Бэкплейт что это такое
Что такое Backplate для видеокарты и нужен ли он?
Здравствуйте, дорогие читатели моего блога! Сегодня обсудим бэкплейт для видеокарты: что это такое, для чего нужно, его предназначение и преимущества, есть ли недостатки, от куда появился такой термин, какие бывают backplate, стоит ли делать своими руками.
Backplate буквально переводится с английского как «задняя панель». Это пластина, которая крепится к текстолитовой плате видеокарты. Такая модификация служит двум целям: придает детали дополнительную жесткость и отводит лишнее тепло.
Бэкплейт можно использовать и в случае, если видеокарта без кулера. Впрочем, такие модели перегреваются не сильно. Это уже предусмотрели сами конструкторы, поэтому и не посчитали нужным ставить вентилятор. Для отвода тепла у такой графической платы достаточно радиатора с ребрами замысловатой формы.
Под некоторые модели видеокарт выпускаются фабричные задние панели, форма которых адаптирована под конкретное устройство. Моддеры изготовляют кастомные бэкплейты — как правило, из железа или алюминия. Другой материал не подходит. Например, оргстекло, хотя и будет выглядеть стильно, тепло не отводит.
Еще один вариант — бутерброд из листа металла, покрытого акрилом. Но в любом случае независимо от конструкции и формы обязательно наличие термопрокладки между металлической пластиной и текстолитовой платой видеокарты.
В случае, если видеокарта помещена в пластиковом корпусе вычурной формы, необходимо снять крышку с текстолитовой пластины, чтобы получить к ней доступ.
Нужны ли в принципе такие компоненты? Их использование рационально в случае, если вы установили несколько дополнительных корпусных кулеров, но все-таки не смогли снизить температуру графического адаптера. Такой апгрейд рекомендую проводить всегда при установке жидкостного охлаждения — теплоотвод будет лучше.
Причина всех недостатков бэкплейтов — неправильно подобранный материал. В случае плохой теплопроводимости поменяется только внешний вид графического адаптера, но охладить его дополнительно таким способом не получится.
Продвинутый вариант, который иногда встречается в продаже — backplate, оборудованный еще одним кулером. Такой девайс наверняка будет лучше охлаждать графический адаптер, чем самые модные корпусные вентиляторы, установленные на некотором расстоянии.
А оптимальный вариант — сразу и то, и другое: корпусные вентиляторы на подстраховке у эффективного бэкплейта. Впрочем, если вам приходится прибегать уже к таким мерам, то вероятнее всего с аппаратной частью графического адаптера возникли какие-то проблемы. В нормальном состоянии он не должен так сильно перегреваться.
Подписывайтесь на новостную рассылку, чтобы своевременно получать уведомления о публикации новых материалов. До следующей встречи!
Обратная сторона: тестируем backplate в составе систем охлаждения для видеокарт
Оглавление
Вступление
После того, как мы близко, да еще с разных сторон познакомились с системами охлаждения для видеокарт, у меня остался только один важный вопрос, который касается экстремального охлаждения. В то же время продолжение исследования планировалось посвятить оригинальным кулерам, которые ставят на свои модели компании ASUS, Gigabyte, MSI, Palit, XFX, Zotac и прочие, но возникла проблема с их подбором. Это, во-первых, а во-вторых были сомнения в том, что среди топовых решений разница будет существенной.
реклама
Тем не менее, один вопрос оставался незакрытым. А именно – какова роль «бэкплейта» в охлаждении видеокарты? На сегодняшний день металлическая крепежная пластина по большей части несет усиливающую и декоративно-защитную функции, но что будет, если использовать ее для целей охлаждения? На сей несложный эксперимент меня вдохновила Arctic Cooling Accelero Xtreme IV, у которой за охлаждение VRM и памяти отвечает большой радиатор, крепящийся с обратной стороны печатной платы. А окончательно подтолкнул к действиям «бэкплейт» компании ЕКWB, предназначенный для GeForce GTX 980. Последний помимо усиления конструкции дополнительно охлаждает зону питания.
