В холодильных установках используют что
Классификация и свойства хладагентов в системах кондиционирования и вентиляции
Холодильный агент (хладагент)—используемая в холодильной системе рабочая среда, которая поглощает теплоту при малых значениях температуры и давления и выделяет теплоту при более высоких температуре и давлении. Этот процесс сопровождается изменением агрегатного состояния рабочей среды. (ГОСТ Р 12.2.142—99).
Способность переходить из жидкого состояния в газообразное – это свойство всех веществ, но только некоторые из них подходят для использования в качестве хладагентов.
С развитием техники в качестве хладагентов использовались все новые и новые вещества: аммиак (NH3) – с 1874 года, диоксид серы (SO2) – с 1874 года, метилхлорид (C2H5Cl) – с 1878 года, углекислота (CO2) – с 1881 года. Эти хладагенты называют «классическими». Аммиак используется и в наши дни, в последнее время вновь набирает популярность применение в качестве хладагента углекислоты.
Существуют следующие критерии выбора соединений для создания хладагента: большое количество атомов фтора (такие соединения менее токсичны и проявляют слабую химическую активность по отношению к металлам); малое количество атомов водорода (чем оно меньше, тем ниже воспламеняемость).
Далеко не все соединения галогенов и углерода (без водорода) горючи, но при взаимодействии с воздухом они образуют ядовитый газ фосген.
Ранее во многих холодильных системах использовался только хладагент ХФУ R12. В 1974 году учеными было установлено, что хлорфторуглероды разрушают озоновый слой Земли. Их использование было запрещено и им потребовалось найти замену.
Различают следующие типы хладагентов:
1. Предельные углеводороды и их галогенные производные
Они обозначаются буквой R с тремя цифрами после нее, т. е. R c d u, где:
2. Непредельные углеводороды и их галогенные производные
Способ цифрового обозначения тот же самый, что и в предыдущем случае, но слева после буквы добавляется 1 для обозначения тысяч.
3. Циклические углеводороды и их производные
Для хладагентов на основе циклических углеводородов и их производных после буквы R перед цифровым индексом вставляется буква С (например, RC318).
4. Органические соединения
Им присвоена серия 600, а номер каждого хладагента внутри этой серии назначается произвольно (например R600 – бутан).
5. Неорганические соединения
Им присвоена серия 700, а идентификационный номер хладагентов, принадлежащих к этой серии, определяется как сумма числа 700 и молекулярной массы каждого хладагента. Например, для аммиака, химическая формула которого NH3, имеем lxl4(N)+3xl(H3)+700= =717, таким образом, он обозначается как R717. К данной группе относятся также вода (R718), углекислота (R744) и другие вещества.
6. Неазеотропные смеси
Неазеатропные смеси – вещества, жидкая и газовая фаза которых в состоянии термодинамического равновесия имеют разный состав. Иными словами, при одном и том же давлении кипения, температура кипения имеет разные значения. Этим хладагентам присвоена серия 400 с произвольным номером для каждого хладагента внутри этой серии.
7. Азеотропные смеси
В отличие от неазеотропных, состав газовой и жидкой фаз этих веществ одинаков, то есть они ведут себя как моновещество. Им присвоена серия 500 с произвольным номером каждого хладагента внутри серии.
Согласно ГОСТ Р 12.2.142—99 «Системы холодильные холодопроизводительностью свыше 3 кВт», хладагенты разделяются на следующие группы: невоспламеняющиеся нетоксичные холодильные агенты; токсичные и вызывающие коррозию холодильные агенты, нижний предел воспламенения которых (или нижняя граница взрыва) составляет более 3,5% по объему в смеси с воздухом; холодильные агенты, нижний предел воспламенения которых (нижняя граница взрыва) ниже 3,5% по объему в смеси с воздухом.
В данном курсе будут рассматриваться особенности монтажа оборудования, работающего на фреонах (хладагенты группы 1).
Хлорфторуглероды (ХФУ, CFC)
Вещества с высоким озоноразрушающим потенциалом (ОРП) запрещены к использованию Монреальским протоколом (международное соглашение о защите озонового слоя Земли). Производство ХФУ (например, R11, R12 и R114) на территории стран Европейского сообщества прекращено.
Гидрохлорфторуглероды (ГХФУ или HCFC)
Имеют невысокую озоноразрушающую способность и классифицируются Монреальским протоколом как переходные вещества. Их использование должно существенно сократиться в начале XXI века. Примером таких хладагентов являются R22, R123 и R124.
Гидрофторуглероды (ГФУ или HFC)
Вещества не содержат хлора, следовательно, имеют нулевой ОРП и не попадают под действие Монреальского протокола. К ним относятся хладагенты R125, R134a и R152a. Хладагент R134a может быть непосредственно использован вместо R12 при минимальной модернизации установки.
Критерии выбора хладагента
Физические свойства
Давление кипения
Давление кипения (абсолютное) должно составлять, по меньшей мере, 1 бар, абс..
При таком давлении воздух и вода не проникают в систему в случае небольших протечек или при использовании в системах сальниковых компрессоров.
Давление конденсации
Давление конденсации должно быть минимальным, чтобы не усложнять конструкцию системы и сократить потребление энергии. Рабочее давление в системе зависит от типа хладагента и конденсатора.
Разность давлений
Размер двигателя компрессора зависит от разности давлений pc—po. Она должна быть как можно меньше.
Степень сжатия
Степень сжатия должна быть как можно меньше. С ростом степени сжатия pc/po снижается коэффициент подачи компрессора λ и, следовательно, его производительность. Поэтому следует использовать хладагент с плоской кривой упругости пара.
Температура в конце сжатия
Учитывая, что смазочные материалы сохраняют стабильность в ограниченном диапазоне температур, температура в конце сжатия должна быть как можно ниже. Температура зависит от хладагента, степени перегрева всасываемого пара, а также от давления конденсации в системе и компрессоре.
Критическая температура внешней стенки трубопровода составляет от 120 до 140 °C.
Поэтому решающим фактором является температура пластин клапана на компрессоре, которая составляет около 160 °C. При более высокой температуре масло начинает коксоваться.
Коэффициент растворимости в воде
Присутствие воды в системе охлаждения нежелательно. Чем выше коэффициент растворимости хладагента в воде, тем больше влаги он может поглотить, предохраняя тем самым систему от поломок.
Учитывая способность сложноэфирных синтетических масел и полиалкиленгликолевых масел поглощать воду в большом количестве, уровень влажности в системе необходимо контролировать. Поставляемые хладагенты содержат остаточную влагу в количестве, не превышающем 20 промилле.
Удельная теплота парообразования и плотность газа на всасывании
Чтобы сделать вывод об охлаждающих свойствах определенного хладагента, необходимо учитывать эти две переменные. Чем большей удельной теплотой парообразования обладает хладагент, тем меньший рабочий объём цилиндров компрессора потребуется для достижения той же самой холодопроизводительности. Чтобы компрессор доставлял максимальное количество хладагента за один ход поршня, хладагент при входе в компрессор должен обладать максимально возможной плотностью.
Смешиваемость с маслами
Для нормальной циркуляции масла в охлаждающих системах необходима стопроцентная смешиваемость жидкого хладагента с маслом. При полной нерастворимости масла в хладагенте, как, например, в случае с аммиаком, применяют масла со специфическими свойствами или холодильные системы специальной конструкции.
Если пропорция масла и хладагента находится в «промежутке несмешиваемости», могут возникнуть сбои в работе системы охлаждения, связанные с доставкой масла. Кривая промежутка несмешиваемости зависит от типа хладагента и смазочного масла.
Химические свойства
Химическая активность хладагента по отношению к смазочным и другим видам материалов недопустима при любых условиях работы системы. Сами хладагенты обладают средней химической активностью. Этот факт следует принимать в расчет при смешивании хладагента и масла.
Физиологические свойства
Хладагент должен иметь высокую физиологическую совместимость (нетоксичность). Для R 134a максимально допустимая концентрация (предельное значение) составляет 1000 промилле. Вдыхание его паров при малой концентрации в течение 8 часов не оказывает вредного воздействия на организм человека. Высокое содержание хладагента в воздухе может привести к удушью, т.к. снижается доля кислорода (особенно у пола, так как R 134a, как и другие фреоны, тяжелее воздуха). Могут появиться головная боль, тошнота, потеря сознания.
Под воздействием открытого огня, ультрафиолета, при контакте с горячими или раскаленными металлическими поверхностями, хладагент распадается; продукты распада хладагента ядовиты.
Соответствие требованиям по охране окружающей среды
Использование, производство и утилизация хладагентов не должны оказывать отрицательного влияния на окружающую среду.
Озоноразрушающий потенциал (ОРП, ODP)
За последние несколько десятилетий естественная концентрация озона в стратосфере планеты снизилась, и слой, защищающий от вредного излучения Солнца, истончился. Причиной этого стали галогены (хлор, фтор и бром), которые выделяются из хлорфторуглеродов под воздействием ультрафиолета.
На международной конференции в Монреале в 1987 году был подписан Монреальский протокол, согласно которому страны-участники договорились к концу 1995 года свернуть производство веществ, разрушающих озоновый слой.
Поскольку некоторые хлорфторуглероды достигают высоты озонового слоя в течение 15-20 лет, истощение озонового слоя продолжится в ближайшем будущем.
Наиболее сильное истощение озонового слоя (более 50%) наблюдается в районе полюсов земли. Над Антарктикой можно наблюдать так называемую озоновую дыру в период с сентября по ноябрь, во время антарктической весны. В северном полушарии истощение проявляется зимой и весной. В период с 1968 по 1992 снижение уровня концентрации озона над Европой достигало в среднем трех процентов за 10 лет. В последние несколько лет этот показатель поднимался до 5 процентов. Увеличение интенсивности солнечной радиации повлечет за собой рост случаев заболевания раком кожи и катарактой.
ОРП хладагентов с самой высокой озоноразрушающей способностью, таких как R11 и R12, равен 1,0 (100%). ОРП других хладагентов оценивается в сравнении с ОРП R11.
Потенциал глобального потепления (ПГП, GWP)
Усиление парникового эффекта стало причиной повышения средней температуры на Земле на 1-1,5 К. Глобальное потепление со временем приведет к повышению уровня мирового океана, изменению климата и погодным аномалиям.
Потенциал глобального потепления хладагентов определяется в ПГП (единица для диоксида углерода с временным горизонтом 100 лет) или H-GWP (единица для хладагента R11 с временным горизонтом 100 лет).
ПГП R12 равен 8500, R 134a – 1300.
Величина потенциала глобального потепления определяется путем моделирования реакций, происходящих в атмосфере, поэтому ее значения являются приблизительными.
Суммарный эквивалент теплового воздействия (TEWI)
Величина суммарного эффекта теплового воздействия (прямого и косвенного) определяется не только тепловым воздействием хладагента, но и системы, в которой он используется. Также принимается в расчет тепловое воздействие, вызванное энергетическими потребностями холодильной установки, высвобождением хладагентов во время утилизации и утечек. Различают прямой парниковый эффект, вызванный хладагентами (протечки, утечки при ремонте и утилизации) и косвенный парниковый эффект (выделение CO2 при выработке электроэнергии). Недостатком при определении суммарного эффекта теплового воздействия является игнорирование теплового воздействия при производстве каждого отдельного хладагента.
Каждый производитель хладагентов выпускает продукцию под собственным наименованием, например:
Для перевозки и хранения хладагентов используется сосуды следующих типоразмеров:
Эволюция холода: хладагенты в современных холодильниках
Хладагент это рабочее вещество холодильной машины, которое при кипении и в процессе испарения отнимает тепло от охлаждаемого объекта, а затем после конденсации передаёт его окружающей среде.
Современные холодильники в основном компрессионные и, как следует из названия, имеют компрессор (а некоторые модели даже два). Кроме этого, конструкция предусматривает испаритель. Меж ними циркулирует хладагент. Сначала сжатый компрессором хладагент, находясь в газообразном состоянии, поступает в конденсатор длинную зигзагообразную трубку. Там он превращается в жидкость и отдаёт тепло окружающей среде. Через специальный регулирующий вентиль жидкий хладагент поступает в испаритель, который находится внутри теплоизолированной морозильной или холодильной камеры. Там давление падает, он начинает кипеть, испаряется, снова превращаясь в газ, отбирая при этом тепло у окружающего воздуха. Камера холодильника охлаждается. Испарившийся хладагент опять сжимается компрессором и попадает в конденсатор. И так цикл повторяется снова и снова. Этот принцип охлаждения используется в большинстве холодильников уже десятки лет.
1 компрессор; 2 нагнетательный трубопровод; 3 конденсатор; 4 фильтр-осушитель; 5 капиллярная трубка; 6 испаритель холодильной камеры; 7 испаритель морозильной камеры; 8 всасывающий трубопровод» src=»http://pics.rbc.ru/img/cnews/2008/02/15/1.jpg»>
Схема компрессионного холодильника:
1 компрессор; 2 нагнетательный трубопровод; 3 конденсатор; 4 фильтр-осушитель; 5 капиллярная трубка; 6 испаритель холодильной камеры; 7 испаритель морозильной камеры; 8 всасывающий трубопровод
Однако есть и другой тип холодильников, пусть и менее популярный сегодня, абсорбционные. Циркуляция рабочих веществ: абсорбента (воды) и хладагента (как правило, аммиака), имеющих разную температуру кипения при атмосферном давлении, осуществляется посредством абсорбции. Аммиак поглощается водой, получившаяся смесь подогревается с помощью электрического или газового нагревателя. При этом происходит выпаривание аммиака, который, испаряясь, потребляет теплоту камеры холодильника, то есть способствует её охлаждению. Абсорбционные холодильники в основном маленькие, однокамерные. Яркий пример такой техники великолукские холодильники «Морозко».
Схема устройства абсорбционного холодильника
Как всё начиналось
Серийное производство холодильников в начале XX века активнее всего развивалось в США. Практически во всех машинах того времени в качестве хладагента использовались аммиак, различные эфиры и некоторые другие весьма токсичные и опасные для человека вещества. поломок таких агрегатов и контакта людей, в частности, с аммиаком высокой концентрации нередки были даже смертельные случаи. Поэтому учёные стали искать другие вещества, которые можно использовать в качестве хладагентов. Так появились фреоны.
Один из первых серийных американских холодильников Frigidaire
Воцарение фреонов
Скрытая угроза
Всё шло прекрасно: и производители, и потребители были довольны. К 1976 году объём производства того же достиг почти 340 тысяч тонн. Определённая часть из этого количества предназначалась как раз для холодильных систем, систем охлаждения воздуха, баночек с аэрозолями Но годы прошлого века стали началом «тяжелых времён» для уже привычных фреонов. Ученые, исследовавшие причины нарушения озонового слоя Земли, пришли к выводу, что многие фреоны наносят ему ощутимый вред. Также оказалось, что фреоны участвуют в возникновении парникового эффекта, потому что задерживают инфракрасное излучение, которое испускает земная поверхность, а следовательно, способствуют глобальному потеплению.
Озоновый слой планеты всё ещё под угрозой, хотя за 20 лет, прошедших с подписания монреальского протокола, есть ощутимые позитивные изменения. Фото сделано спутником NASA
Альтернатива фреонам
Однако и сегодня постоянно ведутся исследования, учёные пытаются синтезировать новые, максимально экологичные, более качественные по своим свойствам хладагенты. Разработкой альтернативных хладагентов озабочены многие государства, вкладывающие значительные финансовые средства в соответствующие исследования. По оценкам специалистов, за последние шесть лет на синтез новых хладагентов было потрачено свыше 2,4 миллиардов долларов.
Синтезированы хладагенты из пропана (R290), этилена (R1150), пропилена (R1270), изобутана (R600a). Производство холодильников, работающих на изобутане, освоили многие производители, причём не только в Европе или в Америке, но и на просторах бывшего СССР. Например, белорусская фирма Atlant предлагает покупателям модель за 15000 рублей, да и остальные свои модели этот производитель «перевёл» на безопасный изобутан.
Примеры моделей с хладагентом R600A:
Объём: 354 литра
Стоимость: 15000 рублей
Объём: 369 литров
Стоимость: 28000 рублей
Объём: 348 литров
Стоимость: 22000 рублей
Фирмой Du Pont был разработан ряд новых смесей хладогентов, известных под марками SUVA MP, SUVA МР39 (R401A), SUVA MP52 (R401C) и некоторые другие.
Увы, пока говорить о идеальном по своим характеристикам хладагенте рано. Сегодня главное то, что удалось разработать хладагенты безопасные для человека и окружающей среды. Именно они и используются в бытовых холодильниках и кондиционерах. Ну, а дальнейшее их совершенствование дело времени.
Виды хладагента в холодильниках
Как происходит охлаждение
Для того, чтобы фреон выполнял свою функцию по охлаждению, в холодильных установках спроектирована специальная система, состоящая из нескольких элементов: компрессор, конденсатор, дроссель и испаритель. Также есть вспомогательные части, служащие для контроля температуры и управлением системой, но они непосредственно на фреон влияния не оказывают.
Необходимо понимать, что система охлаждения заправлена хладагентом полностью под определенным давлением (величина зависит от типа фреона). Компрессор в данной ситуации только создает давление в отдельной ее части, снижая его при этом в другой. Сам контур охлаждения герметичен и фреон в ней не вырабатывается, а просто постоянно циркулирует, меняя состояние и температуру. Поэтому при возникновении утечки работа агрегата нарушается.
Утечка фреона
Многие пользователи склонны считать, что фреон вытекает или просто вырабатывается, как бензин или масло в автомобиле. Но это мнение ошибочно. Если вдруг холодильник стал плохо охлаждать, но двигатель при этом работает, скорее всего где-то образовалась утечка. Такое довольно часто может произойти в старом аппарате, где трубки уже пришли в негодность от срока использования, либо в новом устройстве когда пользователь нарушает герметичность механически (протыкает морозилку ножом, либо ломает трубки сзади при неаккуратной перестановке). С естественным износом трубок чаще всего можно столкнуться в испарителе холодильной камеры. Это связано с тем, что он находится постоянно во влажной среде.
При появлении первых признаков утечки необходимо обратиться к специалисту. Самостоятельно увидеть или почувствовать данную неисправность почти невозможно. Как описано выше фреон не обладает запахом и заметить микроутечку невозможно. Если опоздать с обращением в мастерскую, то недостаток газа в системе может вывести из строя сам мотор.
Очень часто можно столкнуться с ремонтом в виде простой дозаправки хладагента, но это некачественный ремонт, который продлит срок службы устройства на считанные дни. Для качественного устранения проблемы необходимо найти и купировать утечку, а при необходимости менять испаритель или другой отдел, где обнаружена проблема. При ремонте необходимо будет производить дозаправку и здесь очень важно учесть тип фреона в системе.
Виды фреонов, применяемых в бытовых устройствах
Тип фреона в холодильнике или в климатической установке указывается на шильдике с моделью и серийным номером. Чаще всего данная табличка находится на корпусе устройства, а иногда на внутренней стенке, в случае с бытовыми холодильниками.
Основными бытовыми фреонами являются: R134А, R410А и Фреон-R600A. Фреон 410 применяется в климатических системах. Благодаря тому, что при появлении утечки все компоненты хладагента испаряются условно одинаково, то кондиционер можно просто дозаправить, не сливая остатки старого вещества. Фреоны 134-й и 600-й используются в бытовых холодильниках. Они практически безвредны и являются отличными заменителями старых фреонов типа R12 и других, которые запрещены в использовании в большинстве стран мира.
Есть еще немало различных видов этого вещества, но они применяются либо в промышленности, либо не используются из-за вреда наносимого окружающей среде. Примером такого фреона может быть R-22, который применяется в промышленности. Для человека он очень опасен и в бытовых устройствах противопоказан, так как при его нагревании выделяется фосген COCl2, используемый ранее как боевое отравляющее вещество. При необходимости дозаправки холодильной установки стоит обращаться к квалифицированным мастерам, которые подберут правильную марку фреона и наполнят систему так, как это необходимо.
Новые холодильники Kuppersberg
Для того чтобы заказать доставку оригинальной продукции «Купперсберг» на дом вам будет нужно выбрать понравившуюся модель в каталоге фирменного интернет-магазина и добавить ее в корзину. После оформления заказа с вами свяжется наш консультант, с которым вы сможете обговорить условия доставки и оплаты товары. Доставка возможно по всем регионам России при помощи курьерской службы или транспортных компаний, которые обеспечивают сохранность грузов.
Запрет фреонов
Самые различные виды холодильного оборудования давно стали чем-то настолько привычным для нас, что мы не представляем свою жизнь без них. Домашний холодильник, кондиционеры, промышленные холодильные установки, камеры шоковой заморозки, холодильные витрины и т.д. Прогресс не стоит на месте и на перечисление всего известного холодильного оборудования понадобится немало времени. Мы все знаем, что есть один компонент, благодаря которому все эти системы могут вырабатывать холод для нас.
Формально, можно сказать, что любое вещество является хладагентом. Например, вода, которая при атмосферном давлении кипит при температуре +100°С и забирает тепло у источника тепла или, другими словами, охлаждает его.
Историческая справка
Используемые в те времена вещества были не просто опасны, но и губительны для человеческой жизни.
Разрушение озонового слоя
В 80-х годах случился переломный момент для фреонов и всей холодильной промышленности. Ученые стали активно изучать причины разрушения озонового слоя и пришли к выводу, что фреоны наносят ощутимый ущерб.
Большинство стран мира объединились, чтобы решить сложившуюся проблему. Было принято несколько протоколов и проведено множество встреч по обсуждению выходов из этой ситуации.
Проблема экологии смогла перевернуть холодильную промышленность и объединить невероятное количество стран мира 197 из 202. Самая первая конференция была в 1985 году в Вене, но первые юридические обязательные цели был изложены в Монреальском протоколе 1987 года (Канада, Монреаль).
Фреоны были очень используемы по всему миру, особенно, класс хлорфторуглеродов (CFC, наиболее популярный фреон R-12), которые собирались запретить Монреальским протоколом. Сложилась очень тяжелая ситуация, как прийти к задуманному с минимальными потерями, особенно всех интересовала экономическая сторона этого вопроса.
Проблема изменения климата
Не менее важным стал Киотский протокол 1997 года, он направлен на сокращение выбросов парниковых газов в атмосферу.
Регулирование потребления/производства этих газов планировалось вести по рассчитанным квотам для каждой страны. В случае имеющихся свободных квот их можно было продать другой стране. Россия имела одну из самых крупных долей выбросов парниковых газов. Несмотря на то, что это плохой показатель для экологии, именно этот фактор и верно выбранная тактика, способствовали тому, что Россия останется основным действующим лицом на климатических переговорах.
В дальнейшем к протоколу были приведены поправки, дополняющие его содержание: Лондонская, Копенгагенская, Монреальская, Пекинская и Кигалийская.
Стоит обратить внимание на Кигалийскую поправку, принятую совсем недавно в 2019 году.
Она направлена на приостановление глобального потепления, с помощью постепенного сокращения производства и потребления класса HFC (гидрофторуглероды). Этот класс стал в свое время успешной заменой озоноразрушающим веществам, но решив одну проблему столкнулись с другой. Газы из этого класса имеют высокие показатели потенциала глобального потепления, тем самым оказывая большое влияние на увеличение температуры окружающей среды.
Характеристики холодильных агентов
Рассмотрим характеристики самых популярных фреонов. Более ранние и пришедшие на их замену более безопасные.
Вещество | Класс | Начало применения | Формула | Группа безопасности | Группа жидкости в сотв. PED | Масло | Точка кипения, при атмосф. давлении | ODP | GWP-AR4 (ПГП) |
---|---|---|---|---|---|---|---|---|---|
R717 |
Углекислота (Carbon dioxide)
Наиболее популярный фреон в 1950-1980 гг, (в 1987 г. ограничен к применению Монреальским протоколом из-за большого ODP)
На замену R12 пришёл более новый фреон R-134a:
начало 1990-х годов
На замену R134a (весьма большой ПГП), появилась более безопасная альтернатива:
Наиболее популярный фреон во второй половине XX века, запрещен Монреальским протоколом из-за большого ODP (Лондонская поправка июнь 1990г):
На смену R22 в конце XX века нашли применение фреоны, которые не имеют воздействие на озоновый слой (ODP=0). Они широко распространены и применяются по сей день:
начало 1990-х годов
На замену R404a, R507a (появилась более безопасная альтернатива):
начало 2010-х годов
начало 2010-х годов
Новые альтернативы R1234ze и R1234yf используются для кондиционирования. Они являются экологически безопасными (наносят минимальный ущерб окружающей среде), но горючие и легко воспламеняемы в некоторых условиях.
Подведем небольшой итог. Недостаток безопасных для экологии хладагентов и вводимые ограничения приводят к неизбежному росту цен.
В начале 2021 года наиболее популярные фреоны (R134a, R404А, R507, R410А) стоили ориентировочно 3500 – 4500 рублей за баллон (
11-14 кг). В то время, как в Европе цена на эти фреоны составляет 500 – 1000 евро (
45 500-91 000 рублей), а их потребление строго регулируется местным законодательством.
Рост европейских цен на фреоны с высоким GWP не останавливается и уже сейчас в Швейцарии цена на фреон R404А для конечных потребителей составляет 300евро за 1кг.
В конце марта 2021 г. цена на популярные фреоны в России резко возросла в моменте до 12 000 рублей за баллон, но в дальнейшем скорректировалась до уровней 8 000-9 0000 рублей.
Причиной резкого роста цен послужил установленный с 18 апреля 2021 г. разрешительный порядок ввоза хладагентов группы ГФУ на территорию Евразийского Экономического Союза. После установления разрешительного порядка организация импортер может ввезти фреон только при наличии лицензии Минпромторга, которая оформляется на основании разрешительного документа (заключения) выдаваемого Росприроднадзором.
При этом внутренние цены в России все равно остаются принципиально ниже Европейских. В 2021 г. квоты на количество ввозимых ГФУ (HFC) не установлены по причине профицитного объема потребления ГФУ и отсутствия распределения квот. Однако в будущем планируется введение квот исходя из пересчета массы ГФУ на потенциал глобального потепления (перевод в тонны CO2) согласно приложения Е Кигалийской поправки к Монреальскому протоколу. Таким образом, в долгосрочной перспективе следует ожидать рост цен до уровня Европейских.
Аналогичный вектор на хладагенты с низким ПГП (GWP) демонстрируют вступившие в силу с 1 июля 2021 г. СП 60.13330.2020 “Отопление, вентиляция и кондиционирование воздуха”, которые теперь содержат следующие требования: В системах холодоснабжения следует использовать холодильные машины и установки, работающие на экологически безопасных хладагентах с нулевой озоноразрушающей способностью и потенциалом глобального потепления не выше 2 500 (ГОСТ EN 378-1–2014, приложения В, Е). Таким образом, если “кондиционерные” R134a и R410a еще удовлетворяют данному требованию, то повсеместные “холодильные” R507a и R404a уже не удовлетворяют, обладая коэффициентом ПГП 3780 и 3850.
Ситуация осложнена тем, что на данный момент в мире нет хладагентов, которые не оказывали бы влияние на глобальное потепление и при этом были бы негорючими и не взрывоопасными. В ближайшее время очень маловероятно их появление.
Есть три основных хладагента, которые не имеют перспектив на экологический запрет, но имеют свои недостатки. Остановимся на каждом более подробно.
Хорошие показатели для экологии и не токсичный, но имеет высокие давления в системе и не имеет выдающих показателей энергоэффективности.
В режиме низких и сверхнизких температур при прочих равных показатели энергоэффективности CO2 соизмеримы с показателями наиболее популярных фреонов, но для режима средних температур и кондиционирования проигрыш CO2 достаточно существенный. Углекислота может быть использована в нижнем каскаде субкритического цикла (в верхнем обычно фреон/аммиак), и как самостоятельный хладагент в транскритическом цикле.
Некоторые особенности теплофизических свойств углекислоты (высокие температуры нагнетания и низкая критическая точка +30,98°С) позволяют конфигурировать более сложные холодильные системы с параллельным сжатием в верхней ступени, десуперхитерами, инжекторами и другими модернизациями, которые в конечном итоге позволяют получить суммарный эффект в энергоэффективности лучше чем в традиционных фреоновых системах. Но если сравнивать бустерный (двухступенчатый) цикл сжатия для фреоновой системы и для CO2 без дополнительных модернизаций, то энергоэффективность будет соизмерима, вопреки устоявшемуся мнению, что системы на CO2 более энергоэффективны чем фреоновые из-за физических свойств самой углекислоты.
В Европе CO2 является хладагентом первого выбора для систем малой и средней производительности. В последние годы активно внедряется в России, в том числе силами компании Рефинжиниринг.
В процессе реализации проект МПК Обнинский на CO2
Лучший по энергоэффективности и экологичности, токсичный и взрывоопасный при определенных концентрациях.
“Классический” хладагент для больших промышленных систем и крупных предприятий. Для аммиачных систем действуют ФНП “Правила безопасности аммиачных холодильных установок”, требуются расширенные допуски на проектирование и выполнение работ на особо опасных обьектах, экспертиза промышленной безопасности, постановка на учет в Ростехнадзоре. Тем не менее, остается хладагентом первого выбора для систем большой производительности.
Средний по энергоэффективности, экологичный, но высоко горючий и взрывоопасный (группа А3).
В России пропан распространен мало (единичные проекты небольшой производительности). В Европе довольно популярен ввиду экологичности (за последние несколько лет наблюдается большой рост по пропановым холодильным машинам, последние три года объём рынка в Европе удваивается каждый год).
Используется в основном в коротких контурах в чиллерах небольшой и средней производительности (до 500кВт). Ввиду своих горючих и взрывоопасных свойств требует обязательной оценки рисков на предмет образования взрывоопасной среды и возможных требований к взрывозащищенному исполнению оборудования.
Есть две особенности применения в системах холодоснабжения:
Мы проектируем наши системы холодоснабжения и подбираем хладагент исходя из требуемых задач, учитывая вышеописанные факторы и детали проекта.
- В холодильнике что то булькает что это
- В холодном помещении диффузия происходит медленнее это связано с тем что