Что может быть меньше кварка

Как выглядит самая маленькая частица во Вселенной?

Многие из вас могут наивно полагать, что самой маленькой частицей во Вселенной является атом. Что же, атом действительно считался мельчайшей и неделимой частицей вплоть до открытия в 1897 году Джозефом Томпсоном электрона; протона, который был открыт в 1920 году Эрнестом Резерфордом, а в 1932 году и нейтрона, который впервые был обнаружен английским физиком Джеймсом Чедвиком. Спустя почти 100 лет, мы знаем, что все во Вселенной состоит из кварков — загадочных частиц, которые принимают активное участие в гравитационных и электромагнитных взаимодействиях. Так что же такое кварк и как он выглядит?

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Кварки — самая маленькая частица во Вселенной

Что такое кварк?

Кварк — наименьшая частица мироздания. Именно из кварков состоят все электроны, нейтроны и протоны атомов, каждый из которых был образован 13,7 миллиардов лет назад сразу после Большого Взрыва. Спустя несколько минут после рождения Вселенной, наше мироздание смогло остынуть настолько, что смогли образоваться первые элементарные частицы — кварки и электроны. Кварки соединились друг с другом, образовав ядро атомов. Спустя примерно 400 000 лет Вселенная смогла остынуть настолько, что произошло замедление в движении электронов, позволив атомным ядрам их захватить. Именно таким образом все видимое и невидимое нам пространство смогло обзавестись первыми атомами гелия и водорода, которые, между прочим, все еще остаются самыми распространенными веществами во Вселенной.

Как выглядят атомные частицы?

Наиболее крупными атомными частицами считаются протоны и нейтроны, которые несколько тяжелее электронов и располагаются прямо в самом центре атома. Электроны же образуют легковесное облако, которое вращается вокруг атомного ядра. Известно, что вес 1800 электронов соответствует одному тяжеловесу-протону. Помимо этого, добавление хотя бы одного протона к атому приводит к образованию нового вещества с отличными от оригинала свойствами, причем добавление лишнего нейтрона создает всего лишь изотоп вещества или же просто более тяжелую его версию.

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Ядро атома состоит из протонов, нейтронов и электронов, которые, в свою очередь, состоят из кварков

Наиболее крупными атомными частицами считаются протоны и нейтроны, которые несколько тяжелее электронов и располагаются прямо в самом центре атома. Электроны же образуют легковесное облако, которое вращается вокруг атомного ядра. Известно, что вес 1800 электронов соответствует одному тяжеловесу-протону. Помимо этого, добавление хотя бы одного протона к атому приводит к образованию нового вещества с отличными от оригинала свойствами, причем добавление лишнего нейтрона создает всего лишь изотоп вещества или же просто более тяжелую его версию.

Как уже говорилось выше, абсолютно все элементарные частицы состоят из кварков. которые представляют из себя основу мироздания. Интересный факт: Название “кварк” было взято в одном из романов известного в XX веке писателя-модерниста Джеймса Джойса, который необычным словом решил обозначить звук, воспроизводимый утками.

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Джеймс Джойс — писатель, благодаря которому появился термин «кварки»

Сами же кварки подразделяются на 6 так называемых “ароматов”, каждый из которых обладает своими собственными характеристиками или “цветом”. Кроме того, каждый из 6 типов кварков обладает и собственным весьма оригинальным именем. Так, помимо нижнего и верхнего видов кварков, существуют также странный, очарованный, прелестный и истинный кварки.

Конечно же, “странность” или “прелестность” кварков сильно отличаются от привычных нам понятий. Точно так же, как и понятие цвета кварков на самом деле имеет в виду далеко не их оттенок, но способ взаимодействия кварков и других микрочастиц — глюонов. Что ж, фантазия ученых иногда умеет удивлять.

Если вам нравится данная статья, предлагаю вам посетить наш канал на Яндекс.Дзен, где вы сможете найти еще больше полезной информации из мира науки и техники.

В любом случае, кварки представляют из себя по-настоящему уникальные частицы, от которых во всех смыслах зависит существование нашей Вселенной в том виде, в котором мы ее знаем. Быть может, тайна возникновения Большого взрыва и наше постижение основных законов Вселенной действительно зависят от одной крошечной песчинки, которая в тысячи и тысячи раз меньше атома.

Источник

Что может быть меньше кварка

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами вплоть до масштаба примерно 0,5·10−19 м, что примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.

Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году.

Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц. Есть другая версия (выдвинутая Р. Якобсоном), согласно которой Джойс усвоил это слово из немецкого во время своего пребывания в Вене. В немецком слово Quark имеет два значения: 1) творог, 2) чепуха. В немецкий же данное слово попало из западнославянских языков (чеш. tvaroh, польск. twaróg — «творог»).[1]

Дж. Цвейг называл их тузами, но данное название не прижилось и забылось — возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.

Источник

Субатомные частицы

Насколько велики кварки?

Однако силы, удерживающие кварки вместе, огромны. В отличие от Земли, внутри протона нет ни поля, ни гравитации.

Видео

Общие вопросы о субатомных частицах

Сколько существует субатомных частиц? На данный момент открыто 36 подтвержденных элементарных частиц. Они также включают в себя античастицы. Субатомные частицы бывают двух типов: элементарные и составные. Они могут длиться всего несколько секунд и обнаруживаться повсюду во Вселенной, а не только внутри ядра атома. Какие силы удерживают вместе субатомные частицы? Субатомные частицы удерживаются вместе двумя типами сил: ядерной силой и электромагнитной силой. Это самая мощная сила, известная человечеству. Он должен удерживать частицы, движущиеся со скоростью, близкой к скорости света, в чрезвычайно маленьком пространстве, так что это самая сильная сила, обнаруженная до сих пор. Что такое 12 элементарных частиц? Существует более 12 субатомных частиц, но 12 основных включают шесть кварков (верхний, нижний, странный, очарованный, красивый и истинный), три электрона (электрон, мюон, тау) и три нейтрино (электрон, мюон, тау).

Что такое кварк? Кварк — это субатомная частица, находящаяся внутри протонов и нейтронов. Они значительно меньше протонов, поэтому внутри протонов и нейтронов остается много пустого места. Кварки имеют 2% массы и 98% энергии, но они создают тяжелую массу нуклонов, согласно теории относительности Эйнштейна.

Источник

Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной

Теории и практики

Из-за обширной терминологии большинство популярных книг и статей по физике элементарных частиц не углубляются дальше самого факта существования кварков. Сложно что-либо обсуждать, если широкой аудитории не до конца понятны основные термины. Студент МФТИ и сотрудник лаборатории фундаментальных взаимодействий Владислав Лялин взял на себя функцию путеводителя в то, что называется Стандартной моделью, — главенствующую физическую теорию, объясняющую все известные науке частицы и их взаимодействие между собой, то есть устройство Вселенной на самом глубоком уровне.

Строение вещества

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Владислав Лялин

Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать — и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью, описывающая все известные взаимодействия (кроме гравитации).

Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» — фермионы и переносчики взаимодействия — бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.

Бозоны

В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие — то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия — распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а распадается на электрон и нейтрино.

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Остается последний бозон — бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц — именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.

Фермионы

Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны — нет.

Лептоны

Кварки

В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны — это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух — мезонами.

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных заряда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды — антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк — любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».

Конфайнмент

Хорошо — допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.

Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.

Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и сил поверхностного натяжения она имеет вид шара — можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород — сдиссоциируют, — и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ — но не из молекул воды, а из адронов — и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.

В поисках теории всего

Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден — что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями — несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.

Источник

Какая самая маленькая частица во Вселенной существует

Ответ на непрекращающийся вопрос: какая самая маленькая частица во Вселенной эволюционировал вместе с человечеством.

Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг нас. Затем был обнаружен атом, и он считался неделимым, пока он не был расщеплен, чтобы выявить протоны, нейтроны и электроны внутри. Они тоже не оказались самыми маленькими частицами во Вселенной, так как ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.

Пока ученые не смогли увидеть никаких доказательств того, что внутри кварков что-то есть и достигнут самый фундаментальный слой материи или самая маленькая частица во Вселенной.

И даже если кварки и электроны неделимы ученые не знают, являются ли они наименьшими битами материи в существовании или если Вселенная содержит объекты, которые являются еще более мелкими.

Самые мельчайшие частицы Вселенной

Они бывают разных вкусов и размеров, некоторые имеют удивительную связь, другие по существу испаряют друг друга, многие из них имеют фантастические названия: кварки состоящие из барионов и мезонов, нейтроны и протоны, нуклоны, гипероны, мезоны, барионы, нуклоны, фотоны и т.д.

Бозон Хиггса

Бозон Хиггса, настолько важная для науки частица, что ее называют «частицей Бога». Считается, что она определяет массу всем другим. Элемент был впервые теоретизирован в 1964 году, когда ученые задавались вопросом, почему некоторые частицы более массивны, чем другие. Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка

Бозон Хиггса связан с так называемым полем Хиггса который, как полагают, заполняют Вселенную. Два элемента (квант поля Хиггса и бозон Хиггса), ответственны за то, чтобы дать другим массу. Названа в честь шотландского ученого Питера Хиггса. С помощью адронного коллайдера 14 марта 2013 г. официально объявлено о подтверждении существования Бозона Хиггса.

Многие ученые утверждают, что механизм Хиггса разрешил недостающую часть головоломки, чтобы завершить существующую «стандартную модель» физики, которая описывает известные частицы.

Кварки

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка Кварки (в переводе бредовые) строительные блоки протонов и нейтронов. Они никогда не одиноки, существуя только в группах. По-видимому, сила, которая связывает кварки вместе, увеличивается с расстоянием, поэтому чем дальше, тем труднее их будет разнять. Поэтому свободные кварки никогда не существуют в природе.

Кварки фундаментальные частицы являются бесструктурными, точечными размером примерно 10 −16 см.

Например, протоны и нейтроны состоят из трех кварков, причем протоны содержат два одинаковых кварка, в то время как нейтроны имеют два разных.

Суперсимметричность

Известно, что фундаментальные «кирпичики» материи фермионы это кварки и лептоны, а хранители силы бозоны это фотоны, глюоны. Теория суперсимметрии говорит о том, что фермионы и бозоны могут превращаться друг в друга.

Предсказываемая теория утверждает, что для каждой известной нам частицы есть родственная, которую мы еще не обнаружили. Например, для электрона это селекрон, кварка — скварк, фотона –фотино, хиггса — хиггсино.

Почему мы не наблюдаем этой суперсимметрии во Вселенной сейчас? Ученые считают, что они намного тяжелее, чем их обычные родственные частицы и чем тяжелее, тем короче их срок службы. По сути, они начинают разрушаться, как только возникают. Создание суперсимметрии требует весьма большого количества энергии, которая только существовала вскоре после большого взрыва и возможно может быть создана в больших ускорителях как большой адронный коллайдер.

Что касается того, почему симметрия возникла, физики предполагают, что симметрия, возможно, была нарушена в каком-то скрытом секторе Вселенной, который мы не можем видеть или касаться, но можем чувствовать только гравитационно.

Нейтрино

Нейтрино легкие субатомные частицы, которые свистят везде с близкой скоростью света. На самом деле, триллионы нейтрино текут через ваше тело в любой момент, хотя они редко взаимодействуют с нормальной материей.

Некоторые нейтрино происходят от солнца, в то время как другие от космических лучей, взаимодействующих с атмосферой Земли и астрономическими источниками, такими как взрывающиеся звезды на Млечном пути и другие далекие галактики.

