Что такое дата сайнс специалист
Знакомимся с Data Science: от новичка до специалиста
Несколько лет назад Harvard Business Review назвал Data Scientist наиболее сексуальной профессией века. С тех пор её «сексуальность» только росла, а потребность в специалистах увеличивается по экспоненте. В 2016 году Data Scientist вошла в топ-25 лучших вакансий на территории Соединённых Штатов по версии Glassdoor. На Россию тенденция тоже распространяется, хоть и не в таких больших масштабах. Однако, потребность в квалифицированных кадрах всё же растёт.
реклама
Что такое Data Science – кто такой Data Scientist
Чтобы понять, кто такой Data Scientist, нужно сначала дать определение самой профессии. Называется она Data Science. В последнее время термин стал очень популярным, и вы часто можете встречать его, бороздя просторы всемирной паутины.
реклама
Так вот, Data Science – работа с большими данными. Отметим, что термин «большие данные» уже прочно укоренился, хотя изначально использовался английский вариант – Big Data. Большие данные представляют собой огромные объёмы неструктурированной информации, для обработки которой требуется математическая статистика и машинное обучение.
Специалист, который занимается этим, называется Data Scientist. Его задачей является анализ больших данных, на основе которых можно сделать прогноз в зависимости от поставленной задачи. В конченом счёте финальным продуктом Data Scientist’a является создание прогнозной модели – алгоритма для оперативного поиска наиболее подходящего решения поставленной задачи.
Вы могли не знать, но с результатами работы специалистов в сфере Data Science вы встречаетесь по несколько раз в день. Например, когда слушаете музыку в YouTube Music, Spotify или Deezer. В этих стриминговых сервисах алгоритмы, написанные дата сайентистами, подбирают композиции, наиболее соответствующие вашим вкусовым предпочтениям. Так же само рекомендуются видеоролики в соответствующих сервисах и списки пользователей, с которыми вы можете быть знакомы, в социальных сетях.
Где работает Data Scientist
реклама
Если вы не хотите применять свои умения только для того, чтобы помогать людям быстрее находить одноклассников и учить программное обеспечение рекомендовать к прослушиванию Eisbrecher после Rammstein – не переживайте. Есть ещё немало областей, в которых можно применить свои таланты.
Например, в транспортной компании Data Scientist позволяет найти оптимальный маршрут передвижения, а на производстве созданные модели могут помочь спрогнозировать сбои в работе. Страховым компаниям дата сайентисты помогают рассчитать вероятность страхового случая, а в сельском хозяйстве делают прогноз по урожаю и ищут способы наиболее эффективного использования с/х угодий. Кроме того, на базе алгоритмов в медицине оборудование может автоматически ставить диагнозы пациентам.
реклама
Несмотря на то, что специалистов в Data Science становится всё больше, количество высококвалифицированных кадров всё ещё не соответствует спросу на них. Это приводит к росту оплаты труда. Заработная плата зависит от опыта работы. Например, специалисты, которые уже имели дело с большими массивами данными, а в их арсенале есть глубокие знания и навыки построения математических моделей, могут получать в Москве свыше 100 000 рублей ежемесячно. Для дата сайентистов без опыта зарплата стартует примерно 70 000 рублей в столице Российской Федерации.
Само собой, российские зарплаты ни в какое сравнение не идут с американскими. Например, хороший специалист с опытом в Соединённых Штата может получать свыше 130 000 долларов в год, т.е. порядка 11 000 долларов в месяц.
Пройти курс обучения Data Science с нуля
На сегодняшний день при наличии большого желания расти в области анализа больших данных не составляет никакого труда пройти курсы по Data Science. В России есть масса возможностей на любой кошелёк и вкус. Например, программа GeekBrains, разработанная совместно с NVIDIA и «МегаФон», обучает Data Science с нуля.
Для прохождения курса студентам будет достаточно школьных знаний, а онлайн-университет обеспечит всеми необходимыми ресурсами и инструментарием. В рамках программы обучающиеся будут ознакомлены с нейронными сетями и технологиями машинного обучения.