Конечно, жаль, но «старушка» GeForce GTX 780 неоднократно бывшая участницей моих обзоров, отправилась на покой – и пусть свою роль сыграл фактор детского вмешательства, но, в принципе, вина полностью моя, ибо не доглядел. Ей на смену пришла более современная модель – ASUS ROG GeForce GTX 980 Poseidon. И за компанию (пока проект СЖО ждет оставшиеся компоненты) мы возьмем референсную версию ASUS GeForce GTX 980, оснащенную водоблоком полного покрытия и «бэкплейтом» производства EKWB.
Благодаря этому можно будет сравнить, насколько актуально использование backplate в составе «воздушной» или «водяной» систем, а также сопоставить DirectCU H2O с fullcover EK-FC980 GTX, что может заинтересовать энтузиастов.
ASUS ROG GeForce GTX 980 Poseidon (Poseidon-GTX980-P-4GD5)
Пожалуй, начнем мы с самой интересной участницы – ASUS ROG GeForce GTX 980 Poseidon. Данная видеокарта оснащена гибридной системой охлаждения, которая может работать и как воздушная, и как водяная СО. С ее обзором вы можете ознакомиться, перейдя по этой ссылке.
Тем не менее, кулер Poseidon заслуживает пару слов. В его конструкции сочетаются испарительная камера, тепловые трубки, алюминиевые ребра радиаторов, пара вентиляторов, а также самое важное – водоканал.
реклама
Сам по себе продукт весьма интересен и рассчитан на энтузиастов, позволяя без лишних затрат установить видеокарту в контур системы жидкостного охлаждения.
Но не будем более заострять на ней внимание и перейдем к первому незначительному усовершенствованию СО. Еще в первый раз, когда снимал кулер с печатной платы, при его обратной установке я поставил термопрокладку на микросхему Digi+ VRM. Сделано это было случайно, исходя из логики – выступ есть, а термопрокладки нет.
И это дало свой, неожиданно приятный результат, который приведен в разделе тестирования. Забегая вперед, все же расскажу об итогах охлаждения контроллера VRM: динамическое изменение частоты графического процессора просто-напросто пропало, и на протяжении всех 10 минут стресс-теста частота GPU оставалась на своей максимальной отметке практически во всех режимах.
Результатам охлаждения микросхемы Digi+ посвящен отдельный подраздел с графиками в разделе тестирования, разница проверялась только в режиме воздушного охлаждения.
После того, как видеокарта была протестирована «на воздухе» с охлаждением Digi+ VRM и без него, был собран незамысловатый контур СЖО из компонентов, приведенных ниже. Кроме того, она проверялась без подключения в схему СО «бэкплейта». Затем настало время самого интересного.
С обратной стороны ASUS ROG GeForce GTX 980 Poseidon находится металлический «бэкплейт», который выполняет больше усиливающую и декоративно-защитную функции. Подобной металлической пластиной снабжено большинство видеокарт разных производителей с оригинальными системами охлаждения.
После ее снятия по снимку можно видеть, что неперфорированная поверхность не закрыта защитной пленкой, в то время как вся остальная поверхность находится под ней. Теперь нам предстоит убрать часть этой пленки, чтобы улучшить контакт термопрокладок с металлической пластиной.
Для упрощения задачи приведу ниже схему размещения термопрокладок, предназначенную для обратной стороны печатной платы, где требуется улучшенный теплоотвод, это VRM, контроллер Digi+ и микросхемы памяти.
реклама
Что касается используемых термопрокладок, то они остались после установки Arctic Cooling Accelero Xtreme IV на видеокарту товарища, причем он отказался ставить верхнюю пластину-радиатор, и нам пришлось заморочиться с поиском альтернативных винтов. Что ж, потратив немного времени мне удалось обзавестись неплохим комплектом терморезинок.
Прикладываем «бэкплейт» к видеокарте и снимаем его вместе с приклеившимися к нему термопрокладками.
реклама
Далее делаем вокруг них надрезы ножом или лезвием, чтобы снять защитную пленку и добраться до металла. Стоит отметить, что пленка снимается нехотя, под ней остается слой клея, который нужно соскоблить.
Соскабливаем клей, обезжириваем поверхность, убираем излишки и прочий мусор и ставим термопрокладки на свои места.
реклама
В итоге у нас получается вот такой результат. Конечно, можно было бы сделать поаккуратнее, но в данном случае после сборки это будет незаметно, да и мой внутренний перфекционист в три ночи уже спал.
После возвращаем крепежную пластину на место и прижимаем ее винтами.
Прокладки толщиной 3.5 мм идеально подошли для создания контакта между охлаждаемыми компонентами и «бэкплейтом». Осталось лишь проверить на деле, будет ли от этого толк.
реклама
Видеокарта ASUS ROG GeForce GTX 980 Poseidon была разогнана до 1400 МГц и 8000 МГц (соответственно для GPU и микросхем памяти) и протестирована на данных частотах во всех режимах.
Зачем на материнских платах бэкплейт и что это
Системный администратор сети MiSNet
Любой человек, который устанавливал материнскую плату в системный блок или просто очищал внутренности от пыли, замечал, что на обратной стороне текстолита с сокетом процессора всегда есть небольшая металлическая пластина/крестовина. Это называется бэкплейт и чаще всего его снятие невозможно.
Задача у такого компонента материнской платы простая и единственная – снятие нагрузки с текстолита и контактов материнской платы. Откуда там может быть нагрузка? В LGA сокетах (которые для Intel) крепление процессора происходит прижимом специальной металлической пластиной на его теплораспределительную крышку. Прижим необходим, чтобы все контакты были соединены. Таким образом, прижимная пластина давит на процессор, он на сокет, а он на плату, практически сгибая ее. Но от этого крепления ничего плате не будет, а вот кулера действительно создают очень высокую силу прижима.
У каждой модели свое усилие – простой боксовый кулер Intel вполне может быть установлен без бэкплейта, но установка самой дешевой башни без него приведет к сокрушительным последствиям для материнской платы. Кроме силы, с которой большие кулера давят на плату, они обязаны быть установленными максимально ровно, в чем и помогает бэкплейт.
Все перечисленное касается материнских плат для процессоров Intel, у AMD все несколько по-другому. Сам крепкий металлический бэкплейт на всех материнских платах не встроен, то есть для разных кулеров могут понадобиться разные бэкплейты и их легко можно поменять. Чаще всего он представляет собой цельную металлическую пластину, которая своей жесткостью схожа с целым корпусом. В случае с AMD бэкплейт обязан быть более крепким из-за типа крепления охлаждения.
Бэкплейты AM4. Крепления кулеров, которые могут повредить материнскую плату
Вот и настало время, когда я продал один из своих компьютеров и собрал систему на Ryzen 5 3600. Процессор был куплен в комплектации Box, включающей в себя охладитель Wraith Stealth.
реклама
Первые два дня работы (разгон памяти и игры) выявили достаточно высокую шумность боксового кулера, что после Zalman CNPS10X Optima с тихим вентилятором Arctic Cooling F12 PWM PST несколько досаждало. Беглый поиск кулера за вменяемые деньги, штудирование ветки по системам охлаждения на нашем ресурсе, остановили мой выбор на модели ID-Cooling SE-214L-W, последняя буква не имеет никакого значения, она обозначает лишь цвет, так что дальше он будет упоминаться как SE-214L.
Кулер был установлен по прилагаемой инструкции, в желании наконец-то во что-нибудь поиграть, сперва не придал значения конструкции крепления, хотя несколько и удивил отказ от достаточно качественного бэкплейта, идущего с материнской платой, имеющего выштамповки и круговую завальцовку для придания жесткости. Было решено разобрать свежесобранную систему для инспекции.
Сразу прошу прощения за отсутствие штангенциркуля, замер производился строительным уголком, но в данном случае это не столь важно, десятые миллиметра не играют роли в данном случае.
Демонтировав и покрутив в руках материнскую плату, была замечена явная деформация бэкплейта, идущего в комплекте с кулером.
реклама
Он представляет собой ровную пластину металла, никак не усиленную какими-либо ребрами жесткости, прилегающую через пористые прокладки к материнской плате в местах сквозных отверстий для крепления радиатора:
Вооружимся уголком для наглядности:
реклама
Армирование подсокетного пространства вообще не предусмотрено, но это было и понятно еще при рассмотрении конструкции бэкплейта.
Снимаем. Но что поставить взамен? На помощь приходит уже упомянутый выше бэкплейт, идущий в комплекте с материнской платой.
Для начала вкручиваем шпильки, идущие с новым кулером, резьба совпадает:
реклама
Так как родной бэкплейт выступает за пределы платы с лицевой стороны, нужно было компенсировать высоту упорных гаек просто поменяв из местами:
От этой идеи пришлось отказаться, несмотря на то, что изначально при притягивании радиатора идет выборка зазора от бэкплейта до текстолита, и конструкция получается достаточно монолитная и усиленная, хоть и не лишенная некоторых недочетов, о которых расскажу ниже: Так что, пойдем еще лучшим путем, на помощь приходит часть родного крепежа, идущего с материнской платой, два пластиковых крепления охладителей под скобу «защелку»:
Теперь необходимо их закрепить, используем идущие в комплекте с кулером высокие гайки с накаткой. Они идеально заходят в крепежные выемки в пластиковых креплениях:
Получилось отлично, но разница в высоте между стоковым креплением кулера и нашим монтажом примерно 4 мм.
Эти 4 миллиметра нужно где-то искать. Изначально планки крепятся на алюминиевую прижимную площадку радиатора через сквозные сверления в алюминиевом основании, к нижней его части, мне не очень нравится такая конструкция, так как присутствует напряжение натяжения в витках резьбы, что не является верным конструктивным решением.
Замерим примерную толщину алюминиевой площадки:
Отверстия для крепления сквозные, резьба нарезана по всей длине отверстий, переставляем прижимные пластины на верхнюю часть площадки и примеряем радиатор:
Отлично, основание радиатора легло на теплораспределительную крышку процессора, зазор для хода прижимных пластин имеется, от недостатка, описанного выше, крепление избавлено. Теперь винты в основании выполняют не силовую, а удерживающую функцию. Сравниваем его со стоковым креплением, предлагающимся производителем кулера, такой же или чуть больше, для большего прижима можно оставить именно так, а можно сделать зазор меньше, добавив демпфирующие шайбы из комплекта:
Осталось равномерно затянуть крепления комплектными гайками T-Nut:
Неплохой кулер в итоге стоит на хорошо усиленном оригинальном бэкплейте AM4.
Основная идея этой статьи, наравне с рассказом о переделке SE-214L, показать, что не все бэкплейты одинаково хороши, т.к. у AM4 нет своей подсокетной армирующей рамки, ее функцию выполняет заводской бэкплейт. Это место испытывает большие нагрузки, приводящие к деформации и выгибанию текстолита и возможным трещинам в дальнейшем, в случае установки охладителей на бэкплейты, как у рассматриваемого кулера или пластиковые или вовсе без него. Вышедшая через какое-то время из строя материнская плата, явно не то, что мы ожидаем, собирая новенький компьютер.
Как кулера гнут материнские платы?
На первый взгляд может показаться, что кулер просто своим весом выворачивает текстолит, который за несколько лет просто провисает под консольной нагрузкой длинного и тяжёлого радиатора.
Преступление раскрыто?
Однако, если ввести в гугл или яндекс поиск запрос «прогнулась материнская плата», то можно увидеть совершенно неожиданные результаты, которые совершенно не отражают ранее написанную теорию.
Лёгкий алюминиевый блин выгнул материнскую плату… При этом у многих из вас есть реальный личный опыт использования кулеров которые и тяжелее, и у которых центр масс находится на большем расстоянии от материнской платы, чем у боксового кулера. И подобных остаточных деформаций у вас, скорее всего, не было.
А это значит, что материнская плата изгибается не весом радиатора кулера *звуки удивления на лице*.
Объяснить эти гравитационные аномалии, искажающие хрупкую ткань материи, нам поможет теоретическая механика и сопромат.
И для начала стоит внимательно осмотреть материнские платы, поскольку они могут нам помочь понять как, по мнению создателей плат, должна прилагаться нагрузка чтобы материнские платы не гнулись (несмотря на все теории заговоров по заложенному устареванию — производители плат точно не хотят чтобы в интернете видели их искорёженную продукцию).
И при осмотре вы можете заметить одну небольшую разницу между платами под intel и AMD процессоры.
В материнских платах для Intel процессоров есть несъёмный бэкплейт. А на платах для AMD бэкплейт съёмный и при установке кулеров с собственным бэкплейтом штатный не используется, тогда как в intel ставятся два бэкплейта.
Бэкплейт от платы с сокетом AM4
Учитывая, что законы физики для продукции intel и AMD работают одинаково, очевидно, должны быть какие-то причины на то, чтобы конструкция креплений была различной.
А различная она из-за того, что процессоры intel и AMD имеют различные форм-факторы.
Найди 479465454 отличий
Процессоры AMD имеют внешние продолговатые контакты (ножки), в то время как процессоры intel обходятся плоскими контактами. Можно долго спорить о том какой способ надёжнее, проще и дешевле, и о том сколько золота можно будет получить с процессоров intel и AMD через 30 лет скупая их килограммами как лом, но сейчас нам важно не это.
Важно то, что в случае AMD после установки процессора в сокет мы поворачиваем коромысло которое сбоку придвигает контактные группы к ножкам процессора (при этом трение иногда недостаточно большое и процессор можно выдрать из сокета кулером, если термопаста хорошо схватилась с крышкой процессора, не волнуйтесь, ножки на процессоре держатся крепче, чем в сокете, так что они не оторвутся, по крайней мере с первого раза, но перед тем как вы попытаетесь запихать процессор обратно — откройте коромысло сокета, иначе ножки вы всё же погнёте).
В случае с Intel, бокового прижима к ножкам нет, как и самих ножек, и при установке нам надо надавить на процессор так чтобы он прижался ко всем подпружиненным контактам сокета.
ГОСТ 30019.1-93 Застежка текстильная. Общие технические условия
Для осуществления надёжного контакта процессор надо не просто положить в сокет, а надавить на него, причём довольно сильно. Несмотря на то, что контакты тонкие и по отдельности гнутся без значительных усилий, для того чтобы поджать все 1100 с лишним «усиков» нужно немало усилий.
Специально для того чтобы прижим был достаточно сильным intel внедрили в конструкцию материнских плат сокетный зажим, именуемый сокетной рамкой.
Два выступа на сокетном прижиме давят на крышку процессора, которая равномерно распределяет усилие прижима на текстолит процессора для равномерного прижима его в сокет.
Если вы потеряли нить повествования, то я напомню, что мы сейчас говорим про изгиб материнской платы. И на этом этапе мы столкнулись с появлением первых механических воздействий на материнскую плату. И теперь представим как именно распределяется нагрузка, чтобы понять зачем нужен сокетный бэкплейт.
Черным показана материнская плата, зелёным и серым процессор, рыжим — сокетный прижим
Нагрузка от прижима действует в сторону процессора прижимая его к материнской плате. Но если вы учились в школе, то можете заметить, что на схеме что-то не так.
А не так тут — второй закон Ньютона, который гласит о том, что ускорение тела пропорционально равнодействующей всех сил, приложенных на тело.
Чтобы сокет вместе с процессором не улетели в космическое пространство необходимо обозначить силы реакции опоры. И самым главным тут является понять к чему они приложены. А приложены они к плате с обратной стороны, но не напротив места приложения сил, а в месте крепления сокетного прижима.
Если допустить, что жёсткость сокетного прижима намного выше жёсткости материнской платы (он металлический, а плата из текстолита) и пренебречь деформациями (сжатием) процессора, то представленную схему можно заменить на следующую:
Думаю, объяснять откуда тут могут взяться деформации материнской платы не надо.
И теперь предлагаю обратится к высоким технологиям и произвести расчёт нашей задачи на компьютере при случае отсутствия сокетного бэкплейта.
Приложена нагрузка в 200 Ньютонов (
20 Кг сил). Перемещения на анимации выше показаны в масштабе 200 единиц. Максимальное перемещение 0,217 мм. Это кажется не очень много, но если посмотреть на создаваемые напряжения, то можно в окрестности отверстий увидеть значения до 63 МПа, что для текстолита означает неминуемое разрушение.
Вид снизу
Чтобы материнская плата не развалилась в момент установки процессора в сокет, intel усиливает материнскую плату бэкплейтом.
Перемещения с бэкплейтом
Аналогичная нагрузка с бэкплейтом. Перемещения составили 0,009 мм.
Наибольшие напряжения приходятся на металлический бекплейт и достигают 58 МПа, что для металлов допустимо (например закалённая сталь марки 30ХГСА с отпуском в 200 градусов получит неупругие деформации, то есть останется «кривой» после снятия нагрузки при напряжении в 1450-1700 МПа в зависимости от методов охлаждения при отпуске, а прокатная Ст3 (самый дешман) держит до 350-450 МПа в зависимости от количества добавленного в неё пластилина). В наихудшей точке на материнской плате по расчёту выходит около 22 МПа. Если бы я не был таким ленивым и самостоятельно выставил опирания в модели, а не полагался на то что SolidWorks сам накрутит, то результат был бы ещё меньше (и намного). Но даже эти цифры уже допустимы для текстолита.
Весь этот рассказ нужен был чтобы вы понимали, что когда мы ставим процессор в сокет в intel мы давим на процессор, но при этом опираемся за материнскую плату на отверстия находящиеся сбоку от процессора, а не под самим процессором. Появляется некое плечо на котором действуют силы и изгибают плату.
Аналогично можете представить как на приспособление этого гидравлического пресса ставят материнскую плату и сверху на неё давят толкателем. Сокетный бэкплейт армирует материнскую плату, не позволяя нагрузкам разрушить текстолит.
Думаю, очевидно, что и бэкплейт кулеров выполняет точно такую же функцию.
То есть позволяет снять нагрузку с материснкой платы.
Для intel всё ещё интереснее. Дело в том, что бэкплейт кулера устанавливается на не материнскую плату, а на бэкплейт сокета, и если его жёсткости хватает чтобы не коснутся материнской платы при затяжке крепления, то материнская плата вообще не участвует в передаче нагрузки.
У креплений кулера специально сняты пластиковые проставки, которые нужны для предотвращения перетяжки кулера (чёрные штуковины на пупырке, лежащие на фоне платы — это как раз проставки кулера, которые ставятся на стойки крепления в вехней части материнской платы). Сняты они чтобы наглядней показать где и как происходят опирания креплений кулера.
И вот ещё крупно показан фрагмент предыдущего фото на котором видно, что бэкплейт не касается материнской платы. У платы видно как блестит металл стойки крепления кулера.
Изобразим схему крепления графически.
На изображении выше сокетный бэкплейт показан синим цветом, крепления кулера и бэкплейт кулера — красным, стойки стягивающие крепление кулера и бэкплейт кулера — ярко зелёным, основание кулера — фиолетовое (коричневые — условное изображение тепловых трубок).
Теперь расставим силы.
Крепление прижимает кулер к процессору сверху, а опирается это всё не на материснкую плату, а на сокетный бэкплейт. Таким образом — если бы материнской платы вовсе не было бы, то на работу крепления это никак не повлияло. Материнская плата в нагрузках никак не участвует. А это значит, что и изогнуть материнскую плату кулер с таким креплением не сможет.
А теперь вернёмся к изображению с боксовым кулером
Очевидно, что кроме показанного ранее случая есть и такие, в которых изгиб появляется.
Чтобы понять причину прогиба рассмотрим конструкцию крепления боксового кулера.
У штатных intel кулеров бэкплейта нет. И на сокетный бэкплейт они не опираются. У них есть пластиковые фиксаторы с внешними зазубринами состоящие из двух лепестков, которые надо просунуть в отверстия материнской платы. Затем между лепестков фиксаторов просовывается центральный стержень раздвигая лепестки. Зазубрины на этих лепестках после раздвигания не дают фиксаторам пройти в отверстие обратно. Так кулер и держится.
На изображении выше видно как лепестки «торчат» под платой.
Схематично изобразим данное крепление.
И по традиции добавим действующие силы
Сокетный бэкплейт нисколько не помогает в данной ситуации. Весь прижим трансформируется в нагрузку на материнскую плату. Нагрузка с платы не снимается годами и напряжения внутри текстолита постепенно изгибают текстолит.
Почему Intel делает такие крепления?
Куда хуже дела обстоят с AMD.
Штатный бэкплейт прекрасен. Его жёсткость на изгиб (да и на скручивание) настолько огромна, что на долю материнской платы не приходится почти ничего.
В попытках погнуть эту пластину можно нанести себе травму
Если кулер вкручивается в штатный бэкплейт или ставится в родные фиксаторы AMD, то можете спать спокойно, плату вы кулером не погнёте. Проблема в том, что большая часть кулеров предполагает, что вы должны открутить штатные скобки, снять бэкплейт и положить его куда-то далеко и через несколько лет попытаться его найти при продаже платы, понять что вы его потеряли, скинуть цену платы при продаже из-за некомплектности, и найти этот бэкплейт через 3 года убираясь в квартире.
Но проблема в том, что производители кулеров об AMD не сильно заботятся (доля продаж intel с 2011 по 2017 оправдывает их нежелание). Жёсткость креплений как правило достаточная для Intel (так как там есть зазор для деформации бэкплейта) недостаточна для AMD. То есть даже если у кулера есть бэкплейт — он снимает с платы недостаточно сильно нагрузку. Поэтому выбирая кулер для AM* платформ надо смотреть на то насколько сильно развито оребрение у бэкплейта, если кулер предполагает использование нештатного крепления от AMD.
Бывают конструкции кулеров которые в принципе сделаны неверно и не могут быть установлены так чтобы не прогибать материнскую плату. Данная статья — это текстовая адаптация моего старого видео:
В этом видео ошибки разработки крепления показаны на примере кулера EKL Alpenföhn Silvretta (не дешёвая штука, кстати).
И если в intel крепления пластиковые и нагрузка не очень сильная, то в данном кулере монтаж производится на винты вот так:
Слабенькое затягивание гаек двумя пальчиками штатным коротким ключиком выливается в вот это:
Тонкими красными линиями выделил то что стало из-за деформаций
Неподготовленный человек просто сделает на плате микротрещину или изгибом сломает сокет. В любом случае плата будет в утиль. Как подобные вещи вообще доходят до прилавка — не ясно. Но они до прилавка доходят, так что надо быть осторожными, если у вас подобное крепление.