Антивещество

Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кварка Считается, что все нормальные частицы имеют антивещества с одинаковой массой, но противоположным зарядом. Когда материя и антивещество встречаются, они уничтожают друг друга. Например, частица антиматерии протона является антипротоном, в то время как партнер антиматерии электрона называется позитроном. Антивещество относится к самым дорогим веществам в мире которые смогли определить люди.

Гравитоны

В области квантовой механики все фундаментальные силы передаются частицами. Например, свет состоит из безмассовых частиц, называемых фотонами, которые несут электромагнитную силу. Точно также гравитон является теоретической частицей, которая несет в себе силу гравитации. Ученым еще предстоит обнаружить гравитоны, которые сложно найти, потому что они так слабо взаимодействуют с веществом.

Нити энергии

В экспериментах крошечные частицы, такие как кварки и электроны, действуют как одиночные точки материи без пространственного распределения. Но точечные объекты усложняют законы физики. Поскольку нельзя приблизиться бесконечно близко к точке, так как действующие силы, могут стать бесконечно большими.

Идея под названием теория суперструн может решить эту проблему. Теория утверждает, что все частицы, вместо того, чтобы быть точечными, на самом деле являются маленькими нитями энергии. Тоесть все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Что может быть меньше кварка. Смотреть фото Что может быть меньше кварка. Смотреть картинку Что может быть меньше кварка. Картинка про Что может быть меньше кварка. Фото Что может быть меньше кваркаНичто не может быть бесконечно близко к нити, потому что одна часть всегда будет немного ближе, чем другая. Эта «лазейка», похоже, решает некоторые из проблем бесконечности, делая идею привлекательной для физиков. Тем не менее, у ученых до сих пор нет экспериментальных доказательств того, что теория струн верна.

Другой способ решения точечной проблемы — сказать, что само пространство не является непрерывным и гладким, а на самом деле состоит из дискретных пикселей или зерен, иногда называемых пространственно-временной структурой. В этом случае две частицы не смогут бесконечно приближаться друг к другу, потому что они всегда должны быть разделены минимальным размером зерна пространства.

Точка черной дыры

Еще одним претендентом на звание самая маленькая частица во Вселенной является сингулярность (единственная точка) в центре черной дыры. Черные дыры образуются, когда вещество конденсируется в достаточно маленьком пространстве, которое захватывает гравитация, заставляя вещество втянуть вовнутрь, в конечном итоге конденсируясь в единую точку бесконечной плотности. По крайней мере по действующим законам физики.

Но большинство экспертов не считают черные дыры действительно бесконечно плотными. Они считают, что эта бесконечность является результатом внутреннего конфликта между двумя действующими теориями — общей теорией относительностью и квантовой механикой. Они предполагают, что когда теория квантовой гравитации может быть сформулирована, истинная природа черных дыр будет раскрыта.

Планковская длина

Нити энергии и даже самая маленькая частица во Вселенной может оказаться размером с «длину планка».

Планковская длина – «естественная единица» измерения длины, которая была предложена немецким физиком Максом Планком.

Длина Планка слишком мала для любого инструмента, чтобы измерить, но помимо этого, считается, что она представляет собой теоретический предел кратчайшей измеримой длины. Согласно принципу неопределенности, ни один инструмент никогда не должен быть в состоянии измерить что-либо меньшее, потому что в этом диапазоне Вселенная вероятностная и неопределенная.

Эта шкала также считается разграничительной линией между общей теорией относительности и квантовой механикой.

Планковская длина соответствует расстоянию, где гравитационное поле настолько сильно, что оно может начать делать черные дыры из энергии поля.

Очевидно сейчас, самая маленькая частица во Вселенной примерно размером с длину планка: 1,6·10 −35 метров

Выводы

Однако физики уже оперируют с самыми маленькими частицами во Вселенной планковского размера который равняется примерно 1,6 х 10 −35 метров.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *