не превосходящее его. Это искомое число называется неполное частное. Разница между делимым и неполным частным называется остаток.

Остаток всегда меньше делителя!

Связь деления с умножением, сложением и вычитанием

Когда мы выполняем находим произведение двух чисел, эти числа нам известны, а от нас требуется найти результат действия умножение. При делении (без остатка) нам известно произведение двух чисел, а найти нужно такое число, которое при умножении на известное данное число дает это самое произведение.

Следовательно, действие деление является обратным действию умножения.

Справедливо также и обратное, что действие умножение обратно действию деления. Таким образом:

Умножение и деление – это взаимно обратные действия.

Связь деления с умножением, а также со сложением и вычитанием прекрасно видна, если рассмотреть, как с помощью этих действий можно выполнить действие деление.

Деление двух чисел при помощи сложения

Деление двух чисел при помощи вычитания

То есть, 69 от 345 можно отнять 5 раз, поэтому \(\textcolor <349\div 69=5>\).

Деление двух чисел при помощи умножения

При помощи умножения узнать ответ на наш вопрос можно перебирая множитель числа 69 до тех пор, пока не получим заданное нам 345 :

Но эти три способа очень громоздки, особенно если частное представляет собой очень большое число. Их нужно знать только для того, чтобы понимать суть действия деления, суть тех задач, которые решаются посредством него.

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Прежде всего, нужно узнать количество цифр в частном и первое неполное делимое; как их находить, я подробно расписал в этой статье. В нашем случае первое неполное делимое равно 295 тысяч, а в частном будет 4 цифры.

Далее записываем известные компоненты деления следующим образом:

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

и начинаем вычисление:

1. Берем первое неполное делимое и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру разряда тысяч, а под неполным делимым пишем результат произведения неполного частного и делителя. И сразу же находим остаток от этого действия, т.е. вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor <8\cdot 37=272>\). Записываем его под 295 и находим разницу: \(\textcolor <295-272=23>\). Значит, 23 тысячи у нас остаются неразделенными.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Рассмотрим еще один пример. \(\textcolor <25326\div 63>\).

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Итак, запомните, что каждое неполное делимое образует в частном одну цифру соответствующего разряда и что даже если неполное делимое меньше делителя, то в частном все равно нужно записать нулевой результат этого действия.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Итак, в общем виде алгоритм деления в столбик выглядит так:
1. Находим первое неполное делимое и количество цифр в частном.
2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.
3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.
4. Ставим между ними знак минус и выполняем действие.
5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.
6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.
7. Если неполное делимое невозможно разделить на делитель, то в частном ставится 0 и к этому неполному делимому сносится следующая цифра.

Деление на числа, заканчивающиеся нулями

Как и в случае с умножением, деление чисел облегчается, если делитель заканчивается одним или несколькими нулями. Рассмотрим два возможных случая:

Рассмотрим первый случай.

Деление на единицу с любым количеством нулей

Единица с любым количеством нулей – это не что иное как единица соответствующего разряда. Например, 10 – это 1 единица разряда десятков, 1000 – это одна единица разряда тысяч, 10000000 – 1 единица разряда десятков миллионов и т.д.

Запишите:
Чтобы разделить какое-нибудь число на единицу с любым количеством нулей, нужно отсчитать в делимом справа столько цифр, сколько нулей содержится в делителе; тогда все цифры, находящиеся слева от разделения, составят частное, а те, что справа – будут остатком.

Деление на число, оканчивающееся нулями

Рассмотрим на примере \(\textcolor <284556\div 2800>\).

Делитель здесь не что иное как 28 сотен. Логично предположить, что эти 28 сотен могут хотя бы один раз содержаться только в сотнях делимого. Значит, нам нужно определить, сколько в делимом всего единиц разряда сотен, и разделить их на 28 единиц разряда сотен делимого. А отброшенные цифры десятков и простых единиц добавятся к остатку.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Запишите:
Чтобы разделить какое-нибудь число на число, заканчивающееся нулями, нужно отбросить мысленно нули в делителе, в делимом тоже отбросить мысленно такое же количество цифр, как и нулей в делителе. Получившееся число в делимом разделить на получившееся число в делителе, а к остатку прибавить (снести) те цифры делимого, которые отбросили ранее.

Проверка деления

Так как делимое – это делитель, умноженный на частное и плюс остаток, что следует из определения деления, то результат выполнения деления можно проверить умножением.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Если в результате действия деления не получилось остатка, то деление можно проверить и делением. Действительно, если делимое – это произведение делителя и частного, то разделив делимое на частное (один из сомножителей), мы должны получить второй сомножитель, то есть, делитель.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

Свойства деления

Свойства деления я представлю двумя группами:

Давайте рассмотрим каждую группу подробнее.

Действия деления с единицей и нулем

При делении числа на единицу получается то же самое число.

Действительно, разделить число на единицу означает узнать, сколько единиц содержится в данном числе. А количество единиц в числе – это не что иное, как само это число.

И ли вот, например, если 10 яблок нужно раздать одному человеку ( 10 поделить на 1 ), то ему все эти 10 яблок и достанутся, правда?

При деление одинаковых чисел (числа на равное число) в результате будет 1 (единица).

В самом деле, если все единицы какого-то числа разделить на количество частей, равное количеству единиц этого числа, то в каждая часть получит по 1 единице.

Например, если 20 яблок раздать 20 школьникам, то каждому достанется по 1 яблоку.

При делении нуля на любое число, отличное от нуля, в результате будет нуль.

Разделить нуль на число означает найти такое число, умножив которое на данный делитель, мы получим в результате нуль. А такое число только одно – это нуль.

На нуль делить нельзя, то есть, нуль не может выступать в роли делителя.

При делении каких угодно чисел делителем может быть любое число, кроме нуля.

Рассмотрим два случая: когда нулём является только делитель, и когда делимое и делитель оба нули.

Распределительные свойства деления

Чтобы найти частное от деления суммы на число, нужно поделить каждое слагаемое на это число, и найти сумму полученных частных.
\(\textcolor <(a+b+c)\div d=a\div d+b\div d+c\div d>\).
При этом подразумевается, что все действия деления получаются без остатка.

Чтобы найти частное от деления разности на число, нужно поделить на это число отдельно сперва уменьшаемое, а потом вычитаемое, после чего найти разность первого частного и второго.
\(\textcolor <(a-b)\div c=a\div c-b\div c>\)
При этом также предполагается, что при делениях уменьшаемого и вычитаемого на число не получается остатков.

Например: \[\textcolor <(36-24)\div 6=36\div 6-24\div 6=6-4=2>\] Число 36 состоит из 6 шестерок, а 24 – из 4 шестерок, а забрав у 6 шестерок 4 шестерки, получим 2 шестерки. Такой же итог будет и если мы сперва у 36 отнимем 24 единицы (останется 12 ), а потом найдем, сколько в этой разнице содержится шестерок: \(\textcolor <12\div 6=2>\).

Чтобы найти частное от деления произведения на число, нужно поделить на него только один из сомножителей, а результат умножить на неизмененные остальные.
\(\textcolor <(a\cdot b\cdot c)\div d=a\div d\cdot b\cdot c=b\div d\cdot a\cdot c=c\div d\cdot a\cdot b>\).

Чтобы найти частное от деления числа на произведение, нужно это число поделить на первый сомножитель, результат деления поделить на второй сомножитель, полученное частное – на третий и так далее.
\(\textcolor \).
При этом предполагается, что при всех этих делениях не получается остатков.

Что такое делить нацело. Смотреть фото Что такое делить нацело. Смотреть картинку Что такое делить нацело. Картинка про Что такое делить нацело. Фото Что такое делить нацело

На рисунке наглядно видно, что в итоге после применения этого правила, число 30 получилось разделенным на 6 равных частей.

Изменение частного при изменении делимого и делителя

При рассмотрении изменений частного в результате изменений делимого и делителя предполагается, что действие деление происходит без остатка. В противном случае изменения могут быть не такими, о которых идет речь ниже.

При увеличении делимого в определенное количество раз, частное увеличится в это же количество раз, а при уменьшенииуменьшится.

Если мы в примере \(\textcolor <24\div 4=6>\) делимое увеличим, к примеру, в 3 раза, то мы можем переписать это выражение в виде \(\textcolor <(24+24+24)\div 4>\). Используя свойство деления суммы на число, мы увидим, что теперь нам нужно сложить три слагаемых, каждое из которых равно начальному выражению: \(\textcolor <24\div 4+24\div 4+24\div4>\). Отсюда очевидно, что результат будет больше начального в 3 раза.

Если мы в этом же примере \(\textcolor <24\div 6>\) уменьшим делимое в 3 раза, то есть, разделим его на три равные части, то очевидно, что результат деления одной части на 6 будет в 3 раза меньше, чем результат деления трех таких же частей. Посмотрите сами. Начальное выражение \(\textcolor <24\div 6>\) можно записать в виде: \(\textcolor <(8+8+8)\div 6=8\div 6+8\div 6+8\div 6>\), а уменьшенное в 3 раза делимое даст нам только одно из трех таких слагаемых: \(\textcolor <8\div 6>\).

При увеличении делителя в определенное количество раз, частное уменьшится в это же количество раз, а при уменьшенииувеличится.

Действительно, изменение делителя означает, что делимое необходимо разделить на большее или меньшее количество равных частей. Соответственно, если нужно разделить на большее число частей, то каждая часть будет меньше, чем изначально, а если делить на меньшее число частей, то каждая часть будет крупнее.

В случае одновременного изменения делимого и делителя, частное может вести себя по-разному, или же вообще оставаться без изменений. Если нужно узнать, станет оно больше или меньше, нужно сперва посмотреть, как частное изменится после изменения делимого, а потом – как изменится после изменения делителя.

При увеличении или уменьшении делимого и делителя в одинаковое количество раз, частное не меняется.

Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось это, или нет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *