Что может произойти при очень тонкой базе
Home Радиотехника Устройство и принцип действия биполярного транзистора |
Устройство и принцип действия биполярного транзистора
Рис. 1. Устройство n-p-n транзистора и его условное обозначение.
В этой статье рассмотрим принцип действия биполярных транзисторов на простом, доступном языке.
Биполярный транзистор состоит из двух p-n переходов, образованных слоями полупроводников с примесями. На рис. 1. показана самая простая конструкция n-p-n транзистора. Тонкий слой слабо легированного полупроводника р-типа (база) расположен между двумя более толстыми слоями n-типа (эмиттер и коллектор). Толщина базы может быть меньше одного микрона.
Принцип действия биполярного транзистора
Рис. 2. Иллюстрация работы транзистора: (а) тока базы нет, (б) ток базы течет.
На рис. 2. показан транзистор, включенный по схеме с общим эмиттером. В схеме, приведенной на рис. 2.(a), ток базы не течет, а в схеме на рис. 2.(б) переключатель S замкнут, позволяя току из батареи В1 течь в базу транзистора. Сначала рассмотрим схему на рис. 2.(a). Важно отметить, что переход коллектор-база смещен в обратном направлении и имеющийся потенциальный барьер препятствует потоку основных носителей. Таким образом, пренебрегая утечкой, можно считать, что при разомкнутом ключе S коллекторный ток равен нулю. Теперь рассмотрим, что произойдет, когда ключ S замкнут (рис. 2.(б)). Переход база-эмиттер становится смещенным в прямом направлении, а переход коллектор-база остается смещенным в обратном направлении. Благодаря смещению перехода база-эмиттер в прямом направлении электроны из эмиттера n-типа посредством диффузии проходят по базе р-типа по направлению к обедненному слою на переходе база-коллектор. Эти электроны, являющиеся неосновными носителями в области базы, достигнув обедненного слоя, по потенциальному барьеру «как с горки» быстро скатываются в коллектор, создавая тем самым в транзисторе коллекторный ток. Действие смещенного в прямом направлении перехода база-эмиттер напоминает открывание ворот и позволяет току протекать по цепи эмиттер-коллектор. Таков принцип действия биполярного транзистора.
Следующий момент требует объяснения. Почему электроны не рекомбинируют с дырками в базе р-типа в процессе диффузии в сторону коллектора? Ответ состоит в том, что базу делают совсем слабо легированной, то есть с низкой концентрацией дырок, и очень тонкой; следовательно, имеется лишь малая вероятность того, что электрон будет перехвачен дыркой и рекомбинирует. Когда электрон рекомбинирует в области базы, происходит кратковременное нарушение равновесия, поскольку база приобретает отрицательный заряд. Равновесие восстанавливается с приходом дырки из базовой батареи В1 Батарея В1 является источником дырок для компенсации рекомбинирующих в базе, и эти дырки образуют базовый ток транзистора. Благодаря базовому току в базе не происходит накопления отрицательного заряда и переход база-эмиттер поддерживается смещенным в прямом направлении, а это, в свою очередь, обеспечивает протекание коллекторного тока. Таким образом, транзистор является прибором, управляемым током. Отношение тока коллектора к току базы называется коэффициентом усиления тока (hFE). Он должен равняться числу электронов в секунду, успешно проследовавших от эмиттера к коллектору, деленному на число рекомбинировавших. В типичном маломощном кремниевом транзисторе приблизительно 1 из 100 электронов рекомбинирует в базе, так что усиление тока имеет значение порядка 100.
Фактически в работе транзистора принимают участие как электроны, так и дырки, что отличает его от униполярного или полевого транзистора.
Ранее упоминалось, что при смещении p-n перехода в прямом направлении текущий по нему ток образуют как электроны, так и дырки. Но при рассмотрении смещенного в прямом направлении перехода база-эмиттер мы пока учитывали только электроны, пересекающие этот переход. Такой подход оправдан практически, поскольку область эмиттера n-типа специально легируется очень сильно, чтобы обеспечить большое число свободных электронов, в то время как область базы легируется совсем слабо, и это дает настолько мало дырок, что ими можно пренебречь при рассмотрении тока через переход база-эмиттер. Эмиттер так сильно легирован, что напряжение лавинного пробоя перехода база-эмиттер обычно всего лишь 6 В. Этот факт нужно иметь в виду при работе с некоторыми переключающими схемами, где необходимо позаботиться о том, чтобы обратные смещения не были слишком большими. Но это обстоятельство может быть и полезным, поскольку переход база-эмиттер маломощного транзистора ведет себя как 6-вольтовый стабилитрон и иногда используется в этом качестве.
Эффекты второго порядка. Зависимость коллекторного тока от тока базы
Рис. 3. Типичная зависимость коллекторного тока от тока базы в маломощном кремниевом транзисторе.
На рис. 3. показан график зависимости коллекторного тока от тока базы для маломощного кремниевого транзистора: наблюдается линейная зависимость IC от IB в широком диапазоне значений коллекторного тока. Однако при малом токе базы коэффициент усиления тока несколько уменьшается. Этот эффект можно объяснить, рассматривая поведение электронов в базе: при очень малом базовом токе ничто не способствует электронам, попавшим из эмиттера в базу, достичь коллектора; только приблизившись к обедненному слою коллектор-база, они затягиваются полем. До этого электроны, совершая случайные блуждания, просто диффундируют сквозь базу, и любой из них может стать жертвой рекомбинации с какой-нибудь встретившейся дыркой. При больших значениях базового тока условия для электронов благоприятнее. Дырки, инжектируемые в виде базового тока, создают небольшое электрическое поле в базе, которое помогает электронам в их движении к обедненному слою. Таким образом, при умеренных токах коллектора (порядка 1 мА) коэффициент усиления тока будет больше, чем при малых токах коллектора (порядка 10 мкА).
При очень больших токах коллектора, когда заселенность базы дырками становится слишком большой, усиление начинает падать. База ведет себя так, как будто она легирована сильнее, чем это есть в действительности, так что значительная часть тока, текущего через эмиттерный переход, состоит из дырок, движущихся из базы в эмиттер так же, как полезные электроны, двигающиеся в другом направлении, к коллектору. Таким образом, все большая и большая часть базового тока является «пустой породой» и поэтому коэффициент усиления тока падает. Этот эффект важен в мощных усилителях, где он может приводить к искажению формы сигнала при больших токах коллектора.
В связи с тем, что зависимость коллекторного тока от тока базы является нелинейной, существуют два определения для коэффициента усиления тока транзистора в схеме с общим эмиттером. Коэффициент усиления постоянного тока получается просто делением тока коллектора на ток базы; его обозначают hFE В или β и он важен для переключающих схем. Однако в большинстве случаев, когда речь идет об усилении, мы имеем дело только с небольшими приращениями коллекторного тока, и более подходящим способом определения коэффициента усиления тока является отношение приращения коллекторного тока к приращению тока базы, которое называется коэффициентом усиления тока hfe или β в режиме малого сигнала. Из рис. 3. следует, что
Для большинства практических целей можно считать, что hFE и hfe равны.
Ток утечки между коллектором и базой
Хотя переход коллектор-база смещен в обратном направлении, все же существует очень небольшой ток утечки из коллектора в базу, обозначаемый ICBO поскольку он измеряется с разомкнутой цепью эмиттера. В кремниевом транзисторе при комнатной температуре ICBO очень мал, обычно менее 0,01 мкА. Однако в случае, когда транзистор включен в схему с общим эмиттером и цепь базы разорвана, как показано на рис. 2.(a), ток ICBO протекающий по переходу коллектор-база, должен течь в эмиттер, для которого он неотличим от внешнего тока базы. Таким образом, ICBO усиливается транзистором, и ток утечки между коллектором и эмиттером возрастает до значения ICEO = hFE/ICBO которое может доходить до 1 мкА. Поскольку ток ICBO в значительной степени является результатом теплового нарушения связей, он увеличивается приблизительно вдвое с ростом температуры на каждые 18 градусов Цельсия. Когда ICBO становится сравнимым с нормальным током коллекторной цепи, транзистор обычно считается слишком горячим. Кремниевые p-n переходы могут работать до 200 °С, а германиевые, имеющие много больший ток утечки, только до 85 °С.
Когда кремниевый транзистор работает при комнатной температуре, токами ICBO и ICEO можно практически полностью пренебречь. В германиевом транзисторе при комнатной температуре (20 °С) ток ICBO имеет значение порядка 2 мкА, так что при hFE = 100 ток ICEO будет равен 200 мкА. Этот относительно большой ток утечки является той причиной, по которой германиевые транзисторы вышли из употребления, за исключением специальных целей, когда требуется малая разность потенциалов на германиевом p-n переходе, смещенном в прямом направлении.
n-p-n и p-n-p транзисторы
Описание работы транзистора, данное выше, относится к наиболее распространенным n-р-n транзисторам; также легко доступны р-n-р транзисторы, очень полезные для целого ряда комплементарных схем, так как они обладают характеристиками, идентичными с n-р-n транзисторами, но требуют напряжения питания противоположной полярности. Тогда как в n-р-n транзисторе ток коллектора состоит из электронов, в р-n-р транзисторе он состоит из дырок. Аналогично, ток базы является электронным током, а не дырочным. На рис. 4. показана структура р-n-р транзистора и его условное обозначение.
Рис. 4. Устройство р-n-р транзистора и его условное обозначение.
Биполярный транзистор
1. Основные сведения
Биполярным транзистором называется трехэлектродный усилительный полупроводниковый прибор, имеющий трехслойную p-n-p, либо n-p-n структуру с двумя взаимодействующими (ключевое слово) p-n переходами.
Рис. 1. Упрощенный вид внутреннего устройства биполярного транзистора p-n-p структуры.
На рис. 1 показан упрощенный вид внутренней структуры объемного маломощного биполярного p-n-p транзистора. Крайнюю слева р + область называют эмиттером. Промежуточная n область называется базой. Крайняя p область справа – коллектор. Электронно-дырочный переход между эмиттером и базой называют эмиттерным, а между базой и коллектором – коллекторным.
Расстояние между обедненными зонами называется эффективной толщиной базы «W».
Для того, чтобы уменьшить интенсивность процессов рекомбинации дырок в базе, необходимо выполнить условие , то есть физическая толщина базы должна быть меньше диффузионной длины. Это означает автоматическое выполнение условия , что обуславливает взаимодействие переходов.
Эмиттер предназначен для инжекции дырок в базу. Область эмиттера имеет небольшие размеры, но большую степень легирования – концентрация акцепторной примеси NA в эмиттере кремниевого транзистора достигает
10 17 – 10 18 ат/см 3 (этот факт обозначен символом р + ). Область базы легирована нормально – концентрация донорной примеси ND в ней составляет
Теперь выделим еще раз особенности структуры, которые обеспечивают хорошие усилительные свойства транзистора, уменьшая интенсивность процессов рекомбинации:
односторонняя диффузия (несимметичный эмиттерный переход)
Область коллектора имеет наибольшие размеры, поскольку в его функцию входит экстракция носителей, диффундировавших через базу. Кроме того, на коллекторе рассеивается большая мощность, что требует эффективного отвода тепла.
Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.
Биполярные транзисторы являются усилительными приборами и, поэтому, применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десятков гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте:
низкочастотные не более 3 МГц;
высокочастотные- от 30 МГц до 300 МГц;
По мощности выделяют следующем образом:
В настоящее время парк биполярных транзисторов очень разнообразен. Сюда входят как обычные транзисторы, которые работают в самых различных аналоговых, импульсных и цифровых устройствах, так и специальные, например, лавинные транзисторы, предназначенные для формирования мощных импульсов наносекундного диапазона. Следует упомянуть многоэмиттерные, а также составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.
2. Принцип действия
Рассмотрим активный режим работы транзистора, когда эмиттерный переход открыт прямым смещением Uэб, а коллекторный закрыт обратным смещением Uкб. Для этого воспользуемся одномерной моделью транзистора, которая показана на рис. 2. Модель характерна тем, что все физические величины зависят только от продольной координаты, поперечные же размеры бесконечны. Стрелками на рисунке обозначены положительные направления токов (от «+» к «–»), дырки обозначены открытыми, а электроны – закрытыми кружками. Сокращения: ЭП – эмиттерный переход, КП – коллекторный переход.
Рис. 2. Иллюстрация принципа действия биполярного транзистора p-n-p структуры.
Теперь замкнем ключ «К». Потенциальный барьер понижается вследствие частичной компенсации внутреннего электрического поля встречно направленным внешним электрическим полем источника Uэб. Начинается процесс диффузии, вследствие огромного градиента концентраций дырок между эмиттером и базой. Дырки диффундируют или инжектируются из эмиттера в базу, где меняют статус – становятся неосновными. Для неосновных носителей нет потенциального барьера, другими словами, диффундируя через базу в направлении коллекторного перехода, они попадают во втягивающее поле коллекторного перехода и экстрагируются в область коллектора. В цепи коллектора эти дырки создают дрейфовый ток, пропорциональный току эмиттера:
(2.1)
Условные обозначения биполярного транзистора на схеме, показаны на рис. 3.1, а показано условное графическое обозначение биполярного транзистора по ГОСТ для формата листа А4. Стрелка на выводе эмиттера всегда направлена от «p» к «n», то есть указывает направление прямого тока открытого перехода. Кружок обозначает корпус дискретного транзистора. Для транзисторов в составе интегральных схем он не изображается. На рис. 3.1, б и в показаны структуры p-n-p и n-p-n соответственно. Принцип действия транзисторов обеих структур одинаков, а полярности напряжений между их электродами разные. Поскольку в транзисторе два перехода (эмиттерный и коллекторный) и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора.
Активный режим, когда эмиттерный переход открыт, а коллекторный закрыт. Активный режим работы является основным и используется в усилительных схемах.
Режим насыщения— оба перехода открыты.
Режим отсечки— оба перехода закрыты.
В большинстве транзисторных схем транзистор рассматривается как четырехполюсник. Поэтому для такого включения один из выводов транзистора должен быть общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора, которые показаны на рис. 3.2: а) с общей базой (ОБ), б) общим эмиттером (ОЭ) и в) общим коллектором (ОК). На рисунке указаны положительные направления токов, а полярности напряжений соответствуют активному режиму работы.
Рис. 3.2. Схемы включения транзистора слева направо: схема с ОБ, ОЭ и ОК.
В схеме ОБ входную цепь является цепь эмиттера, а выходной – цепь коллектора. Эта схема наиболее проста для анализа, поскольку напряжение Uэб прикладывается к эмиттерному переходу, а напряжение Uкб – к коллекторному, причем источники имеют разные знаки.
В схеме ОК входной цепью является цепь базы, а выходной – цепь эмиттера.
4. Статические вольт-амперные характеристики
(4.1)
Обычно соотношения (4.1) представляют в виде функций одного аргумента. Для этого второй аргумент, называемый параметром характеристики, фиксируют. В основном, используют два типа характеристик транзистора:
(4.2)
(4.3)
Следует отметить, что общепринято представление вольт-амперной характеристики как функции тока от напряжения, поэтому входная характеристика используется в виде обратной функции
(4.4)
Статические характеристики транзистора могут задаваться аналитическими выражениями, но в большинстве случаев их представляют графически в виде семейства характеристик, которые и приводятся в справочниках.
4.1. Статические характеристики в схеме с ОБ
В схеме с ОБ (рис. 3.2.а) входным током является ток эмиттера Iэ, а выходным – ток коллектора Iк, соответственно, входным напряжением является напряжение Uэб, а выходным – напряжение Uкб.
Входная характеристика в схеме ОБ представлена зависимостью
(4.5)
которая, в свою очередь, является прямой ветвью вольт-амперной характеристики эмиттерного перехода. Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.1, а. Зависимость Iэ от Uкб как от параметра связана с эффектом Эрли: увеличение обратного смещения коллекторного перехода Uкб уменьшает эффективную толщину базы W, что приводит к некоторому росту Iэ. Это проявляется в смещении входной характеристики в сторону меньших значений . Режиму отсечки формально соответствует обратное напряжение Uэб> 0, хотя реально эмиттерный переход остается закрытым () и при прямых напряжениях .
Выходная характеристика транзистора в схеме ОБ представляет собой зависимость
(4.6)
Семейство выходных характеристик n-p-n транзистора показано на рис. 4.1, б. Форма кривых в активной области соответствует форме обратной ветви вольт-амперной характеристики коллекторного перехода.
Рис. 4.1. Семейства входных (а) и выходных (б) характеристик биполярного транзистора в схеме с ОБ.
Выражение для идеализированной выходной характеристики в активном режиме имеет вид
(4.7)
Отсюда следует, что ток коллектора определяется только током эмиттера и не зависит от напряжения Uкб, т.е. характеристики в активном режиме расположены параллельно оси абсцисс. На практике же при увеличении Uкб имеет место небольшой рост Iк, связанный с эффектом Эрли, характеристики приобретают очень незначительный наклон. Кроме того, в активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), и лишь при очень больших токах эмиттера из-за уменьшения α кривые несколько приближаются друг к другу.
При Iэ = 0 транзистор находится в режиме отсечки и в цепи коллектора протекает только неуправляемый тепловой ток (Iк = Iкб0).
В режиме насыщения на коллекторном переходе появляется открывающее его прямое напряжение Uкб, большее порогового значения Uкб пор, и возникает прямой диффузионный ток навстречу нормальному управляемому току Iк. Этот ток называют инверсным. Инверсный ток резко увеличивается с ростом , в результате чего Iк очень быстро уменьшается и, затем, меняет знак.
4.2. Статические характеристики в схеме с ОЭ
В схеме с ОЭ (рис. 3.2, б) входным током является ток базы Iб, а выходным – ток коллектора Iк. Соответственно, входным напряжением является напряжение Uбэ, а выходным – Uкэ.
Рис. 4.2. Семейства входных (а) и выходных характеристик (б) биполярного транзистора в схеме с ОЭ.
Входная характеристика в схеме с ОЭ представляет собой зависимость
(4.8)
что, как и в схеме с ОБ, соответствует прямой ветви вольт-амперной характеристики эмиттерного перехода.
Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.2, а. Зависимость тока базы Iб от напряжения на коллекторе Uкэ, как и в предыдущем случае, обусловлена эффектом Эрли. Уменьшение эффективной ширины базы W с ростом Uкэ приводит к уменьшению тока рекомбинации, а, следовательно, тока базы в целом. В результате, характеристики смещаются в сторону больших значений Uбэ. Следует отметить, что Iб = 0 при некотором значении Uпор> 0, когда рекомбинационный ток (1-α)Iэ становится равным тепловому току Iкэ0. При Uбэ 0. В режиме насыщения характеристики сливаются в одну линию, т.е. Iк становится неуправляемым и не зависит от тока базы.