Программа в GeekBrains подойдёт как начинающим аналитикам, предоставив толчок для карьерного роста, так и для практикующих специалистов, желающих перейти в более востребованное направление. Курс состоит из 262 часов обучающего контента, 534 часов практики, 2-4 еженедельных семинаров и гарантирует трудоустройство.
Обучение разделено на четверти. С октября по декабрь студенты занимаются изучением основ языка Python, осваивают операционную систему Linux, создают сервера в облачных сервисах AWS. Также в список целей входит обучение SQL.
Во второй четверти студенты продолжают изучать библиотеки Python для Data Science, а также начинают решать задачи по комбинаторике, изучают методы проверки статистических гипотез и знакомятся с особенностями открытых данных. В третьей четверти придётся уделить внимание математике. В течение трёх месяцев нужно детально изучить математические аспекты алгоритмов, которым находится применения в Data Science.
Последний этап первого года уделён машинному обучению, а его программа разработана совместно с «МегаФон». Студентам даётся три месяца, в течение которых нужно научиться решать бизнес задачи, применяя машинное обучение. Также в рамках четвёртой четверти обучения удастся изучить реализацию рекомендательных систем.
Второй год обучения начинается с изучения нейронных сетей. Студенты решают задачи ML с данными из социальных сетей и др., а также на практике знакомятся с Tensorflow, Keras и PyTorch. Наконец, во второй четверти второго года изучаются продвинутые архитектуры нейронных сетей, компьютерное зрение и нейролингвистическое программирование.
Заключение
В целом, Data Scientist – профессия, которая требует как теоретических знаний, так и практических навыков. Причём вряд ли вам удастся обойтись опытом лишь одной профессии. Чтобы освоить Data Scientist, придётся приложить немало усилий и времени, но в конечном счёте это должно будет окупиться сполна.
Первые полтора года опыта в профессии вы можете получить на курсе «Data Science с нуля». После прохождения которого вы также получите полную поддержку при трудоустройстве, начиная от помощи в составлении резюме до подготовки к собеседованию.
Чем занимается специалист по Data Science и как начать работать в этой области?
Специалист в области Data Science строит на основе данных модели, которые помогают принимать решения в науке, бизнесе и повседневной жизни. Он может работать с неструктурированными массивами информации в разных сферах: от выявления элементарных частиц в экспериментах на БАК, анализа метеорологических факторов, анализа данных о перемещениях автотранспорта до исследования финансовых операций, поисковых запросов, поведения пользователей в Интернете.
В результате получаются модели, которые прогнозируют погоду, загруженность дорог, спрос на товары, находят снимки, где могут оказаться следы нужных элементарных частиц, выдают решения о предоставлении кредита, могут рекомендовать товар, книгу, фильм, музыку.
Анна Чувилина, автор и менеджер программы «Аналитик данных» Яндекс.Практикума, рассказала, какие задачи решает специалист в области Data Science или датасаентист, в чем состоит его работа и чем он отличается от аналитика данных.
Что такое Data Science?
Data Science — это применение научных методов при работе с данными, чтобы найти нужное решение. В широком смысле, естественные науки основаны на Data Science. Например, биолог проводит эксперименты и анализирует результаты для проверки своих гипотез. Он должен уметь обобщать частные наблюдения, исключать случайности и делать верные выводы.
Датасаентист работает с данными так же, как ученый в любой другой сфере. Он использует математическую статистику, логические принципы и современные инструменты визуализации, чтобы получить результат.
Сбор данных — это способ измерить процессы вокруг нас. А научные методы позволяют расшифровать большие массивы данных, найти в них закономерности и применить для решения конкретной задачи.
Кто такой специалист по Data Science?
Датасаентист обрабатывает массивы данных, находит в них новые связи и закономерности, используя алгоритмы машинного обучения, и строит модели. Модель — это алгоритм, который можно использовать для решения бизнес-задач.
Например, в Яндекс.Такси модели прогнозируют спрос, подбирают оптимальный маршрут, контролируют усталость водителя. В результате стоимость поездки снижается, а качество растет. В банках модели помогают точнее принимать решения о выдаче кредита, в страховых компаниях — оценивают вероятность наступления страхового случая, в онлайн-коммерции — увеличивают конверсию маркетинговых предложений.
Глобальные поисковые системы, рекомендательные сервисы, голосовые помощники, автономные поезда и автомобили, сервисы распознавания лиц — все это создано с участием датасаентистов.
Анализ данных — это часть работы датасаентиста. Но результат его труда — это модель, код, написанный на основе анализа. В этом главное отличие между датасаентистом и аналитиком данных. Первый — это инженер, который решает задачу бизнеса как техническую. Второй — бизнес-аналитик, больше погруженный в бизнес-составляющую задачи. Он изучает потребности, анализирует данные, тестирует гипотезы и визуализирует результат.
«Датасаентист решает задачи с помощью машинного обучения, например распознавание изображений или предсказание расхода материала на производстве. Результат его работы — работающая модель по техническому заданию, которая будет решать бизнес-задачу», — Анна Чувилина, автор и менеджер программы «Аналитик данных» в Яндекс.Практикуме.
Специалист по Data Science проходит те же карьерные ступени, что и другие профессионалы в IT: джуниор, мидл, тимлид или сеньор. В среднем, каждая ступень занимает от года до двух. Более опытный специалист лучше понимает бизнес-задачи и может предложить лучшее решение для них. Чем выше уровень, тем меньше датасаентист сфокусирован только на технических задачах. Он может оценивать проект и его смысловую составляющую.
Задачи специалиста по Data Science
Задачи различаются от компании к компании. В крупных корпорациях датасаентист работает с несколькими направлениями. Например, для банка он может решать задачу кредитной оценки и заниматься процессами распознавания речи.
Этапы работы над задачей у датасаентистов из разных сфер похожи:
Каждая новая итерация позволяет лучше понять проблемы бизнеса, уточнить решение. Поэтому каждый этап повторяется снова и снова для развития модели и обновления данных.
Data Science работает и для стартапов, и для крупных корпораций. В первых специалисты работают в одиночку или небольшими командами над отдельными задачами, а во вторых — реализуют долгосрочные проекты в связке с бизнес-аналитиками, аналитиками данных, разработчиками, инфраструктурными администраторами, дизайнерами и менеджерами.
Руководитель проекта с аналитиками берёт на себя большую часть работы: общается с бизнесом, собирает требования, формирует техническое задание. В зависимости от уровня и принципов работы в компании, специалист по Data Science участвует в переговорах или получает задачи от руководителя проекта и аналитиков.
Следующий этап — сбор данных. Если в компании не налажены процессы для получения данных, датасаентист решает и эту задачу. Он внедряет инструменты, которые помогают автоматически получать и предварительно очищать, структурировать нужную информацию.
Разметка данных — это тоже способ навести в них порядок. Каждой записи присваивается метка, по которой можно определять класс данных: это спам или нет, клиент платежеспособен или недостаточно. Для этой задачи редко используют алгоритмы, метки проставляют вручную. Качественно размеченные данные имеют большую ценность.
«Со стороны заказчика часто присылаются первые данные, которые не готовы для анализа. Специалист их изучает и пытается понять взаимосвязи внутри данных. Для этого часто используется пайплайн — стандартная последовательность действий для процесса анализа данных, которая у каждого своя. Во время ‘‘просмотра’’ у специалиста возникают гипотезы относительно данных, которые он потом будет проверять», — говорит Анна Чувилина, автор и менеджер программы «Аналитик данных» в Яндекс.Практикум.
Во время обработки данные переводятся в формат, удобный для машинного обучения, чтобы запустить первое, «пробное» обучение. Оно должно подтвердить или опровергнуть гипотезы о данных, которые есть у специалиста по Data Science. Если гипотезы не подтверждаются, работа с этим набором данных прекращается. Если одна или несколько гипотез окажутся жизнеспособными — на выходе получается первая версии модели. Её можно назвать baseline-моделью или базовой, относительно которой на следующих итерациях можно искать улучшения в качестве работы модели. Это минимально работающий продукт, который можно показать, протестировать и развивать дальше.
Вместе с моделированием или перед ним выбирают метрики для оценки эффективности модели. Как правило, это две категории: метрики для бизнеса и технические. Бизнес-метрики отвечают на вопрос «каков экономический эффект от работы данной модели?» Технические определяют качество модели, например, точность предсказаний.
Модель оценивают на контролируемость и безопасность. Например, для задач медицинской диагностики это решающий фактор. Когда модель готова и протестирована, то её встраивают в производственный процесс (например, кредитный конвейер) или продукт (например, мобильное приложение). Она начинает приносить пользу в реальной жизни.
Ошибки в моделях могут дорого стоит компании. Например, неверная скоринговая модель создаст ситуацию, когда ненадежные заемщики массово не смогут возвращать кредиты. В результате банк понесёт убытки.
Что нужно для старта
Знание математической статистики, базовые навыки программирования и анализа данных нужны для входа в любую сферу, где может быть занят датасаентист. Следующие этапы потребуют более глубоких знаний. Набор необходимых скиллов и инструментов будет во многом зависеть от задач конкретной компании.
«Для решения простых задач и попадания на уровень джуниора достаточно базовых знаний машинного обучения, математического аппарата и программирования. От специалиста уровня мидл и сеньор уже требуется умение тонко настраивать параметры, которые влияют на общее качество результата. Список разделов из высшей математики и понимание математической постановки каждой модели на этому уровне на порядок выше, чем для джуниора» — Анна Чувилина, автор и менеджер программы «Аналитик данных» в Яндекс.Практикум.
Как правило, в Data Science используют SQL, Python, для сложных вычислений — C/C++. Хороший уровень английского поможет быстрее расти за счет чтения профессиональной литературы и общения с другими профессионалами отрасли.
Бэкграунд разработчика хорошо подходит для переквалификации в датасаентисты. Разработчики знают языки программирования, разбираются в алгоритмах и имеют представление о принципах работы инструментов в ИТ. В таком случае переход в новую специальность займет несколько месяцев. Важные конкурентные преимущества, доступные профессионалам из других сфер: лучшее понимание предметной области, сильные коммуникативные навыки.
От начинающего специалиста по Data Science работодатель ждёт:
Опыт работы с реальными бизнес-проектами для работодателя важнее, чем ученая степень или профильное высшее образование. Дипломы сильных вузов и тематические научные работы ценятся больше при выборе привлеченных консультантов на стратегические проекты. А по практическому опыту выбирают датасаентиста для решения ежедневных задач компании.
Перед датасаентистом не стоит задача охватить все области математического знания или освоить каждый программный инструмент, который можно применить для анализа данных и построения модели. Над масштабными и сложными проектами обычно работают группы специалистов. Здесь навыки и знания каждого дополняют общий инструментарий. Чтобы стартовать в профессии достаточно любить программирование, математику и не бояться сложных задач.
Кто такой Data Scientist?
Дата-сайентист (он же Data Scientist, специалист по Data Science) может найти себе работу в любой сфере: от розничной торговли до астрофизики. Потому что именно он — настоящий повелитель больших данных. Вместе с автором кейсов для курса по Data Science Глебом Синяковым разбираемся, почему в современном мире всем так нужны дата-сайентисты.
Чем занимается Data Scientist?
Data Scientist применяет методы науки о данных (Data Science) для обработки больших объемов информации. Он строит и тестирует математические модели поведения данных. Это помогает найти в них закономерности или спрогнозировать будущие значения. Например, по данным о спросе на товары в прошлом, дата-сайентист поможет компании спрогнозировать продажи в следующем году. Модели строят с помощью алгоритмов машинного обучения, а с базами данных работают через SQL.
Где нужен и какие задачи решает Data Scientist?
Дата-сайентисты работают везде, где есть большие объемы информации: чаще всего это крупный бизнес, стартапы и научные организации. Поскольку методы работы с данными универсальны, специалистам открыты любые сферы: от розничной торговли и банков до метеорологии и химии. В науке они помогают совершать важные открытия: проводят сложные исследования, например, строят и обучают нейронные сети для молекулярной биологии, изучают гамма-излучения или анализируют ДНК.
В крупных компаниях дата-сайентист — это человек, который нужен всем отделам:
В стартапах они помогают разрабатывать технологии, которые выводят продукт на новый уровень: TikTok использует машинное обучение, чтобы рекомендовать контент, а MSQRD, который купил Facebook, — технологии по распознаванию лица и искусственный интеллект.
Пример задачи:
Если дата-сайентисту нужно спрогнозировать спрос на новую коллекцию кроссовок, то он:
Что ему нужно знать?
Дата-сайентист должен хорошо знать математику: линейную алгебру, теорию вероятности, статистику, математический анализ. Математические модели позволяют найти в данных закономерности и прогнозировать их значения в будущем. А чтобы применять эти модели на практике, нужно программировать на Python, уметь работать с SQL и библиотеками (набор готовых функций, объектов и подпрограмм) и фреймворками (ПО, объединяющее готовые компоненты большого программного проекта) для машинного обучения (например, NumPy и Scikit-learn). Для более сложных задач дата-сайентистам нужен язык С или C++.
Результаты анализа данных нужно уметь визуализировать, например, с помощью библиотек Seaborn, Plotly или Matplotlib.
Профессия Data Scientist: как не ошибиться с выбором
Человек любит играть с цифрами или цифры с человеком? В классическом среднем образовании есть забавный парадокс: школьников натаскивают зазубривать правила и случаи их применения, но чем больше ученик знает правил и исключений, тем чаще имеет возможность совершить ошибку. В диктанте, сотканном из текстов классической русской литературы, изобилие запятых уточняющего характера, приводит к мысли, что именно не поставленная запятая является ошибкой. Следовательно, грамотная работа – это сочинение с большим количеством запятых. Проблема причинно-следственной связи, не так ли? Может быть, если вы хороший писатель, вы используете много запятых уточняющего характера, но это не тот случай, когда количество запятых делает вас хорошим писателем…
Интерпретация запятых в классической русской литературе – это пример плохого анализа данных, построенного на отсутствии любознательности и понимания математической статистики. Эти факторы + страстное желание развиваться в области информационных технологий – ключевые в понимании специальности «учёного по данным».
Пост подготовлен по материалам выступления сотрудника Airbnb, специалиста по data science.
Не будем подробно останавливаться на том, почему профессия data scientist отмечается как одна из самых привлекательных и перспективных в мире. Достаточно упомянуть, что число вакансий в этом направлении растёт по экспоненте, а по расчётам McKinsey Global Institute к 2018 году в одной только Америке понадобится дополнительно 190 тысяч специалистов по данным, имеющих подготовку в области статистики и машинного обучения. McKinsey отмечают, что дополнительно понадобится обучать миллионы менеджеров базовым навыкам работы с данными.
Это огромный рынок, который только появляется, однако проблемы big data и способы их решения возникли не вчера. Объём архивных данных, накопленных за годы работы только в Airbnb, составляет несколько петабайт данных. Ежедневно обрабатываются десятки терабайт информации при помощи хранилища, построенного на основе Apache Hadoop и Hive. Мы уже рассказывали о персонализированной поисковой системе Airbnb – создана она на системе распределённой обработки в режиме реального времени Storm. Для Airbnb анализ пользовательских данных необходим для принятия практически любого решения по развитию компании. И нам жизненно необходимы профессионалы data scientist.
На сегодняшний день только треть спроса на data science специалистов может быть удовлетворена. Недонасыщенный рынок не может предоставить компаниям квалифицированные кадры в области data mining или прогнозной аналитики, что ведёт к росту спроса и зарплат. Государственные и частные вузы не справляются с процессом подготовки специалистов по работе с данными.
Data Scientist: личностные особенности
Ряд технических ВУЗов предлагают программу подготовки «магистров наук по науке о данных и менеджменту». Специальность потребует от вас глубоких знаний в области математической статистики, машинного обучения, программирования. Однако никакое обучение не сравнится с опытом, который вы получите непосредственно от работы, сталкиваясь с реальными проблемами. Только работа продемонстрирует вам, что выбранный путь – не самый простой в жизни.
Заниматься data science так же трудно, как заниматься наукой вообще. Как и в обычных научных дисциплинах, большинство применяемых вами методов не сработают. Вы не можете просто зайти в лабораторию, щёлкнуть пальцами и получить результат. Вы придумаете множество интересных (просто отличных!) вещей: как сделать систему лучше, как настроить и оптимизировать выборку, и тому подобное. Около двух третей ваших идей не сработают. Подавляюще большую часть времени вы будете терпеть неудачу. И должны быть к этому готовы.
Чтобы быть хорошим data scientist не достаточно быть хорошим программистом. Вы должны лучше разбираться в статистике, чем в программной инженерии. Компетентный data scientist – это компетентный статистик. Окружающие вас спецы во всём остальном разбираются лучше – и это нормально, вы должны уметь слушать их, получать от них данные, необходимые в вашей работе.
Data scientist – это человек, который любит математику. Работодатели, ищущие специалиста в области данных, должны в первую очередь обращать внимание на математические специальности. Вы не изучали математику и боитесь поставить крест на карьере? Есть альтернативный путь – изучение информатики. А можно и преуспеть в академической науке. Важен склад ума, понимаете? Вы можете быть специалистом в нейронауке и решить заняться изучением данных – математика примет вас с распростёртыми объятиями.
Погружение в математику не должно мешать вам изучать компьютерные системы. Иначе проще стать преподавателем. Это большая проблема на самом деле, что математики не понимают масштаб используемых данных, они не понимают саму структуру компьютерных данных и, как следствие, не способны смоделировать появление системных проблем в перспективе. Всегда существует брешь между вероятностной математической моделью, которая, как вы предполагаете, соответствует структуре вашей проблемы, и фактическими данным, которые вы пытаетесь анализировать. Собирать статистику – означает метаться между моделью и данными. Очень важно понимать это на глубинном уровне, а не относиться к математике (и компьютерным системам) как к волшебной коробке, куда можно закинуть цифры, повернуть рукоятку и получить результат.
Data Scientist: как им стать
Человек действует сообразно шаблонам, заложенным в голове. При рассмотрении проблемы вы оперируете готовыми моделями поведения. Data scientist работает со случайными величинами и вероятностными моделями, потому что его задача – выявлять самые неожиданные закономерности. Если вы хотите нанять такого специалиста, и признаётесь себе, что не так много знаете о статистике, предложите человеку, которого вы интервьюируете, тест полностью лишенный контекста. Вырванный из контекста. И вы увидите, как он будет обращаться с проблемой не зная, как решить проблему. В этом суть работы – думать не о заранее полученных статистических данных, не о компьютерных моделях решения, а о проблеме. Такое решение демонстрирует способность специалиста оперировать вероятностными моделями со сложными данными.
Итак, вы готовы делать все эти штуки, вы разбираетесь в статистике, понимаете структуру данных и алгоритмы, или вы ученый, понимающий, что лежит в основе моделирования. Теперь вы можете получить работу. Но есть ещё масса всего на свете, чего вы не знаете, что трудно понять, потому что оно не занесено в учебники. Например, большинство аналитиков данных не понимают, как работают команды в рамках разработки программного обеспечения. Это очень пугает и нервирует, когда вы соприкасаетесь со средой с непонятным материалом. Нет ничего унизительно в том, чтобы признать это и начать всё заново – стать учеником более опытных разработчиков.
Наблюдать за развитием программного проекта с нуля – это бесценный опыт. Другой способ получить опыт взаимодействия с реальной средой – участвовать в проекте Kaggle. Ресурс используют для решения сложных задач в разных областях знаний (маркетинг, финансы, банковское дело, медицина, страхование, научные исследования). Kaggle превращает бизнес-задачи компаний в структурированный набор данных, с которыми удобно работать.
Data Scientist: не быть тем, кем ты не являешься
Не пытайтесь быть тем, кем вы не являетесь. Не редко data scientist воспринимают как аналитика данных. Аналитик может сказать: «Если мои инструменты анализа данных не могут ответить на поставленный вопрос, то вопрос остаётся без ответа». Здесь мы задаём вопрос базе данных и, если он не вернется через полчаса, мы отменяем его и переходим к следующему.
Data scientist размышляет следующим образом: «Если мои инструменты анализа данных не могут ответить на поставленный вопрос, значит мне нужны более лучшие инструменты и данные». Этот пример объясняет лучше всего вышесказанного, как быть data scientist. Учёный не говорит: я не могу ответить на вопрос, пойду займусь чем-нибудь другим. Ученый продолжает думать о вопросе и выяснить способы, с помощью которых сможет на него ответить.